
Breadth-First Tree Search MIMO Signal Detector Design and VLSI Implementation

Sizhong Chen∗, Tong Zhang∗ and Yan Xin†
∗Electrical, Computer and Systems Engineering Department

Rensselaer Polytechnic Institute, USA
†Department of Electrical and Computer Engineering

National University of Singapore, Singapore

ABSTRACT

Efficient VLSI implementation of multiple-input multiple-
output (MIMO) signal detectors plays an important role
in the real-life MIMO communication systems. This pa-
per presents a nonlinear MIMO detector design solution,
called relaxed K-best detector, that can support efficient
VLSI implementation, while maintaining good detection
performance. To the best of our knowledge, this is the
first nonlinear detector ever reported in the open literature,
capable of supporting 4×4 MIMO transmission with 64
quadrature amplitude modulation (QAM). A soft-output
relaxed K-best detector has been designed and synthesized
using Synopsys with 0.18 µm CMOS technology. With the
silicon area of 20 mm2, the detector can achieve up to 50
Mbps throughput for 4×4 MIMO with 64-QAM modulation.
The detector can achieve almost the same performance as
the detectors using the sphere decoding algorithm.

I. INTRODUCTION

As a topic of great current interest, multiple-input
multiple-output (MIMO) wireless data transmission tech-
nology can realize dramatic improvements in terms of
spectral efficiency and/or link reliability compared to what
is achievable today. Hence, MIMO holds great promise
for a wide use in future wireless communication systems
such as the fourth-generation (4G) mobile radio systems,
fixed broadband wireless systems, and wireless local area
networks [1], [2]. As a key element in wireless MIMO
communication devices, MIMO signal detectors can be
either hard-output (i.e., only provides the hard estimation of
the transmitted bits) or soft-output (i.e., provides a posteriori
probability (APP) information about each bit).

The maximum-likelihood (ML) hard-output and maxi-
mum a posteriori (MAP) soft-output MIMO detectors based
on exhaustive search typically incur prohibitive computa-
tional complexities, and therefore development of MIMO
detectors with reduced computational complexity is of great
practical importance. One family of reduced-complexity
detectors is linear detectors based on the principles of linear
minimum mean-square error (LMMSE) or zero-forcing

(ZF). Although they can greatly reduce the computational
complexity, they suffer from significant performance degra-
dation. To achieve the performance closer or equivalent
to the ML or MAP detection, researchers have developed
several nonlinear detectors that realize hard- or soft- output
detection through non-exhaustive tree search based on a set
of additive metrics, where the goal of hard-output detection
is to find one tree leaf with the best metric and the goal
of soft-output detection is to find a list of tree leaves to
calculate the APP information of each bit (as explained
later). Because of their computation-intensive nature, those
nonlinear MIMO detectors should be implemented in the
form of application specific hardware in order to meet the
throughput and power consumption constraints in real-life
wireless communication systems.

Depending on how to carry out the non-exhaustive
tree search, nonlinear detectors fall into three categories,
i.e., depth-first search, metric-first search, and breadth-first
search. The depth-first detection using sphere decoding
algorithm [3] so far attracted the most attentions and holds
the state of the art: For 4×4 MIMO transmission with
16 quadrature amplitude modulation (QAM), hard-output
depth-first detectors [4] achieve much higher throughput
(under high signal to noise ratio (SNR)) than their breadth-
first counterparts [5], [6], while the soft-output depth-first
detector [7] is the only one nonlinear soft-output detector
ever reported.

However, the design and implementation of hard- or
soft- output nonlinear detectors that can support 64-QAM
modulation have not been addressed in the open literature.
As the first attempt to fill this gap, this paper presents a
breath-first hard- and soft- output detector design solution
that can support 4×4 MIMO transmission with 64-QAM
modulation. This design solution is essentially based on the
M-algorithm [8], a well-known breath-first tree search algo-
rithm. Following the convention in the existing literature on
MIMO signal detection, we refer the breadth-first detector
based on the principle of M-algorithm as K-best detector
[5], [6]. As discussed later, the direct realization of a K-
best detector in hardware requires implementing a sorting
operation. Due to the serial nature of sorting and potentially

1 of 7

large amount of data movement, this will lead to a through-
put bottleneck and significant power consumption overhead.
To tackle this challenge, instead of directly following the
principle of M-algorithm as in the K-best detectors [5], [6],
we modified the basic principal of the M-algorithm, leading
to a so-called relaxed K-best detector. The basic idea is
to replace the strict sorting operation with a distributed
and approximate sorting that can significantly simplify the
hardware implementation. The detailed detector design and
hardware structure are described.

To demonstrate the proposed design solution, we de-
signed soft-output relaxed K-best detectors for 4×4 MIMO
transmission with 64-QAM modulation. The design entry is
Verilog HDL language, which is synthesized using Synop-
sys tool set with 0.18 µm CMOS technology. The detector
silicon area is estimated as 20 mm2 and the throughput can
be up to 50 Mbps at relatively high SNR. Concatenated
with an low-density parity-code (LDPC), this soft-output
detector can achieve almost the same performance as using
the sphere decoding algorithm. To the best of our knowl-
edge, this is the first soft-output detector that can support
4×4 MIMO transmission with 64-QAM modulation ever
reported in the open literature.

II. BACKGROUND

A. System Model

This work considers a MIMO system with spatial multi-
plexing signaling (i.e., the signals transmitted from individ-
ual antennas are independent of each other), as illustrated in
Fig. 1. Let Nt and Nr represent the number of transmit and

Modulator�

Modulator�

FEC�
Encoder�

Source�

Demodulator�

Demodulator�

FEC�
Decoder�

MIMO Signal�
Detector�

Sink�
Demodulator�x� s�

H�

y�

Fig. 1. A coded MIMO system model.

receive antennas, respectively. Assume that the transmitted
symbol is taken from a W -QAM constellation with W =
2q. At once, the transmitter maps one qNt×1 binary vector
x to an Nt × 1 symbol vector s. The transmission of
each vector s over MIMO channels can be modelled as
y = H · s+n, where y is an Nr × 1 signal vector received
by a MIMO detector, H is an Nr×Nt channel matrix, and
n is a noise vector whose entries are independent complex
Gaussian random variables with mean zero and variance
N0/2.

B. MIMO Signal Detection

Following the principle of maximum likelihood (ML)
detection, the task of the hard-output detector is to solve

min
s∈Ω

‖y −H · s‖2, (1)

where Ω contains all the WNt possible transmitted symbol
vectors. The task of the soft-output detector is to compute
the log-likelihood value of each bit, which is defined as
L(xi|y) = ln P (xi=+1|y)

P (xi=−1|y) , where xi denotes the ith bit of
the binary vector x. Through standard simplification [9],
[10], L(xi|y) can be approximated as:

L(xi|y) ≈ max
xi=+1

{Λ(x,y} − max
xi=−1

{Λ(x,y)},

where Λ(x,y) = − 1
N0

‖y −H · s‖2.
(2)

In a straightforward manner, hard- and soft- output MIMO
detection can be realized by exhaustively examining all
the WNt possible symbol vectors according to (1) and
(2), which nevertheless leads to computational complexity
prohibitive for practical applications when Nt and/or W is
large.

As discussed in the literature (e.g., see [9], [10]), we
may use the following well-known approach to reduce the
computational complexity at the cost of potential perfor-
mance degradation: Using standard matrix decompositions
such as Cholesky or QR decomposition, we can obtain
H∗H = L∗L, where L = (li,j) is a lower triangular
matrix and (·)∗ denotes the complex conjugate transpose.
Let ŝ = (H∗H)−1H∗y, we have

‖y −H · s‖2 = (s− ŝ)∗L∗L(s− ŝ)

+ y∗(I−H(H∗H)−1H∗)y.
(3)

Since the second term in (3) is independent of s and the
matrix L is lower triangular, we can rewrite (1) and Λ(x,y)
in (2) as

min
s∈Ω

(Nt∑
i=1

∣∣∣ i∑
j=1

li,j(sj − ŝj)
∣∣∣2) = min

s∈Ω

(Nt∑
i=1

Λh
i

)
(4)

and

Λ(x,y) =
Nt∑
i=1

(
− 1

N0

∣∣∣ i∑
j=1

li,j(sj − ŝj)
∣∣∣2) =

Nt∑
i=1

Λs
i . (5)

Hence, we obtain additive metrics with the metric incre-
ments Λh

i and Λs
i that depend only on sj for j ≤ i. This

can be leveraged to design detectors based on an Nt-depth
W -ary tree as illustrated in Fig. 2, where each node has W
child nodes labelled with 1, 2, . . . ,W , respectively, corre-
sponding to the W possible QAM points. The i-th depth
of this tree corresponds to the i-th transmit antenna. The

2 of 7

objective of the hard-output detector is to non-exhaustively
search through this tree and find a tree leaf1 that is the
solution of (1). The objective of the soft-output detector is
to non-exhaustively search through this tree and find a list
of tree leaves, based on which the L-values can be evaluated
according to (2). The detector can search the tree in a depth-
first, metric-first, or breadth-first manner.

1 W

1

1

W

W

N
t1 W

Fig. 2. An Nt-depth W -ary tree.

C. Breadth-First Search K-Best Detector

This work concerns the design of the breadth-first tree
search MIMO signal detector. Broadly speaking, breadth-
first tree search algorithms extend all the survivor paths
at each tree depth at once, purge some paths according to
certain criterion, and then continue on to the next tree depth.
Various breadth-first algorithms, including M-algorithm and
T-algorithm, primarily differ on the purging rules. Interested
readers may refer to [11]. As mentioned earlier, following
the convention in the literature on MIMO signal detection,
we refer the breadth-first detector based on the principle
of M-algorithm as K-best detector [5], [6]. Since the term
− 1

N0
in (5) can be omitted in the tree search, we re-

define the metric increment Λs
i for soft-output detection

as |
∑i

j=1 li,j(sj − ŝj)|2, which becomes equivalent to the
metric increment Λh

i for hard-output detection. Therefore,
we simply denote the metric increment as Λi and define
the metric of a depth-n path as Γ (n) =

∑n
i=1 Λi. A K-best

detector performs the following operations at depth d:

1) Path Extension: Given the modulation size of W ,
extend each survivor path from the previous depth
with the W modulation points, i.e., calculate Γ (d) =
Γ (d−1) + Λd for each modulation point.

2) Radius Check: Delete the extended paths whose met-
rics are larger than a pre-defined value r. Here r is
equivalent to the radius in sphere decoding.

3) Path Search: Let R denote the number of the remaining
extended paths. Sort the R extended paths in ascending

1Notice that each tree leaf determines one distinct path through the
tree, corresponding to one distinct qNt × 1 bit vector.

order based on the path metric and select the first
min(R, K) paths as survivors at depth d.

Hard- and soft- output K-best detectors only differ at
how to generate the output using the survivors obtained
after reaching the tree leaves: (a) Hard-output detector finds
the best one among all the survivors and outputs the hard
decision of each bit based on this final survivor; (b) Soft-
output detector keeps all the survivors as a list of candidates,
based on which the L-values are calculated according to
(2). In general, to ensure near-optimum performance, a soft-
output detector typically requires a (much) larger value of
K than that of its hard-output counterpart.

III. PARTIALLY PARALLEL RELAXED K-BEST

DETECTOR ARCHITECTURE

For the VLSI implementation of a K-best detector, the
Path Extension (and hence Radius Check) can be, in theory,
implemented in fully parallel, i.e., at each depth all the
survivors are extended in parallel. Because of the complex
computation involved in the path extension and the through-
put bottleneck incurred by the Path Search (as discussed
later), the fully parallel implementation is impractical and/or
unnecessary. This work only considers the partially parallel
detector that maps a certain number of path extension
operations onto the same hardware processing unit in a
time-division multiplexed mode.

From the Section II-B, we have that the calculation of
metric increments at depth-i can be written as |Pc − Ps|2,
where Pc =

∑i−1
j=1 li,j(ŝj−sj)+ li,iŝi that is common to all

the paths extended from the same survivor, and Ps = li,isi

that corresponds to each modulation point. Therefore, to
extend one survivor, we need to calculate only one Pc but
multiple |Pc−Ps|2. Straightforwardly, we have the generic
structure of the processing unit at each depth as shown
in Fig. 3. Each PC block calculates the Pc, and each PS
block calculates the metrics, i.e., Γ (i−1) + |Pc − Ps|2, of
all the paths extended from the same survivor and deletes
those that fail the radius check. Due to the computational
complexity mismatch between PC and PS blocks, several
PS blocks can share one PC block. The total number of PC
blocks and PS blocks can be much less than the value of
K. The output of all the PS blocks, i.e., the extended paths
that pass the radius check, are sent to a search block that
selects the best K extended paths as survivors.

However, such straightforward structure has two critical
drawbacks that prevents it from achieving high throughput
with reasonable silicon area and power consumption, par-
ticularly for high order modulation such as 64-QAM:

1) The detector explicitly examines the extension of each
survivor with all the modulation points. Due to the
complex computation involved in each path extension,

3 of 7

Path�

Search�

(Sorting)�

S
ur

vi
vo

r
pa

th
s

fr
om

�
th

e
pr

ev
io

us
 d

ep
th

�

S
ur

vi
vo

r
pa

th
s

to
�

th
e

ne
xt

 d
ep

th
�

.�.�.�

PC�
PS�
.�.�.�

PS�

PC�
PS�
.�.�.�

PS�

Fig. 3. Generic structure of the processing unit at each depth in the
partially parallel K-best detector.

this will incur a large computational complexity over-
head.

2) Due to its serial nature, the sorting at each depth will
incur a large delay and hence become an essential
throughput bottleneck. This fails to match the inherent
parallelism within the path extension and radius check.
Although there exists an algorithm, as pointed out in
[8], that can select the best M out of N numbers more
efficiently without using sorting, the most effective
way to realize the search-the-best-K-paths operation in
hardware is sorting, such as the bubble sorting used in
[5] for hard-output K-best detector. Besides the large
delay, sorting will also incur large silicon overhead and
a large amount of data movement, which will directly
lead to high power consumption.

The first issue can be tackled by using the PSK enumer-
ation method first proposed in [9] and further simplified in
[4]. To tackle the second issue, we developed a modified K-
best detector, called relaxed K-best detector, where the key
idea is to replace the original strict sorting with a memory
based distributed and approximate sorting. Such algorithm-
level relaxation can be directly leveraged to improve the
hardware implementation performance. In the following, we
first describe the proposed relaxed sorting, then present the
overall relaxed K-best detector structure. In section IV we
will present a proof-of-concept hardware design of a soft-
output relaxed K-best detector that can support 4×4 MIMO
transmission with 64-QAM modulation.

A. Distributed and Approximate Sorting

The principle of the distributed and approximate sorting
is illustrated in Fig.4(a), where each PS block has its
own sorter and all the sorters perform approximate sorting
independent from each other. The basic idea of approximate
sorting can be described as sorting at the level of groups
of paths, in contrast to the strict sorting at the level of
individual paths, i.e., we divide the entire range of the
path metric into a certain number of regions and group
the paths whose path metrics fall into the same region,
and within each group there is no further sorting. Clearly,

such approximate sorting only involve the comparison with
fixed threshold values, which can be directly implemented
in parallel.

Intuitively, we can use a single-port memory to imple-
ment such approximate sorting as follows: We uniformly
partition the memory address space into l consecutive
segments. Since all the incoming paths have the metric
better (i.e., less) than the radius r that is used in the radius
check, we choose l+1 threshold values t0 = 0 < t1 < t2 <
· · · < tl = r, and assign the range (ti−1, ti] to segment Si

for i = 1, 2, · · · , l. Each path, whose metric falls into the
range (ti−1, ti], is simply stored into the memory segment
Si. Each segment has one counter to hold the address of
the next available memory location. Clearly, among the data
stored within the same memory segment, there is no sorting
at all. For the practical implementation of such approximate
sorting, we need to solve the following two problems:

1. What should we do if one memory segment becomes
full? Our simulations show that if we simply throw away
any further incoming path after the segment becomes full,
there will be a significant performance degradation. To this
end, we propose to make the threshold range associated
with each memory segment configurable, as illustrated in
Fig.4(b). Let (ui−1, ui] represent the configurable threshold
range associated with segment Si. Initially, we set ui = ti
for i = 1, 2, · · · , l. Once one segment becomes full, we
will hand over its range to its closest next (with higher
value of index) segment that is not full yet. For example,
before the segment Si becomes full, we have ui = ti. Once
Si becomes full, by using a switch as shown in Fig.4(b)
we configure ui = ui−1 to prevent any further write to
this segment. Meanwhile, the lower bound of the threshold
range of the closest next segment that is not full yet will
automatically extend from ti (i.e., the previous value of ui)
to ui−1. In this way, the range of Si is handed over to the
closest next segment that is not full yet.

2. How to determine the l threshold values t1, t2, · · · , tl?
In this work, we first calculate the radius r = αNrσ

2, as
proposed in [9] for sphere decoding, where α is a predefined
constant parameter and σ is the noise standard deviation.
We have tl = r and calculate the other l−1 threshold values
as ti = i · tl/l for i = 1, 2, · · · , l − 1.

The survivor paths at each depth are feed to the next depth
as follows: We start with fetching one path in segment
S1 as survivor from each single-port memory at one time,
alternatively among all the single-port memories, until we
have fetched K paths or all the path stored in all the S1

segments have been fetched. If latter happens, we move
on to the segment S2, and so on. From the hardware im-
plementation standpoint, this memory based distributed and

4 of 7

Path�

Search�

(Sorting)�

S
ur

vi
vo

r
pa

th
s

to
�

th
e

ne
xt

 d
ep

th
�

Memory�

.�.�.�

Comparator�

t�i�+�1�

u�i�+�1�

t�i�

u�i�

t�i�-1�

u�i�-1�
.�.�.�

PS�

Address�
Generation�

S�0�
S�1�

.�.�.�S�l�

(a)� (b)�

.�.�.�

PS�

PS�

PS�

.�.�.�

.�.�.�

PS� Approximate�
sorting�

PS� Approximate�
sorting�

PS� Approximate�
sorting�

.�.�.�

S
ur

vi
vo

r
pa

th
s

to
�

th
e

ne
xt

 d
ep

th
�

Fig. 4. (a) Structure of the distributed and approximate sorting, and (b) realization of the approximate sorting.

approximate sorting has the following main advantages: (i)
The computational complexity is much less than the strict
sorting, leading to a great potential of higher throughput and
significant power savings; (ii) There is no data movement
at all as in the strict sorting, hence further reduce the power
consumption; (iii) The distributed structure well matches the
parallelism in the path extension and hence help to realize
high throughput.

Finally, we note that the value of l and the total memory
size affect the trade-off between silicon area and detection
performance: a bigger value of l and/or a larger size of
memory will improve the detection performance at the cost
of higher implementation complexity. In practice, we have
to rely on the extensive simulation to choose the value of
l and total memory size subject to the desired silicon area
vs. detection performance trade-offs. As demonstrated in
Section IV, with reasonable memory resource, the relaxed
K detector using the distributed and approximate sorting
can achieve almost the same detection performance as the
detector using sphere decoding algorithm with the same
value of radius r.

B. Detector Hardware Structure

This section discusses the overall relaxed K-best detector
structure design. As mentioned above, to reduce the compu-
tational complexity of each PS block in the path extension,
we use the PSK enumeration technique proposed in [9] and
further simplified in [4]. The basic idea can be described as
follows: For QAM modulation, all the constellation points
locate on several circles concentric with the origin, e.g.,
there are 1, 3, and 9 such concentric circles in QPSK, 16-
QAM, and 64-QAM, respectively. It can be proved that all
the points on the same circle that satisfy the radius check
are always adjacent and hence form a single admissible
region along the circle. We can identify the boundary of
the admissible region of each circle and do not explicitly
examine the points outside the admissible region. In this

way, a large percentage of computational complexity can
be saved compared with explicitly examining all the con-
stellation points in the path extension. Readers are referred
to [9] and [4] for a more detailed description.

Fig.5 shows two partially parallel relaxed K-best detector
structures with different trade-offs between silicon area
and throughput. The recursive structure in Fig.5(a) uses
the same depth processing unit (DPU) for all the tree
search depths, while the unrolled structure in Fig.5(b) maps
each tree search depth onto different DPU. The recursive
structure occupies less silicon area and can readily support
a variable number of tree depths (i.e., variable number of
transmit antennas), while the unrolled structure can realize
higher throughput. Moreover, since the expected number of
survivor paths at the first one or two tree depth may be less
than the value of K, particularly for soft-output detection
with a large value of K, the number of functional elements
and the size of memory at the first one or two stages can be
less than that of the following stages. Hence, contrary to the
first impression, the silicon area of the unrolled structure is
less than Nt times of the area of the recursive structure.

Similar to the generic structure of a partially parallel
K-best detector discussed above, as shown in Fig.5, the
path extension block at each depth contains several PC
blocks, and each PC block is shared by several PS blocks.
Extending one survivor path at a time, each PS block
consists of one or more PSK units, where each PSK unit
non-exhaustively examines the constellation points on the
same circles once a time. Since one PS block connects
one approximate sorting block and all the PSK units may
generate extended path that passes the radius check every
clock cycle, the number of PSK units in each PS block
is limited by the ratio between the speed of approximate
sorting and the speed of PSK unit (notice that, because
of the simple structure of approximate sorting and inherent
serial nature of PSK operation, the speed of the approximate
sorting can be several times faster than that of a PSK

5 of 7

.�.�.�
.�.�.�

DPU�

Depth 1�

DPU�...� Output�
Generator�DPU�...�

Depth i� Depth N�t�
(b)�

.�.�.�

Approximate�
sorting�

Approximate�
sorting�

PC�

PS�

PSK Unit�

PS�

PSK Unit�

.�.�.�

Approximate�
sorting�

Approximate�
sorting�

PC�

PS�

PSK Unit�

PS�

PSK Unit�

(a)�

Depth Processing Unit�
(DPU)�

Output�
Generator�

Fig. 5. Two possible structures of partially parallel relaxed K-best detector.

unit). In practice, the numbers of PC blocks and PS blocks
are dependent on the target modulation size and desired
throughput.

As shown in Fig.5, an output generator is used to generate
the detector output based on the last-depth survivors. For
the hard-output detection, the design of the output generator
is straightforward, i.e., it simply searches the survivor path
with the best metric and output the qNt hard decisions based
on this best survivor. For the soft-output detection, we need
to evaluate the L-value of each bit according to (2) based
on all the last-depth survivors. In this context, we can use
a simple scheme described as follows:

We maintain a table, as illustrated in Table I, for the
qNt × 1 binary vector x, where each cell contains the best
path metric, denoted by Γi,+1 or Γi,−1, among the survivors
that has “+1” or “−1” on the corresponding bit position.
The metrics in the table are initially set as undefined.
Meanwhile, we keep a metric called Γbst that represents the
overall best path metric. The survivor paths sent from the
approximate sorting blocks are processed one by one. The
metric of each incoming survivor path is compared to Γbst

first. If its metric is better than Γbst, then we replace Γbst

with this new path metric and directly replace the metrics
of the corresponding cells without any further comparison.
Otherwise, it is compared in parallel with the metrics of
the corresponding cells, and replace the metrics that are
worse than this new path metric. After all the survivor paths
have been processed, the L-values can be directly calculated
based on the table according to (2).

TABLE I
METRIC TABLE FOR CALCULATING THE SOFT OUTPUT.

x0 x1 · · · xi · · · xqNt−1

+1 Γ0,+1 Γ1,+1 · · · Γi,+1 · · · ΓqNt−1,+1

−1 Γ0,−1 Γ1,−1 · · · Γi,−1 · · · ΓqNt−1,−1

Finally, we note that it is possible that all the survivor

paths in the survivor paths agree on one bit position, i.e.,
the corresponding Γi,+1 or Γi,−1 remains as undefined. As a
result, the L-value of this bit cannot be directly calculated.
To solve this problem, in this work, we use the worst
metric among all the metrics in the table to replace all the
undefined entries.

IV. DESIGN EXAMPLE

In this work, to evaluate the hardware implementation ef-
fectiveness of the proposed relaxed K-best detector, we de-
signed a soft-output relaxed K-best detector that can support
4×4 MIMO transmission with 64-QAM modulation. The
design entry is Verilog description, which is synthesized
using Synopsys tool sets with 0.18µm standard cell and
single-port SRAM libraries. To achieve high throughput,
we use the 4-stage unrolled detector structure as described
above. The design parameters of the detector are outlined as
follows: The value of K is 256 for 64-QAM. There are one
PC block and 16 PS blocks at each stage. Each PS block
consists of 2 PSK units. To support the pipelining, each
approximate sorter contains two single-port memory blocks
that receive the data from the current depth and provide
the data to the next depth, alternatively. Each single-port
memory can store totally 128 path data and is partitioned
into 16 segments. Since the number of survivor paths at
most can be 64 at the first tree depth, the first stage is
specifically simplified as follows: It only contains one PC
block and one PS block, and the approximate sorter is
replaced by two single-port memory blocks, each of which
can store 64 path data.

This detector operates with two synchronized clock sig-
nals: each PSK unit operates with a clock frequency of
200 MHz, all the other functional blocks including the PC
blocks and the approximate sorters operate with a clock
frequency of 400 MHz. The entire detector occupies about
20 mm2 of silicon area, among which 7 mm2 is occupied by
the single-port SRAMs. The detection throughput actually

6 of 7

depends on the average number of survivors generated at
each depth, which largely depends on the run-time envi-
ronment such as average SNR and instantaneous channel
gain. To estimate the average number of survivor paths and
hence the throughput, we did computer simulation with
the following assumptions: We use orthogonal frequency
division multiplexing (OFDM) with 64-point FFT as in
the IEEE 802.11a standard for the MIMO transmission.
Each sub-carrier MIMO channel is flat fading, i.e., all
the entries in the MIMO channel matrix are independent
random Gaussian variables. To define the MIMO channel
SNR, we follow the one presented in [9]: Let R denote the
channel code rate (R = 1 for uncoded systems), SNR is
defined as:

Eb

N0

∣∣∣
dB

=
Es

N0

∣∣∣
dB

+ 10 log10

Nr

R ·Nt · q
,

where Es denotes the average symbol energy of the QAM
constellation. In the simulation, the soft-output is feed to a
rate-1/2 LDPC code with the code length of 2048. Based on
the simulation results, this detector can achieve a throughput
of 30 Mbps at the SNR of 15.7dB and 50Mbps at the SNR
of 17.2 dB. We note that this detector can also be config-
ured to support the soft-output detection for 16-QAM and
QPSK and hard-output detection for 64-QAM, 16-QAM,
and QPSK, where much higher throughput can be realized
mainly because of the much less average survivor paths,
particularly in hard-output detection. For the above coded
MIMO-OFDM system, Fig.6 shows the simulated block
error rate performance. For the purpose of comparison, we
did the same simulation with the soft-output detection using
the popular sphere decoding algorithm, where the radius
r and the maximum number of survivors for calculating
the soft-output are same as in the above relaxed K-best
detector. As shown in Fig.6, the relaxed K-best detector only
incurs about 0.1∼0.2 dB degradation. However, it remains
unknown of how to (or whether it is possible to) practically
implement such a sphere decoder that can support 4×4
MIMO transmission with 64-QAM modulation in hardware
with reasonable silicon area and high throughput.

V. CONCLUSIONS

This paper for the first time presents a nonlinear MIMO
signal detector hardware design solution that effectively
supports 4×4 MIMO transmission with 64-QAM modula-
tion. The detector employs the breadth-first tree search style
to realize nonlinear detection. An algorithm-level modifica-
tion is developed to tackle the implementation challenge of
the conventional breadth-first tree search MIMO detection
scheme. A proof-of-concept hardware prototype of a soft-
output detector that supports 4×4 MIMO transmission
with 64-QAM has been designed using 0.18 µm CMOS

15.6 15.8 16 16.2 16.4 16.6 16.8 17 17.2

10
−3

10
−2

E
b
/N

0
(dB)

B
lo

ck
 E

rr
or

 R
at

e

Sphere Decoding
Relaxed K−Best

4x4 64−QAM

Fig. 6. Simulation results for 4×4 64-QAM.

technology. It can achieve up to 50 Mbps throughput with
a silicon area of 20 mm2.

REFERENCES

[1] M. Shafi et al. (ed.), “Special Issues on MIMO Systems and Appli-
cations (I/II),” IEEE Journal on Selected Areas in Communications,
vol. 21, April/June 2003.

[2] N. Jayant (ed.), “Special Issue on Gigabit Wireless,” Proceedings
of the IEEE, vol. 92, Feb. 2004.

[3] U. Fincke and M. Pohst, “Improved methods for calculating
vectors of short length in a lattice, including a complexity analysis,”
Math. Comput., vol. 44, pp. 463–471, April 1985.

[4] A. Burg et al., “VLSI implementation of MIMO detection using
the sphere decoding algorithm,” Journal of Solid-State Circuits,
vol. 40, pp. 1566 – 1577, July 2005.

[5] K.-W. Wong, C.-Y. Tsui, R. S. Cheng, and W.-H. Mow, “A VLSI
architecture of a K-best lattice decoding algorithm for MIMO
channels,” in IEEE International Symposium on Circuits and
Systems, May 2002, pp. III–273–III–276.

[6] Z. Guo and P. Nilsson, “VLSI architecture of the Schnorr-Euchner
decoder for MIMO systems,” in Proc. of IEEE CAS Symposium
on Emerging Technologies, 2004, pp. 65–68.

[7] D. Garrett et al., “Silicon complexity for maximum likelihood
MIMO detection using spherical decoding,” IEEE Journal of Solid-
State Circuits, vol. 39, pp. 1544–1552, Sept. 2004.

[8] J. B. Anderson and S. Mohan, “Sequential coding algorithms: A
survey and cost analysis,” IEEE Transactions on Communications,
vol. 32, pp. 169–176, Feb. 1984.

[9] B. M. Hochwald and S. ten Brink, “Achieving near-capacity on a
multiple-antenna channel,” IEEE Transactions on Communications,
vol. 51, pp. 389–399, March 2003.

[10] S. Baro, J. Hagenauer, and M. Witzke, “Iterative detection of
MIMO transmission using a list-sequential (LISS) detector,” in
Proc. of IEEE International Conference on Communications, May
2003, pp. 2653–2657.

[11] J. B. Anderson, “Limited search trellis decoding of convolutional
codes,” IEEE Transactions on Information Theory, vol. 35, pp.
944–955, Sept. 1989.

7 of 7

