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Enhanced Precision Through Multiple
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Abstract—Multiple reads of the same Flash memory cell with
distinct word-line voltages provide enhanced precision for LDPC
decoding. In this paper, the word-line voltages are optimized
by maximizing the mutual information (MI) of the quantized
channel. The enhanced precision from a few additional reads
allows frame error rate (FER) performance to approach that
of full-precision soft information and enables an LDPC code to
significantly outperform a BCH code.

A constant-ratio constraint provides a significant simplification
in the optimization with no noticeable loss in performance.

For a well-designed LDPC code, the quantization that max-
imizes the mutual information also minimizes the FER in our
simulations. However, for an example LDPC code with a high
error floor caused by small absorbing sets, the MMI quantization
does not provide the lowest frame error rate. The best quantiza-
tion in this case introduces more erasures than would be optimal
for the channel MI in order to mitigate the absorbing sets of the
poorly designed code.

The paper also identifies a trade-off in LDPC code design
when decoding is performed with multiple precision levels; the
best code at one level of precision will typically not be the best
code at a different level of precision.

Index Terms—Flash Memory, LDPC Codes, Quantization,
Mutual Information Maximization, LDPC Decoding, Soft Infor-
mation, Enhanced Precision

I. INTRODUCTION

FLASH memory can store large quantities of data in a
small device that has low power consumption and no

moving parts. The original NAND Flash uses only two levels.
This is called single-level-cell (SLC) Flash because there
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is only one actively written charge level. Devices currently
available using four levels are called multi-level-cell (MLC)
Flash. Four and eight levels are currently in use, and the
number of levels will increase further [1], [2].

Error control coding for Flash memory is becoming more
important as the storage density increases. The increasing
number of levels increases sensitivity to variations in signal-
to-noise ratio (SNR) from cell to cell and over time due to
wear-out. This makes stronger error-correction codes neces-
sary. Reductions in feature size make inter-cell interference
more likely, adding an equalization or interference suppression
component to the read channel [3]. Also, the wear-out effect
is time-varying, introducing a need for adaptive coding or
modulation to maximize the potential of the system.

A. Related Work

Low-density parity-check (LDPC) codes are well-known
for their capacity-approaching ability for AWGN channels
[4] and are the subject of recent interest for application to
the Flash memory read channel. For example, in [5] LDPC
codes without access to enhanced precision are shown to
provide a performance improvement over BCH codes, but that
improvement becomes small at high code rates. Also in [5],
an alternative error correction scheme is introduced that takes
into account the dominant cell-level errors found in eight-level
cells. This scheme provides improvement for eight-level cells
without using enhanced precision.

Important work related to codes that consider the dominant
cell-level error is that of Gabrys et al. on graded bit error cor-
recting codes [6]. In contrast to codes designed for dominant
errors, our paper focuses on the use of enhanced precision
to improve performance. While we explore the improvement
in terms of standard LDPC codes, enhanced precision should
also improve the performance of alternative error correction
schemes that focus on the dominant cell-level errors as long
as the decoders can utilize soft information.

Another approach for using LDPC codes in Flash memories
[7] is to design the codes for use with rank modulation. Rank
modulation [8], [9], [10] stores information in the cell using
the relative value (or ordering) of cell charge levels rather than
the absolute value. LDPC codes for rank modulation require
the cell charge-level ordering at the decoder.

As observed in [8], rank modulation eliminates the need
for discrete cell levels, overcomes overshoot errors when
programming cells, and mitigates the problem of asymmetric
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errors. This is an exciting approach for future Flash architec-
tures. However, current Flash systems use the same word-line
voltage to read all cells on the page and thus would require a
large number of page reads to learn the charge-level ordering.
Our paper focuses on the traditional approach of coding with
fixed target charge levels and assumes that when reading each
page, the same word-line voltage is used for all cells.

We note that an alternative to using multiple reads to
enhance precision is to perform a single read with a dynamic
threshold as introduced by [11] to adapt to time-varying
channel degradations such as the mean shift that occurs due
to retention loss. We note that dynamic thresholds are com-
plementary to the use of enhanced precision, and a combined
approach could be especially effective.

As in the precursor conference paper [12] this paper uses
mutual information maximization as the objective function that
drives the optimization of the word-line voltages (thresholds)
used for the multiple reads that provide enhanced precision.
Mutual information maximization is also explored in [13] for
the design of memory-efficient decoding of LDPC codes and
in [14] for quantization of binary-input discrete memoryless
channels and the design of the message-passing decoders of
LDPC codes used on such channels.

Another aspect of current research follows from the fact that
Flash memory systems must erase an entire block of data at
once. Each block consists of numerous pages and each page
contains thousands of bits. Even to change a small amount
of data on a single page, the entire block must be erased.
Moreover, the process of erasing and re-writing a block of
data degrades performance. Each time electrons are written
and then erased from the floating gate, the integrity of the
floating gate degrades in a process known as “cell wear-out”.

In [15], coding is used to minimize the frequency with
which a block must be erased and the number of auxiliary
blocks required for moving pages of data in a Flash memory
system. Efficient wear-leveling and data movement in Flash
is an important problem, but our paper addresses the comple-
mentary problem of improving the ability to reliably read a
page by using enhanced precision.

B. Overview and Contributions

LDPC codes have typically been decoded with soft infor-
mation (a relatively high-precision representation of a real or
complex number describing a received symbol value) while
Flash memory systems have typically provided only hard
reliability information (a single bit representing the output
of a sense-amp comparator) to their decoders. This paper
demonstrates that enhanced precision through multiple reads
is crucial to successfully reaping the benefits of LDPC coding
in Flash memory. We explore how to select the word-line
voltages used for additional reads, how many such reads are
necessary to provide most of the LDPC performance benefit,
and how varying levels of precision can impact code design.

Section II briefly introduces the NAND Flash memory read
channel model. Section III shows how to obtain word-line
voltages by maximizing the mutual information (MI) of the
equivalent read channel using a simple Gaussian model of SLC
(two-level) Flash as an example. This section also shows that

a few additional reads provide most of the benefit of enhanced
precision through both a mutual information analysis and an
LDPC simulation example.

Section IV describes the LDPC codes used in the paper in
detail. This section also demonstrates a code design trade-off
as follows: the best code in terms of both density evolution
threshold [4] and empirical performance at one precision level
is not the best according to either density evolution threshold
or empirical performance at another precision level. This is a
practically important issue because the same code may well be
decoded with varying levels of precision. In a practical system
it is likely that additional page reads to enhance precision will
be used only if the page could not be decoded without them.

Section V extends the discussion to MLC (four-level) Flash.
This section uses a more realistic model of the Flash read
channel from [16] and employs the “constant-ratio” method
of [17] as a constraint to simplify the threshold optimization.
This section confirms that maximizing mutual information
also minimizes frame error rate (FER) for a well-designed
LDPC code. However, this section also provides an example
of a poorly-designed LDPC code where maximizing mutual
information does not minimize FER. In this example, larger
erasure regions than would maximize the MI are needed
to mitigate small absorbing sets. The section concludes by
presenting simulation results for these two LDPC codes using
the channel model of [16]. Section VI delivers the conclusions.

The new material in this paper relative to the precursor
conference paper [12] includes expressions for the derivatives
of MI for two and three reads, application of the constant-ratio
method to simplify optimization, comparison of the Gaussian
model of unconstrained MLC optimization with optimization
constrained to a single parameter q, use of a more realistic
MLC channel model, density-evolution and simulation results
illustrating the trade-off of code performance across a range
of quantization precisions, and both a demonstration of how
maximizing MI can minimize FER and an example in which
the performance of a poorly-designed code is not optimized
by the quantization that maximizes the MI.

II. THE READ CHANNEL OF NAND FLASH MEMORY

This paper focuses on the NAND architecture for Flash
memory. Fig. 1 shows the configuration of a NAND Flash
memory cell. Each memory cell in the NAND architecture
features a transistor with a control gate and a floating gate.
To store information, a charge level is written to the cell
by adding a specified amount of charge to the floating gate
through Fowler-Nordheim tunneling by applying a relatively
large voltage to the control gate [18].

To read a memory cell, the charge level written to the
floating gate is detected by applying a specified word-line
voltage to the control gate and measuring the transistor drain
current. When reading a page, a constant word-line voltage
is applied to all cells in the page. A sense amp comparator
compares the drain current to a threshold. If the drain current is
above this threshold, then the word-line voltage was sufficient
to turn on the transistor. This indicates that the charge written
to the floating gate is below a certain value. The sense amp
comparator provides only one bit of information about the
charge level present in the floating gate.
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Fig. 1. A NAND Flash memory cell.

A bit error occurring at this threshold-comparison stage is
a raw bit error and the phrase channel bit error probability
refers to the probability of a raw bit error given a specified
amount of distortion in the process of writing to the cell,
retaining the charge level over a period of time, and reading
the cell. We refer to this overall process as the read channel.

The word-line voltage or reference voltage required to turn
on a particular transistor (called the threshold voltage) can
vary from cell to cell for a variety of reasons. For example, the
floating gate can be overcharged during the write operation,
the floating gate can lose charge due to leakage in the retention
period, or the floating gate can receive extra charge when
nearby cells are written [19]. The variation of threshold
voltage from its intended value is the read channel noise.

We initially assume an i.i.d. Gaussian threshold voltage
for each level of an SLC (i.e., two-level) Flash memory
cell. This is equivalent to binary phase-shift keying (BPSK)
with additive white Gaussian noise (AWGN), except that the
threshold voltage cannot be directly observed. Rather, at most
one bit of information about the threshold voltage may be
obtained by each cell read.

More precise models such as the model in [19], in which
the lowest and highest threshold voltage distributions have a
higher variance, and the model in [20], in which the lowest
threshold voltage (the one associated with zero charge level)
is Gaussian and the other threshold voltages have Gaussian
tails but a uniform central region, are sometimes used. The
model in [16] is similar to [20], but is derived by explic-
itly accounting for real dominating noise sources, such as
inter-cell interference, program injection statistics, random
telegraph noise and retention noise. After considering the
simple Gaussian approximation for SLC, this paper considers
MLC (four-level) Flash memory cells and uses the model
of [16] to study the maximum mutual information (MMI)
approach and constant-ratio method in a more realistic setting
to complement the analysis using a simple i.i.d. Gaussian
assumption.

In the next section, we present a general quantization
approach for selecting word-line voltages for reading Flash
memory cells and apply it to the specific example of SLC
(two-level) Flash using a simple identically distributed Gaus-
sian channel model.

III. SOFT INFORMATION VIA MULTIPLE CELL READS

Because the sense-amp comparator provides at most one
bit of information about the threshold voltage (or equivalently
about the amount of charge present in the floating gate),
decoders for error control codes in Flash have historically used
hard decisions on each bit.

A. Obtaining Soft Information

Soft information can be obtained in two ways: either by
reading from the same sense-amp comparator multiple times
with different word-line voltages (as is already done to read
multi-level Flash cells) or by equipping a Flash cell with
multiple sense-amp comparators on the bit line, which is
essentially equivalent to replacing the sense amp comparator (a
one-bit A/D converter) with a higher-precision A/D converter.

These two approaches are not completely interchangeable
in how they provide information about the threshold voltage.
If the word-line voltage and floating gate charge level place
the transistor in the linear gain region of the drain current vs.
word-line-voltage curve (the classic I-V transistor curve), then
valuable soft information is provided by multiple sense amp
comparators. However, multiple comparators may not give
much additional information if the I-V curve is too nonlinear.
If the drain current has saturated too low or too high, the
outputs from more sense-amp comparators are not useful in
establishing precisely how much charge is in the floating gate.

In contrast, each additional read of a single sense amp
comparator can provide additional useful information about
the threshold voltage if the word-line voltages are well-chosen.
Our work focuses on obtaining soft information from multiple
reads using the same sense-amp comparator with different
word-line voltages. This approach was studied in [17], and
the poor performance of uniformly spaced word-line voltages
was established.

The fundamental approach of this paper is to choose the
word-line voltages for each quantization by maximizing the
MI between the input and output of the equivalent discrete-
alphabet read channel. This approach has been taken in other
work (not in the context of Flash memory) such as [13], [14].
Theoretically, this choice of word-line voltages maximizes
the amount of information provided by the quantization. This
section explores the simplest possible case, SLC (two-level)
Flash using an identically distributed Gaussian model, which
is equivalent to BPSK transmission with Gaussian noise.

B. Quantizing Flash to Maximize Mutual Information

This subsection describes how to select word-line voltages
to achieve maximum mutual information (MMI) for two reads
and three reads for the identically distributed Gaussian model.

For SLC Flash memory, each cell can store one bit of
information. Fig. 2 shows the model of the threshold voltage
distribution as a mixture of two identically distributed Gaus-
sian random variables. When a “0” or “1” is written to the
cell, the threshold voltage is modeled as a Gaussian random
variable with variance N0/2 and mean −√

Es (for “1” ) or
mean +

√
Es (for “0” ), respectively.
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Fig. 2. Identically distributed Gaussian model for SLC threshold voltages.
Also shown are word-line voltages for two reads (the dashed lines) and three
reads (all three lines). The quantization regions are indicated by shading with
the middle region for two reads being the union of the blue and purple regions.
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Fig. 3. Equivalent discrete memoryless channel models for SLC with (a) two
reads and (b) three reads with distinct word-line voltages.

1) Two reads per cell: For SLC with two reads, Fig. 2
shows symmetric word-line voltages q and −q. The threshold
voltage is quantized into three regions as shown in Fig. 2: the
green region, the red region, and the union of the blue and
purple regions (which essentially corresponds to an erasure e).
This quantization produces the effective discrete memoryless
channel (DMC) model shown in Fig. 3(a) with input X ∈
{0, 1} and output Y ∈ {0, e, 1}.

Assuming X is equally likely to be 0 or 1, the MI I(X ;Y )
between the input X and output Y of the resulting DMC can
be calculated [21] as

I(X ;Y ) = H(Y )−H(Y |X) (1)

= H
(p13

2
, p2,

p13
2

)
−H (p1, p2, p3) , (2)

where H is the entropy function [21], pij = pi + pj ,
and the crossover probabilities shown in Fig. 3(a) are
p1 = 1−Q−, p2 = Q− −Q+, and p3 = Q+ with

Q− = Q

(√
Es − q√
N0/2

)
and Q+ = Q

(√
Es + q√
N0/2

)
, (3)

where Q(x) = 1√
2π

∫∞
x

e−u2/2du.
For fixed SNR Es

N0/2
, the MI in (1-2) for the identically

distributed Gaussian model is a quasi-concave function of q
with a zero derivative only at the q that delivers the maximum
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Fig. 4. MI and its derivative vs. q (for Es = 1) for SNR= Es
N0/2

= 4
dB for SLC (two-level) Flash with two reads and with three reads under the
identically distributed Gaussian model.

MI and at q = ∞. The MI can be maximized analytically
by setting dI/dq = 0. Let f(x) be the probability density
function of a standard normal distribution. The derivative is
computed as

dI

dq
= f

(
T+
q

)
log2

(
p13
2p3

)
+ f

(
T−
q

)
log2

(
p13
2p1

)
, (4)

where T+
q =

√
Es + q and T−

q =
√
Es − q.

Note that dI/dq is continuous on R
+. At q = 0 we have

p13 = p1 + p3 = 1. Applying this to (4), we have

dI

dq
= −f

(√
Es

)
log2 (4p1(1− p1)) ≥ 0 , (5)

at q = 0 by the inequality of arithmetic and geometric
means. Equality holds only when p1 = 1/2, which also
causes I(X ;Y ) = 0. It can also be shown that dI/dq
becomes negative for sufficiently large q and then increases
monotonically, approaching zero as q approaches infinity.

These properties, illustrated in the example of Fig. 4, ensure
that there is a single zero derivative for finite q corresponding
to the desired maximum MI. Because (4) involves the Q
function, solving for the q that sets dI

dq = 0 requires a
numerical approach such as the bisection search [22].

The blue curves in Fig. 4 show how the MI for two reads
and its derivative vary as a function of q for an SNR of 4 dB.
Note that when q = 0 there is no erasure region, which is
equivalent to a single read. As q increases so does the erasure
region. MI is concave in q between q = 0 and the point of
inflection. Note that when q = ∞ the channel always produces
the output e and the MI is zero.

2) Three reads per cell: Now consider SLC with three
reads for each cell. The word-line voltages should again be
symmetric (shown as q, 0, and −q in Fig. 2). The threshold
voltage is quantized according to the four differently shaded
regions shown in Fig. 2. This quantization produces the DMC
model as shown in Fig. 3(b) with input X ∈ {0, 1} and output
Y ∈ {00, 01, 10, 11}.
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Assuming X is equally likely to be 0 or 1, the MI between
the input and output of this DMC can be calculated as

I(X ;Y ) =H(Y )−H(Y |X)

=H
(p14

2
,
p23
2

,
p23
2

,
p14
2

)
−H(p1, p2, p3, p4), (6)

where pij = pi + pj with p1 = 1 − Q−, p2 = Q− − Q0,
p3 = Q0 −Q+, and p4 = Q+. Q− and Q+ are as in (3) and

Q0 = Q

( √
Es√
N0/2

)
. (7)

The derivative of MI with respect to the threshold q is

dI

dq
=

4∑
j=1

p′j log2(pj)− p′14 log2(p14)− p′23 log2(p23) , (8)

where −p′1 = p′2 = f(T−
q ) and p′3 = −p′4 = f(T+

q ). When
q = 0, (5) still applies.

The red curves in Fig. 4 show how the MI for three reads
and its derivative vary as a function of q for an SNR of 4
dB. Both at q = 0 and q = ∞ the channel is equivalent to
the binary symmetric channel (BSC) produced by a single
read with the threshold at zero. Thus the MI for both of
these extreme choices is identical. Fig. 4 shows a single
zero derivative corresponding to the desired maximum MI
occurring between these two extremes. Again, solving for the
q that sets dI

dq = 0 requires a numerical approach such as the
bisection search [22].

For the relatively simple identically distributed Gaussian
model, dI/dq for the two-read and three-read cases can
be identified analytically as described above. However, even
in realistic models in which the distributions are described
numerically, the optimum q can usually be found by a bisec-
tion search. Also, when the distributions are not identically
distributed, the constant-ratio approach of [17], which is
introduced in Section V for the four-level MLC case, can be
used to produce a single-parameter optimization that again can
be solved with quasi-convex optimization methods [22].
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Fig. 6. Simulation results of FER vs. channel bit error probability using the
Gaussian channel model for SLC (two-level) Flash comparing LDPC Code
2 with varying levels of soft information and a BCH code. Both codes have
rate 0.9021. The BCH and LDPC 1-read curves correspond to hard decoding.

C. Performance vs. Number of Reads Per Cell

The MMI optimization approach generalizes to more than
three reads per cell, but the optimization becomes more
complex. In these cases, there is more than one parameter
and MI is not necessarily concave or quasi-concave in these
parameters. For these cases we used a coarse brute-force
search of the parameter space followed by a bisection opti-
mization performed on promising small regions of the space
until the optimal set of thresholds (within a small tolerance)
was identified.

Fig. 5 plots MI vs. channel bit error probability for a
range of number-of-reads-per-cell for the identical Gaussian
distributions model of SLC. MI increases with the number of
reads. The top (dashed) curve shows the MI possible with full
soft information (where the decoder would know the threshold
voltage exactly). The bottom curve shows the MI available
with a single read. With two reads, the MI is improved enough
to close about half of the gap between the single-read MI and
the MI of full soft information. Increasing the number of reads
improves the MI, but with diminishing returns. The bit error
probability requirement to achieve an MI of 0.9021 (where
the MI curve crosses the horizontal line in Fig. 5) increases
(relaxes) as the number of reads increases.

Fig. 6 shows how the performance of an LDPC code (Code
2 described in Section IV below) improves as more soft
information is made available to the decoder using MMI-
optimized thresholds. This simulation uses the Gaussian model
of the SLC Flash memory cell shown in Fig. 2.

Fig. 6 plots FER versus channel bit error probability com-
puted as Q

(√
2Es

N0

)
. For reference, the FER performance of

a binary BCH code capable of correcting up to 64 bit errors
(using one read per cell) is also shown. Both the LDPC code
and the BCH code have rate 0.9021. The LDPC code has a
frame size of k = 8225 bits and the BCH code has a frame
size of k = 8256 bits. Also for reference, dashed vertical lines
show the Shannon limit (worst channel that could theoretically
support reliable transmission) for each level of quantization at
the target rate of 0.9021.
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Consistent with the mutual information curves of Fig. 5,
this plot illustrates that each additional read improves the
FER performance of the LDPC code, but the performance
improvement is diminishing. Using three reads places the
LDPC code performance within a relatively small gap from the
limit of the performance achieved by that code with full soft
information (essentially, an infinite number of reads). Note that
the LDPC code outperforms the BCH code even with a single
read, but one or two additional reads significantly improve
performance.

IV. LDPC CODE DESCRIPTIONS

LDPC codes [23] are linear block codes defined by sparse
parity-check matrices. By optimizing the degree distribution, it
is well-known that LDPC codes can approach the capacity of
an AWGN channel [4]. Several algorithms have been proposed
to generate LDPC codes for a given degree distribution, such
as the ACE algorithm [24] and the PEG algorithm [25].

In addition to their powerful error-correction capabilities,
another appealing aspect of LDPC codes is the existence of
low-complexity iterative algorithms used for decoding. These
iterative decoding algorithms are called belief-propagation
algorithms. Belief-propagation decoders commonly use soft
reliability information about the received bits, which can
greatly improve performance. Conversely, a quantization of
the received information which is too coarse can degrade the
performance of an LDPC code.

Traditional algebraic codes, such as BCH codes, commonly
use bounded-distance decoding and can correct up to a
specified, fixed number of errors. Unlike these traditional
codes, it can be difficult for LDPC codes to guarantee a
specified number of correctable errors. However the average
bit-error-rate performance can often outperform that of BCH
codes in Gaussian noise.

A. Description of LDPC Codes

In this paper we consider three irregular LDPC codes, which
we will refer to as Code 1, Code 2, and Code 3. These codes
were selected to illustrate two points about LDPC codes in
the context of limited-precision quantization. The first point,
illustrated later in this section, is that the relative performance
of LDPC codes (i.e., which one is better) can depend on the
level of quantization. Codes 2 and 3 were selected so that
Code 2 has a better density evolution threshold than Code 3
for a single read while Code 3 has a better density evolution
threshold than Code 2 for the full-precision AWGN channel.

The second point is that MMI quantization does not provide
the right threshold for every code but should provide the right
threshold as long as the code is good enough. This point
is explored in Section V. Code 1 provides an example of a
code that is bad enough (because of small absorbing sets) that
MMI quantization does not provide the correct quantization
thresholds. Code 2 is a well-designed code that avoids these
absorbing sets and for which the MMI quantization minimizes
the frame error rate.

Codes 1 and 3 have degree distributions that optimize
the density evolution threshold for the full-precision AWGN
channel with maximum variable node degrees of 19 and 24

respectively. The degree distribution for Code 2 is a modifi-
cation of the Code 1 degree distribution. It was not explicitly
designed to optimize any density evolution threshold, but has
a better density evolution threshold for the single-read AWGN
channel than either Code 1 or Code 3.

The LDPC matrices1 were constructed according to their
respective degree distributions using the ACE algorithm [24]
and the stopping-set check algorithm [26]. All of the simula-
tions were performed using a maximum of 50 iterations of a
sequential belief propagation decoder. Decoding stops as soon
as all check nodes are satisfied. The frame size is k = 8225
bits for each of the three LDPC codes. The degree distributions
of the three codes are as follows:

λ1(x) =2.0054× 10−5 + 3.5776× 10−2x+ 0.39869x2

+ 8.4827× 10−3x8 + 3.7701×10−2x9 + 0.51933x18

ρ1(x) =0.15662x54 + 0.84338x55

λ2(x) =1.7701× 10−5 + 3.1579× 10−2x+ 0.46923x3

+ 7.4877× 10−3x8 + 3.3278×10−2x9 + 0.45841x18

ρ2(x) =1.0975× 10−3x61 + 0.73267x62 + 0.26623x63

λ3(x) =3.2172× 10−2x+ 2.681× 10−3x2

+ 0.55764x3 + 0.40751x23

ρ3(x) =0.10366x57 + 0.89634x58 ,

where λ(x) is the left (variable-node) degree distribution and
ρ(x) is the right (check-node) degree distribution. A term
of axd−1 in λ(x) indicates that a is the fraction of edges
connecting to variable nodes with degree d.

B. Quantization-based Design Trade-off

Because reading a page of bits from the sense-amp com-
parators is a time-intensive operation, it is likely that enhanced
precision will be added progressively only if needed to facili-
tate successful decoding. Hence, a single LDPC code will be
decoded at a variety of precision levels, which introduces a
design trade-off that can be illustrated with two LDPC codes.

Table I shows the density evolution thresholds for these
three codes for the extremes of a full-precision SLC channel
and a single-read SLC channel assuming the Gaussian model
of Fig. 2. Table I reveals a trade-off between full precision
performance and single-read performance. For example, Code
2 has a lower (in dB) single-read threshold than Code 3, but a
higher full-precision threshold than Code 3. The density evo-
lution differences indicate that the different channels produced
by the different quantizations will typically have different op-
timal LDPC codes under iterative belief propagation decoding.

Fig. 7 shows FER vs. SNR simulation results consistent
with the density evolution threshold results shown in Table
I. Code 3 outperforms Code 2 when full soft information is
available, but Code 2 outperforms Code 3 when only a single
read is available. Additional FER vs. channel BER simulations
for Codes 2 and 3 (that were omitted from Fig. 7 for clarity
of presentation) demonstrate that for 2 reads the codes have

1The complete LDPC code parity-check matrices are available at the CSL
website www.seas.ucla.edu/csl/files/publications.html#COD.
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TABLE I
DENSITY EVOLUTION THRESHOLDS FOR THREE LDPC CODES.

FULL-PRECISION THRESHOLD ARE IN TERMS OF BOTH NOISE VARIANCE σ
AND SNR. SINGLE-READ THRESHOLDS ARE IN TERMS OF CHANNEL BIT

ERROR PROBABILITY ε AND THE CORRESPONDING SNR.

Full-precision AWGN Single-Read AWGN
Code σ SNR = 2Es/N0 ε SNR(ε)

1 0.499 6.04 dB 9.29× 10−3 7.44 dB
2 0.483 6.32 dB 1.05× 10−2 7.26 dB
3 0.492 6.16 dB 9.61× 10−3 7.39 dB
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Fig. 7. Simulation results of FER vs. SNR= 2Es/N0 using the Gaussian
channel model for SLC (two-level) Flash comparing LDPC Code 2 and
LDPC Code 3 with hard decoding (1 read) and full soft decoding (essentially
an infinite number of reads). Also shown are the Shannon limits for hard
and soft decoding and the density evolution thresholds for the two codes
under the two quantization scenarios. Both the density evolution results and
simulation results show a trade-off between performance under hard decoding
and performance under soft decoding.

essentially the same performance, but for three reads Code 3
has better performance than Code 2.

V. QUANTIZATION FOR MLC (4-LEVELS)

In this section, we extend the quantization approach to
handle more than two levels, introduce a more realistic channel
model, and present a method to reduce optimization complex-
ity when there are more than two levels.

A. MMI Quantization for MLC

For MLC (4-level) Flash memory, each cell can store 2
bits of information. Figure 8 extends the previously intro-
duced SLC Gaussian model in the natural way. Gray labeling
(00, 01, 11, 10) minimizes the raw bit error rate for these four
levels. Typically in 4-level MLC Flash, each cell is compared
to 3 word-line voltages and thus the output of the comparator
has 4 possible values (i.e., four distinct quantization regions).

If we consider three additional word-line voltages (for a
total of six), the threshold voltage can be quantized to seven
distinct regions as shown in Figure 8. The resulting DMC
with four inputs and seven outputs is the natural extension
of the DMCs shown in Fig. 3. In order to choose the
optimal quantization levels q1, q2, and q3 for a fixed SNR,
we maximize the MI which is computed as in (2) and (6), but
with more terms.
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Fig. 8. Channel model for four-level MLC with threshold voltages modeled
as Gaussians with the same variance. Quantization is shown for six reads.
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Fig. 9. MI vs. q for various SNRs for the Gaussian model of MLC (four-level)
Flash with the erasure regions in Fig. 8 of size 2q and centered on the natural
hard-decoding thresholds for Gaussians with means {μ1, μ2, μ3, μ4} =
{−3,−1, 1, 3}.

The two bits corresponding to a single MLC cell are
actually associated with two distinct pages in many Flash
implementations. With Gray labeling as in Fig. 8, the most
significant bit can be ascertained with a single read (or the
two central reads for enhanced precision as shown in Fig.
8) without performing the other reads. Similarly, the least
significant bit using the labeling of Fig. 8 can be ascertained
from the two outer edge reads (or four outer edge reads for
enhanced precision as shown in Fig. 8) without performing
the central read(s).

Because the read(s) associated with one of the two distinct
bits turn out to be independent of the value of the other bit,
the quantization optimization is not affected by whether the
bits are stored in separate pages or not. However, it should be
noted that with Gray labeling as in Fig. 8 the most significant
bit enjoys a lower BER than the least significant bit for a given
SNR. In our LDPC simulations, a single binary LDPC code
included both the most significant bit and the least significant
bit of the relevant cells. The inputs to the decoder are the
reliabilities of these bits.

The quantization problem can be constrained to a single
parameter q by selecting thresholds so that the three erasure
regions in Fig. 8 have the same size 2q and are centered on
the natural hard-decoding thresholds. With this constraint the
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Fig. 11. FER vs. channel bit error probability simulation results using the
Gaussian channel model for 4-level MLC comparing LDPC Codes 1 and 2
with varying levels of soft information and a BCH code with hard decoding.
All codes have rate 0.9021.

problem becomes quasi-concave (or even concave) over the
interesting region of 0 ≤ q ≤ (μi − μi−1)/2 as in Fig. 9.

As we will see in Section V-C, small differences in mutual
information can lead to significant variations in FER. Thus, it
is important to understand whether the constrained thresholds
studied in Fig. 9 cause a significant reduction in MMI as
compared to unconstrained thresholds. Fig. 10 compares the
performance of the constrained optimization, which has a
single parameter q, and the full unconstrained optimization.
As shown in the figure, the benefit of fully unconstrained
optimization is insignificant.

Fig. 11 shows performance of unconstrained MMI quan-
tization on the Gaussian channel model of Fig. 8 for three
and six reads for Codes 1 and 2. With four levels, three reads
are required for hard decoding. For MLC (four-level) Flash,
using six reads recovers more than half of the gap between
hard decoding (three reads) and full soft-precision decoding.
This is similar to the performance improvement seen for SLC
(two-level) Flash when increasing from one read to two reads.

Note that in Fig. 11, the trade-off between performance
with soft decoding and performance with hard decoding is
even more pronounced. Code 1 is clearly superior with soft
decoding but demonstrates a noticeable error floor when
decoded with three or six reads.

Fig. 12. A (4,2) absorbing set. Variable nodes are shown as black circles.
Satisfied check nodes are shown as white squares. Unsatisfied check nodes
are shown as black squares. Note that each of the four variable nodes has
degree three. This absorbing set is avoided by precluding degree-3 nodes.
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Fig. 13. Read channel noise distribution and mutual-information optimized
quantization for six reads using the six-month retention model of [16].

LDPC error floors due to absorbing sets can be sensitive
to the quantization precision, occurring at low precision but
not at high precision [27], [28]. Code 1 has small absorbing
sets including the (4, 2), (5, 1), and (5, 2) absorbing sets. As
shown in Fig. 12 for the (4,2) absorbing set, these absorbing
sets can all be avoided by precluding degree-three variable
nodes. Code 2 avoids these absorbing sets because it has no
degree-3 variable nodes. As shown in Fig. 11, Code 2 avoids
the error floor problems of Code 1.

B. A More Realistic Model

We can extend the MMI analysis of Section III-B to
any model for the Flash memory read channel. Consider
again the 4-level 6-read MLC as a 4-input 7-output DMC.
Instead of assuming Gaussian noise distributions as shown in
Fig. 8, Fig. 13 shows the four conditional threshold-voltage
probability density functions generated according to the six-
month retention model of [16] and the six word-line voltages
that maximize MI for this noise model. While the conditional
noise for each transmitted (or written) threshold voltage is
similar to that of a Gaussian, the variance of the conditional
distributions varies greatly across the four possible threshold



888 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 32, NO. 5, MAY 2014

I(X ;Y ) =H(Y )−H(Y |X)

=H

(
p11 + p21 + p31 + p41

4
,
p12 + p22 + p32 + p42

4
,

p13 + p23 + p33 + p43
4

,
p14 + p24 + p34 + p44

4
,

e1a + e2a + e3a + e4a
4

,
e1b + e2b + e3b + e4b

4
,

e1c + e2c + e3c + e4c
4

)

− 1

4
H(p11, p12, p13, p14, e1a, e1b, e1c)

− 1

4
H(p21, p22, p23, p24, e2a, e2b, e2c)

− 1

4
H(p31, p32, p33, p34, e3a, e3b, e3c)

− 1

4
H(p41, p42, p43, p44, e4a, e4b, e4c). (9)

voltages. Note that the lowest threshold voltage has by far the
largest variance.

Since the retention noise model is not symmetric, we
need to numerically compute the transition probabilities and
calculate the MI between the input and output as in (9).

The MI in (9) is in general not a quasi-concave function
in terms of the word-line voltages q1, q2, ..., q6. Since (9) is
a continuous and smooth function and locally quasi-concave
in the range of our interest, we can numerically compute the
MMI quantization levels with a careful use of bisection search
or other quasi-convex optimization techniques [22].

C. The Constant-Ratio Method

In [17], a helpful heuristic constrains the additional word-
line voltages to the left and right of each hard-decision word-
line voltage so that the largest and second-largest conditional
noise pdfs have a specified constant ratio R. This is a natural
extension to general non-symmetric channels of the constraint
to a single parameter by selecting thresholds so that the three
erasure regions have the same size 2q and are centered on
the natural hard-decoding thresholds in the simple symmetric
Gaussian model of Fig. 8.

Note that the value of R at the natural hard-decision
threshold is one because the two densities are equal. Higher
values of R move these secondary thresholds further away
from the hard decoding thresholds. In Fig. 8 a higher value
of R would correspond to larger “erasure” regions (shown in
white). Although this heuristic is not named in [17], we will
refer it as the “constant-ratio” (CR) method.

In [17], the specification of R is left to empirical simulation.
By choosing R to maximize MI, the CR method can be viewed
as a constraint that can be applied to MMI optimization to
reduce the search space. The CR method can also simplify
optimization because, as shown for the single-q constraint in
Fig. 9, MI is a quasi-concave function of R in the region of
interest for the MLC (four-level) symmetric Gaussian channel.

Fig. 14 shows MI as a function of R for MLC (four-level)
Flash with six quantization thresholds (seven quantization
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Fig. 14. Mutual information and frame error rate for Code 2 separately plotted
as functions of the constant-ratio value R for six quantization thresholds
(seven levels). Curves are shown for both the 4-PAM Gaussian model with
SNR = 13.76 dB and the retention model of [16] for 6 months. These two
models both have an MMI of 1.885 bits, shown as a dashed line in the mutual
information plot. The frame error rate plots are for LDPC Code 2 described in
Section IV. The two models had slightly different frame error rates with MMI
quantization, 3.78× 10−5 for the 4-PAM Gaussian model and 2.8× 10−5

for the retention model, shown as dashed lines in the frame error rate plot.

levels) for both the simple symmetric Gaussian model and
the more realistic retention model of [16]. The Gaussian
and retention channels were selected so that they have an
identical MMI for six-read (seven-level) unconstrained MMI
optimization.

For both models the CR method with the MI-maximizing
R provides essentially the same MI as obtained by the
unconstrained MMI optimization. Furthermore, it is striking
how similar the MMI vs. R behavior is for the two different
channel models. For the Gaussian model, MI is a concave
function of R. The curve of MI vs. R for the retention model
closely follows the Gaussian model curve, but is not a strictly
concave function because of variations in the numerical model.

The MMI approach is a way to select quantization levels in
the hope of optimizing frame-error-rate (FER) performance.
Fig. 14 shows the FER performance as a function of R for
both the Gaussian model and the retention model for LDPC
Code 2 described in Section IV. The value of R that provides
the maximum MI also delivers the lowest FER as a function of
R. This lends support to the approach of selecting quantization
thresholds to maximize MMI.

The constraint to a constant ratio does not appear to
adversely affect FER; the lowest FER as a function of R is
essentially the same as the FER achieved by unconstrained
MMI quantization. The range of MI in Fig. 14 is small
(approximately 0.01 bits), but this variation in MI corresponds
to more than an order of magnitude of difference in FER.

D. MMI Optimization Thwarted by Small Absorbing Sets

While the previous example showed that maximizing MI
can also minimize FER for a well-designed code, it is impor-
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Fig. 15. Mutual information and frame error rate for Code 1 separately plotted
as functions of the constant-ratio value R for six quantization thresholds
(seven levels). Curves are shown for both the 4-PAM Gaussian model with
SNR = 13.76 dB and the retention model of [16] for 6 months. These two
models both have an MMI of 1.885 bits shown as a dashed line in the mutual
information plot. The frame error rate plots are for LDPC Code 1 described
in Section IV.

tant to note that poorly designed codes can perform best with
a quantization that does not maximize the channel MI.

To illustrate this, we previously introduced Code 1, which
has a high error floor under hard decoding due to the presence
of numerous small absorbing sets. As shown in Fig. 15, for
Code 1, the lowest FER occurs with R = 15 which provides
less mutual information than R = 7.

This behavior may appear to be counter-intuitive. However,
the numerous small absorbing sets serve as traps that can turn
a few hard-decoded errors into uncorrectable problems. The
presence of these absorbing sets forces the code to prefer a
wider erasure region (thereby minimizing hard-decoded errors
that trigger the absorbing sets) than would be optimal in terms
of capacity.

E. Simulation Results for Retention Model

Now we examine code performance using the retention
model of [16]. Fig. 16 shows frame error rate (FER) plotted
versus retention time for Codes 1 and 2 with three reads and
with six reads. Code 2 outperforms Code 1 under both three
reads (hard decoding) and six reads.

The three-read quantization whose performance is shown in
Fig. 16 is standard hard decoding for four-level MLC. We note
that in principle, since the retention model is not symmetric,
some gain can be achieved by allowing asymmetric thresholds
and optimizing these thresholds using MMI even in the three-
read case. However, we found those gains to be insignificant
in our simulations.

In Fig. 16, the Code-2 FER curves for unconstrained-MMI
quantization and for R = 7 are indistinguishable. Recall from
Fig. 14 that R = 7 both maximizes the mutual information and
minimizes frame error rate for Code 2. This was the hoped-
for result of MMI optimization, that it would also optimize
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Fig. 16. FER vs. channel bit error probability results using the six-month
retention model of [16] for 4-level MLC. All codes have rate 0.9021. Hard
decoding results are shown for the BCH code and LDPC Codes 1 and 2.
FER performance for enhanced precision decoding using six reads is shown
for LDPC Codes 1 and 2 using both unconstrained MMI quantization and
MMI quantization with the constant-ratio constraint with the R value that
minimizes FER for that LDPC code.

the true objective of minimizing FER. However, as we saw
in Section V-D, if an LDPC code has a high error floor,
optimizing the MMI does not necessarily minimize the FER.

Thus, a code with relatively poor performance can perform
slightly better with a quantization that does not maximize the
mutual information. Indeed, the best FER performance for
Code 1 in Fig. 14 for six reads with constant ratio quantization
is with R = 15. Note from Fig. 15 that R = 15 provides a
smaller mutual information than R = 7, but R = 15 provides
the lowest FER for Code 1.

Notice in Fig. 16 that for Code 1 with six reads, the
MMI quantization performs slightly worse than the R = 15
quantization. Thus we can see that for a weaker code, the MMI
approach may not provide the best possible quantization in
terms of FER. However, this situation may well be interpreted
as an indicator that it may be worth exploring further code
design to improve the code rather than adopting a different
threshold optimization approach.

VI. CONCLUSION

This paper explores the benefit of using soft information
in an LDPC decoder for NAND Flash memory. Using a
small amount of soft information improves the performance
of LDPC codes significantly and demonstrates a clear perfor-
mance advantage over conventional BCH codes.

In order to maximize the performance benefit of the soft
information, we present an approach for optimizing word-line-
voltage selection so that the resulting quantization maximizes
the mutual information between the input and output of
the equivalent read channel. This method can be applied
to any channel model. Constraining the quantization using
the constant-ratio method provides a significant simplification
with no noticeable loss in performance. Furthermore, only
a few additional reads can harvest most of the performance
improvement available through enhanced precision.
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Our simulation results suggest that if the LDPC code is well
designed, the quantization that maximizes the mutual infor-
mation will also minimize the frame error rate. However, the
MMI approach can fail to identify the lowest-FER quantization
for an LDPC code with a high error floor.

Separately, an LDPC code degree distribution designed for
a full-precision Gaussian channel may be sub-optimal in the
quantized setting and vice versa. A second and distinct design
factor is that absorbing sets become more important as the
precision of the soft information decreases. Considering these
two distinct effects, it would be useful to design a code that is
optimal over a large range of precisions or to show that such
universal performance is not possible.

In this paper, the channel information has been quantized
with various levels of precision. However, the messages passed
between the variable nodes and check nodes of the decoder
have been represented as floating point numbers in our sim-
ulations. It is an interesting area of further investigation to
consider limited-precision representations within the LDPC
decoder in conjunction with the limited-precision channel
information that is available in the Flash memory setting.
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