
Joint (
�����

)-Regular LDPC Code and Decoder/Encoder Design

Tong Zhang* and Keshab K. Parhi

ECE Dept. University of Minnesota

4-174 EE/CSci Building

200 Union Street S. E.

Minneapolis, MN 55455, USA.

E-mail: � tzhang, parhi � @ece.umn.edu

EDICS: 5-VLSI VLSI FOR SIGNAL PROCESSING

Abstract

In the past few years, Gallager’s Low-Density Parity-Check (LDPC) codes have received a lot of atten-

tion and tremendous efforts have been devoted to analyze and improve their error-correcting performance.

However, little consideration has been given to the practical LDPC codec hardware implementations. The

straightforward fully parallel LDPC decoder architecture usually incurs too high complexity for many prac-

tical purposes, thus effective partly parallel decoder design approaches are highly desirable. Due to the

randomness of LDPC code, it is extremely difficult, if not impossible, to develop a direct transformation

from fully parallel architecture to partly parallel ones for a given LDPC code. Meanwhile, also because

of its randomness, the direct LDPC encoding scheme has quadratic complexity in the block length, which

makes the efficient encoder design not trivial. We believe that jointly conceiving code construction and

decoder/encoder design is a promising direction to develop high performance LDPC coding systems. In

this paper, we propose a joint (�	��
)-regular LDPC code and decoder/encoder design approach to construct

a class of (�	��
)-regular LDPC codes that not only have very good performance but also exactly fit to a high-

speed partly parallel decoder and low-complexity encoder. Moreover, we propose a modified joint design

approach in order to further reduce the decoder hardware complexity for those high-rate (�	��
)-regular LDPC

codes applied to silicon area critical applications.

Submitted to the IEEE Transactions on Signal Processing

1

1 Introduction

Low-Density Parity-Check (LDPC) codes have recently received a lot of attention because of their excellent

performance and have been widely considered as a promising candidate error-correcting coding scheme for

many applications in telecommunications and magnetic storage. Nearly 40 years ago, Gallager invented LDPC

codes [1][2], in which two innovative ideas were exploited: iterative decoding and constrained random code

construction. However, except for the papers of Zyablov and Pinsker [3], Tanner [4] and Margulis [5], Gal-

lager’s work was neglected by the majority of the scientific community for the next 30 years. Few years after

the birth of Turbo codes [6] in which both the above ideas are employed, LDPC codes were independently

rediscovered by Wiberg [7] and MacKay and Neal [8].

An LDPC code is defined as the null space of a very sparse � ��� parity check matrix, and typically

is represented by a bipartite graph1, usually called Tanner graph, between � variable (or message) nodes

in one set and � check (or constraint) nodes in another set. The LDPC code is called (�����)-regular if each

variable node has a degree of � and each check node has a degree of � . The construction of LDPC code (or its

Tanner graph) is typically random. LDPC codes can be effectively decoded by the iterative belief-propagation

(BP) (also known as sum-product) algorithm [9]. The structure of BP decoding algorithm directly matches the

Tanner graph: decoding message is computed on each variable node and check node and iteratively exchanged

through the edges between the neighboring nodes. It is well known that BP decoding algorithm works well

if the underlying Tanner graph does not contain too many short cycles. Thus, it is typically required that the

random Tanner graph should be 4-cycle free which is easy to achieve, but the construction of random Tanner

graph with higher order cycle free is not trivial.

In the past few years, LDPC codes have become a hot topic and tremendous efforts have been devoted to

effectively analyze and improve the code performance, see [10]-[18], etc. Besides their excellent performance,

another important reason why LDPC codes attract so many attentions is that the BP decoding algorithm is

inherently fully parallelizable and the computation associated with each node (variable node or check node)

is very simple, thus a great potential decoding speed can be expected. In this work, we are interested in

the hardware implementations of LDPC decoder/encoder. The authors of [19] design the decoder by directly

mapping BP algorithm to the hardware: each variable node and check node are assigned their own processors

and all the processors are connected through an interconnection network which exactly reflects the Tanner

graph. Applying such fully parallel decoder architecture, the authors of [19] physically implemented a 1024-
1A bipartite graph is one in which the nodes can be partitioned into two disjoint sets.

2

bit, rate-1/2 LDPC decoder with the maximum symbol throughput of 1 Gbit/s. By completely exploiting the

parallelism of the decoding algorithm, such fully parallel design could achieve very high decoding speed.

However, with the increase of LDPC code length, both computation complexity due to the implementation

of all the processors and communication complexity due to the implementation of the entire interconnection

network will incur very high hardware complexity. Especially, as mentioned in [19], the routing overhead for

implementing the entire interconnection network will become quite formidable due to the randomness of the

Tanner graph. Therefore, such fully parallel design scheme may not be suitable for many practical purposes,

even short code length (less than 10,000 bits) is used, thus high-speed partly parallel decoder design approaches

that can efficiently trade speed for hardware complexity is highly desirable.

In the partly parallel decoding, the computations associated with a certain number of variable nodes or

check nodes are time-multiplexed to a single processor. Meanwhile, since the computation associated with

each node is not complicated, the fully parallel interconnection network reflecting the Tanner graph should

be transformed to partly parallel ones for both communication complexity reduction and high-speed partly

parallel decoding. Unfortunately, the randomness of Tanner graph make it nearly impossible to develop such

transformation. In another word, an arbitrary random LDPC code has a little chance to be suited for a high-

speed partly parallel hardware decoder implementation. To circumvent this problem, the authors of [21] propose

to reverse the conventional design sequence: Instead of trying to develop a partly parallel decoder for a given

LDPC code, we can use an available partly parallel decoder to define a constrained random LDPC code. This

methodology is referred as decoder-first code design and a partly parallel decoder architecture is presented in

[21]. However, that decoder contains many random number generators which will incur much complexity for

real implementations and make the entire design and implementation process very complicated. Moreover, like

the conventional random LDPC codes, it is difficult to develop a systematic efficient-encoding scheme for the

obtained LDPC codes.

Recently, several explicit LDPC code construction methods have been proposed [22]-[25]. These construc-

tions are based on either finite projective planes or expander graphs and some developed explicit LDPC codes

almost achieve the same performance as their randomly constructed counterparts. Exploiting the explicit struc-

ture of these LDPC codes, it is possible to develop high performance partly parallel decoders and find systematic

efficient-encoding schemes. However, we note that all the construction approaches put very strict constraints on

the selection of code length and code rate, which is obviously not desirable for many applications. Therefore,

in this work we do not consider the decoder/encoder design issues for those explicit LDPC codes.

In practical applications, there always exist certain constraints on the decoding latency and hardware com-

3

plexity, both of them will increase significantly with the code length. Thus, in this work we only consider LDPC

codes with short block length (less than 10,000 bits) and we believe these LDPC codes are of great interest from

practical point of view. At short code lengths, the randomly constructed Tanner graph more likely contains quite

a few short cycles, e.g., � and � , and the performance usually varies significantly over one code ensemble, es-

pecially at high signal-to-noise ratio (SNR). The authors of [26] propose an effective heuristic method to find

good short LDPC codes under the intuitive assumption that the LDPC code with less short cycles very likely

has better performance over one code ensemble. Inspired by the criteria for less short cycles and the decoder-

first code design methodology [21], we propose a joint (� ���)-regular LDPC code and decoder/encoder design

approach. The basic design methodology is: First we propose a method to explicitly construct a high-girth2

(� ���)-regular LDPC code that exactly fits to a high-speed partly parallel decoder; then we extend this decoder

to a partly parallel (� ���)-regular LDPC decoder that is configured by a set of constrained random parameters

and defines a (� ���)-regular LDPC code ensemble, and a good code can be selected from this ensemble based

on the criteria for less short cycles and computer simulations; finally, exploiting the specific structures of such

LDPC codes, we develop a systematic efficient-encoding scheme to reduce the encoding complexity. Since

each code in such code ensemble is actually constructed by randomly inserting certain check nodes into the de-

terministic high-girth (� ���)-regular LDPC code under the constraint specified by the decoder, it is reasonable to

expect that the codes in this ensemble more likely don’t contain too many short cycles and we can easily select

a good code from it. As demonstrated in two design examples presented in this paper, the jointly developed

(� ���)-regular LDPC codes can achieve nearly the same performance as their conventional random counterparts.

Compared with decoder-first code design, our proposed joint design approach leads to a much more efficient

decoder which does not contain any random number generators and the jointly developed (� ���)-regular LDPC

code can be efficiently encoded. Moreover, we propose a modified joint design approach in order to further

reduce the decoder hardware complexity for those high-rate (� ���)-regular LDPC codes applied to silicon area

critical applications.

This paper is an extended version of [27]. This paper is organized as follows. In Section 2, a BP decoding

algorithm suitable for hardware implementation is described and some practical decoder design issues are

briefly discussed. We present the joint (� ���)-regular LDPC code and decoder/encoder design approach in

Section 3. In Section 4, we modify the original joint design approach for high-rate (� ���)-regular LDPC codes.

The conclusions and future work directions are drawn in Section 5.
2Girth is the length of a shortest cycle in a graph.

4

2 Decoding Algorithm

LDPC codes can be effectively decoded using BP algorithm. Since the direct implementation of BP algorithm

will result in high hardware complexity due to a large number of multiplications, we may introduce some

logarithmic quantities to convert these multiplications into additions, which leads to the Log-BP algorithm

[1][28]: In fact, both BP and Log-BP algorithm realize the same decoding rule.

Before presenting the Log-BP decoding algorithm, we need to introduce some definitions as follows: Let�
denote the � � � parity check matrix and ����� � denote the entry of

�
at the position (� � �). We define the

set of bits � that participate in parity check 	 as
���	�
������������ � � ����� , and the set of parity checks 	
in which bit � participates as �����
!�"��	#� ��� � � �$��� . We denote the set
%��	�
 with bit � excluded by
%��	�
'&(� , and the set �)���
 with parity check 	 excluded by �����
'&*	 .

Algorithm 2.1 Iterative Log-BP Decoding Algorithm

Input: The prior probabilities +�,� �.-/��01�2�.34
 and +65� �.-���01�7�8�9
:�%�<;=+>,� , ���%� �@?@?@? � � ;

Output: Hard decision AB �C� A0 5 �@?@?@? � A0>DE� ;
Procedure:

1. Initialization: For each � , compute the intrinsic (or channel) information F � �HGJILKNM�OPMRQP and for each��	 �S�
(TU�V��� � �W
@X � ��� � �%��� , computeY � � � ��Z9�\[4�]�^F �
WGJILK/_ �(`baRc6d e P d�f;ga c6d e P dih �kjmlna@opabZ��q[4�]�^F �
:� rsut `2�#F ��v 3;!�#F ��w 3yx
2. Iterative Decodingz Horizontal (or check node processing) step: For each 	 �S� , compute{ � � �7��GJILK _ �*`|a c1}�<;~a c1} h ��������/� �(�^� � Z��\[V�]� Y � � ���
 � (1)

where Y ��� ��������� �(�^� � X Y � � ��� X .z Vertical (or variable node processing) step: For each 	 �S� , computeY � � � ��Z9�\[4�]�^FW� � �
WG�ILK�_ �]`|aLc6d e�� � P d��;~a c6d e�� � P dih � (2)

where FW� � � ��F � `�� � � ���b��� ����� { � �^� � . For each � , update the “pseudo-posterior log-likelihood

ratio (LLR)” � � as: ���2��FV��` �� ���b��� � { � � � x (3)

5

z Decision step.

(a) Perform hard decision on ��� 5 �@?@?@? ���nDE� to obtain AB � � A0 5 �@?@?@? � A0>DE� such that A0 � �)3 if� � � 3 and A0 � �8� if ����3 ;
(b) If

� ?�AB �C3 , then algorithm terminates, else go to Horizontal step. A failure will be declared

if pre-set maximum number of iterations occurs without successfully decoding.

The variables Y � � � and
{ � � � in the above algorithm are called variable-to-check extrinsic information and

check-to-variable extrinsic information, respectively. Notice that the function � ��0
:�.G�ILKn� 5����
	��
��5Sc�� 	��
��
 in the above

algorithm can be implemented as a Look-Up Table (LUT) in hardware.

It is clear that each decoding iteration can be performed in fully parallel by mapping each check or variable

node to one decoding processor as illustrated in Fig. 1: each check node is realized by Check Node processing

Unit (CNU) to compute the check-to-variable extrinsic information
{ � � � according to (1), each variable node

is realized by Variable Node processing Unit (VNU) to compute the variable-to-check extrinsic informationY � � � and pseudo-posterior LLR �n� according to (2) and (3), respectively, and generate A06� by performing hard

decision on � � . By also delivering the hard decision from each variable node to its neighboring check nodes,

the parity check operation
� ?�AB after each iteration can be incorporated into CNU’s.

VNUVNU VNUVNUVNU

CNU

VNU

CNUCNU CNU β i,j

α i,j

γ

VNU

i

VNU

variable nodes

check nodes

check−to−variable

variable−to−check

Intrinsic information

Figure 1: Tanner-graph based fully parallel decoder structure.

Since each CNU and VNU only involve several additions and accesses to LUT, a great decoding speed

can be easily achieved if LDPC decoder is directly implemented based on such fully parallel architecture.

However, even for the short LDPC codes (less than 10,000 bits) which are of interest, it may incur too high

hardware complexity because: 1. The hardware complexity of CNU’s and VNU’s will be high due to the total

number, i.e., ��� �
 , of CNU’s and VNU’s, although each unit itself is not complicated; 2. Due to the large

6

number of soft extrinsic information and the randomness of the Tanner graph, implementation of the entire

interconnection network connecting CNU’s and VNU’s will cause a formidable routing overhead.

Thus partly parallel decoder implementations with appropriate trade-off between complexity and speed are

highly desirable for many applications. Due to the randomness of LDPC code construction, effective high-

speed partly parallel decoder design approaches turn out to be not trivial. We believe that jointly conceiving

code construction and decoder design should be a promising direction for high-speed partly parallel LDPC

decoder implementation. In this work, we propose such a joint design approach for (� ���)-regular LDPC codes,

which also leads to low-complexity encoding scheme. In practice, regular LDPC code with column weight of 3

is usually preferred because of its very good performance, highest code rate and lowest complexity. However,

the more general joint design approach for (�����)-regular LDPC codes or even irregular LDPC codes still remains

as an open challenging problem.

3 Joint (�����)-Regular LDPC Code and Decoder/Encoder Design

The basic joint design methodology can be described as follows: We first explicitly construct a high-girth (� ���)-

regular LDPC code that exactly fits to a high-speed partly parallel (� ���)-regular LDPC decoder, then extend

this decoder to a (� ���)-regular LDPC decoder that is configured by a set of constrained random parameters and

defines a (� ���)-regular LDPC code ensemble. Each code in such code ensemble is essentially constructed by

randomly inserting certain check nodes into the deterministic high-girth (� ���)-regular LDPC code under the

constraint specified by the decoder. Thus it is reasonable to expect that the codes in this ensemble more likely

don’t contain too many short cycles and the selected code is prone to assume good performance, which will be

further illuminated by two design examples. Moreover, the parity check matrix of each code in this ensemble

can be systematically transformed to an approximate upper triangular matrix, based on which we may obtain

an efficient-encoding scheme.

Before describing this joint design approach in more detail, we need to introduce the definition of girth

average of a graph � [26]: Let [�� denote the shortest cycle that passes through node � in graph � , then� � �
	 [
��� � is denoted as girth average of � , where � � X
��X is the total node number of � . Referring the

partly parallel decoder architecture proposed in [21] as the initial decoder architecture, the joint design process

is given as follows and the corresponding schematic diagram is shown in Fig. 2.

1. Explicitly construct two deterministic submatrices,
� , and

� 5 , so that �� ��� ��� , � ��� 5 � � defines a (� ���)-

regular LDPC code, denoted as ��� , with the girth of 12;

7

2. Exploit the specific structure of �� to develop a partly parallel decoder architecture for � � ;

3. Extend the (� ���)-regular LDPC decoder to a (� ���)-regular LDPC decoder that is configured by a set

of constrained random parameters and defines a (� ���)-regular LDPC code ensemble. The parity check

matrix of each code in this ensemble can be written as
� ��� � � , � � � 5 � � � � � � .

4. The decoder randomly generates a certain number of (� ���)-regular LDPC codes from which a good code

is selected based on girth average comparison and computer simulations;

5. Introduce a deterministic column permutation ��� to transform the parity check matrix of selected code to

approximate upper triangular form, based on which we develop an efficient-encoding scheme.

0H and H1

Construction of input
deterministic

H0 H1,
H0
H1H=
H2

(3,k)−regular LDPC code
ensemble defined by

H2

Computer Simulations
and

Girth Average Comparison

Parity Check Matrix
Transformation

tx,y 1< x,y < k, x,yt 2. 0< <L ;

.0, ... , 2 −1
g

1. g independent permutations;

Random Construstion of:

3. f: 2L, ... , 3L−1

Architecture
Initial Decoder

random input

extension

Selected Code

Efficient Encoding

Inspiration

(2,k)−Regular LDPC (3,k)−Regular LDPC
 Decoder Decoder

Figure 2: Code and decoder/encoder joint design flow diagram.

3.1 Construction of
� , and

� 5
Since �� � � ��� , � ��� 5 � � defines a (� ���)-regular LDPC code with the girth of 12, let’s first review the existing

methods for constructing high-girth (� ���)-regular LDPC codes. Tanner [4] proposed to construct a (� ���)-

regular LDPC code with an exact value of girth (less than or equal to 32) by inserting variable nodes in the

edges of a Moore graph [32] or a graph based on generalized polygon [33]. More generally, we may obtain a

high-girth (� ���)-regular LDPC code by inserting variable nodes in the edges of any high-girth � -regular graphs,

e.g., Ramanujan graph [34] where the girth is larger than a certain bound. However, it is not clear yet that

whether such (� ���)-regular LDPC codes could fit to a high-speed partly parallel decoder. Moreover, all these

construction methods come with very strict constraints on the code length selection, which is not desirable in

many applications. Finally, we also note that nearly all such constructions involve some complicated arithmetic

operations which will likely incur high complexity in the decoder realizations.

8

I

I

2,k1,k

k,21,2

k,12,1

P P Pk,k

P P P2,2

P PP1,1

1 0
0 0

0

H =

k,k

I

0

0
2,2

1,1

0

0 0

0
H =

I
I

I

I
I

I k,2

0

1,2

2,1

k,1

1,k

2,k

L k

L k2

L k

L

Figure 3: Structure of submatrices
� , and

� 5 .
We propose a method to construct matrix �� � � ��� , � ��� 5 � � that defines a (� ���)-regular LDPC code with

the girth of 12. Although 12 is not a very large girth value, our simulations show that it should be sufficient

for generating good (� ���)-regular LDPC codes with our interested short code length. More important, this

construction approach will lead to a decoder with extremely simple control structures and provide much more

freedom on the selection of code length: Given � , any code length that could be factored as �U? � � is permitted,

where � can not be factored as � ��� ?�� , ��� ����T �93 �@?@?@? ���2;���� .
Fig. 3 shows the structures of

� , and
� 5 : Each block matrix �
	R� � in

� , is an � ��� identity matrix and

each block matrix
 	R� � in
� 5 is obtained by a cyclic shift of an � ��� identity matrix. Let � denote the right

cyclic shift operator where � � ����
 represents right cyclic shifting matrix � by � columns, then
 	R� � ��� � ���9

where ��� �S��0 ;��9
 ?��
���I���� and � represents the � ��� identity matrix, e.g., let ����� , 0�� � and ����� ,
we have �=�8��0=; �9
k?����2I�� � � �!�2I"�#�!� � , then

%$ � & �'� $ ���9
 �
())))))))))
*

3 3 3 � 33 3 3 3 �� 3 3 3 33 � 3 3 33 3 � 3 3

+-,,,,,,,,,,
. x

Clearly, in both
� , and

� 5 , each row contains �|�
/�Z and each column contains a single 1. Thus matrix

�� � � ��� , � ��� 5 � � defines a (� ���)-regular LDPC code, denoted as � � , with ��? � � variable nodes and �0��? �
9

check nodes. Let � denote the Tanner graph of � � , we have the following theorem pertaining to the girth of � :

Theorem 3.1 If � can not be factored as �b��� ?�� , where � ���ETU�93 �@?@?@? ����; ��� , then the girth of � is 12 and

there is at least one 12-cycle passing each check node.

Proof. see Appendix A.

It is clear that the girth average of ��� is always 12. For the comparison between � � and random code

in terms of girth average, we randomly construct two 4-cycle free (� � �)-regular LDPC code ensembles with

code length of 2304 and 9216, respectively. Each ensemble contains 500 codes and has the histograms of girth

average as shown in Fig. 4.

8.9 9 9.1 9.2 9.3 9.4 9.5
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09
(a) N=2304

10.7 10.75 10.8 10.85 10.9 10.95 11 11.05
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09
(b) N=9216

Figure 4: Histograms of girth average for (� � �)-regular LDPC codes with code length (a) 2304 and (b) 9216.

3.2 (�����)-Regular LDPC Decoder Architecture

In this section we present a partly parallel decoder architecture for � � . To facilitate the following description,

we arrange the � ? � � variable nodes of � � into � � groups, each group VG 	R� � contains the � variable nodes

corresponding to the consecutive � columns in �� going through the block matrix � 	R� � and
 	R� � . Notice that

any two variable nodes in the same group never connect to the same check node and all the � variable nodes

connected to the same check node as specified by
� , (

� 5) always come from � groups with the same 0 -index

(� -index). Based on such observations, we obtain a partly parallel decoder for � � as shown in Fig. 5.

This decoder contains � � memory banks, each one, denoted as MEM BANK-(0 � �) for � �"0 � � � � ,

stores all the + -bit intrinsic information (in RAM �), � -bit extrinsic information (in RAMs � 5 and � �) and

hard decisions (in RAM �) associated with the � variable nodes in VG 	R� � . In this decoder, the check-to-

variable extrinsic information
{ � � � and variable-to-check extrinsic information Y � � � associated with one pair

of neighboring nodes are alternatively stored in the same memory location. The two check-to-variable or

10

CNU CNU

VNUVNUVNU

Extrinsic

MEM BANK−

Intrinsic

AG

Extrinsic

Intrinsic

AG

k1

r=0 ... 2L−1

MEM BANK−

Extrinsic

Intrinsic

MEM BANK−

AG

or Id

D

1,1

π

(x,y)

1,1

()bitsL 1
C

Hard Decision

()
I

bitsL p

−1Comparator

L q bits)(

L q
E1

bits

()bitsL 1
C

Hard Decision

()
I

bitsL p

()bitsL 1
C

Hard Decision

()
I

bitsL p

D

E2

k,k

k,kCounter

)(

1q

E2
L q

x,y

(

q+1 q+1q+1
Counter

)

Dx,y Counter

bits)(

L q

r=0, L r=0, L

E1

(1,1)

q 1

E1

E2

1q

bits(L q

()bitsL q

(k,k)

r=0, L

bits

−1c
L

)

Figure 5: (� ���)-regular LDPC decoder architecture.

variable-to-check extrinsic information associated with each variable node are stored in the same address in � 5
and � � . This decoder completes each decoding iteration in �0� clock cycles, and in each clock cycle it performs:

1. In each memory bank, if all the check-to-variable extrinsic information
{ � � � associated with one variable

node become available after previous clock cycle, then

(a) Retrieve � intrinsic information F � from � and � check-to-variable extrinsic information
{ � � � asso-

ciated with this variable node from �/� and � � ;

(b) VNU computes � variable-to-check extrinsic information Y � � � and LLR � � , and obtains A0 � by

performing hard decision on � � ;

(c) Store the � variable-to-check extrinsic information Y � � � back to RAM �/� and � � and A0 � to RAM

� .

2. Retrieve � � variable-to-check extrinsic information Y � � � and hard decision A0 � (obtained in the previous

iteration) from the � � memory banks at the addresses provided by AG � ’s;

3. Shuffle the � � variable-to-check extrinsic information and hard decision by the shuffle network config-

ured by � c�5 leading to the permutation � c�5 if � c�5 �$� (� 5c�5), or to the identity permutation (Id= � ,c�5)
otherwise;

4. Each CNU � computes � check-to-variable extrinsic information
{ � � � and performs the parity check on

the � hard decision A0 � ’s;

11

5. Unshuffle the � � check-to-variable extrinsic information
{ � � � and store them back into the � � memory

banks at the original location.

It can be shown that, with the following architecture features, this decoder realize the variable-check nodes

connections specified by
� , and

� 5 in the � ��� and � ��� � clock cycles, respectively:z Each Address Generator (AG 	R� �) provides memory address to ��� and � � during the � ��� and � ��� � clock

cycles, respectively. In order to access all the � extrinsic information associated with the same check

node in the same clock cycle, exploiting the special structures of
� , and

� 5 , we only need to implement

each AG 	R� � as a modulo- � binary counter which is set to initial value
� 	R� � every � clock cycles, i.e., atoE�.3 � � , and

� 	R� �m� rs t 3 � o��.3 ��S��0�;��9
k?
�
 �2I"��� � o���� x (4)

z To realize the variable-check nodes connections specified by
� , during the � ��� � clock cycles (o w

�), each � extrinsic information from � memory banks with the same 0 -index should be arranged

into a successive sequence so that they can be sent to the same CNU. Thus we set the configura-

tion bit � c�5 � � and make � c�5 permute an input data sequence ��0 , �@?@?@? �S0��
	 c�5 � to output sequence��0��
	 Q � , � �@?@?@? �S0 � 	 Q � �
	 c�5 � � , where

� c�5 ���
:�8��� �2I"� �
k? �E`�� �� � x (5)

z To realize the variable-check nodes connections specified by
� 5 during the � ��� � clock cycles (o v �),

each � extrinsic information from � memory banks with the same � -index should be arranged to be in

a successive sequence. Notice that the original arrangement of the � � extrinsic information already has

such property. Thus we just bypass the shuffle network by setting � c�5 �.3 .
3.3 (� ���)-Regular LDPC Decoder Architecture

Extending the above (� ���)-regular LDPC decoder in a straightforward manner, we may obtain a (� ���)-regular

LDPC decoder as shown in Fig. 6, where the parts in shade are the added blocks. Configured by a set of

constrained random parameters, this decoder defines a (� ���)-regular LDPC code ensemble in which each code

has � ? � � variable nodes and �0� ? � check nodes and is essentially constructed by randomly introducing extra

�~? � check nodes into ��� .

12

AG

Intrinsic

Extrinsic

MEM BANK−

Intrinsic

Extrinsic

RPG

CNU

MEM BANK−

Intrinsic

CNU

Extrinsic

MEM BANK−

1

r=0 ... 3L−1
AG AG

k

VNU VNU VNU

)
I

bitsL p (

Hard Decision

C
()bitsL 1 L 1

Hard Decision

bits

()
I

L p bits

)(()bitsL 1
C

Hard Decision

π−1 or Id

L p bits
I

)(

C

g

c−1

r=0, L, 2L

Counter

g−layer Shuffle Network

r=0, L, 2L

E1
bits)

1,1D k,k

1,1 k,k

0=(c , ..., c)g−1c
2

D
r=0, L, 2L

Counterx,yD

x,y

(

(

Counter
q+1

(1,1)

Comparator

E3

L

L q bits

q 1

)

))bitsbits
E1

L q

()bitsL q
E2

()bitsL q
E3

E2

q+1

q 1

L q bits

(
E1

L q

(L q

()bitsL q
E2

()bits

L q

E3
)

q+1

(x,y) (k,k)

q 1

(

Figure 6: (� ���)-regular LDPC decoder architecture.

In this decoder, a Random Permutation Generator (RPG) and [-layer shuffle network are inserted between

the 1-layer shuffle network (� c�5 or Id) and all the CNU’s. The realization of the [-layer shuffle network is

similar with that in [21]: each layer is a shuffle network and configured by a single control bit � � leading to a

given permutation � � if � � � � (� 5�), or to the identity permutation (Id= � ,�) otherwise. Thus, configured by the[-bit word �2� � ��� c�5 �@?@?@? � � ,
 � generated by RPG, the overall permutation pattern �� in each clock cycle is the

product of [permutations: �� � �
���
	 Q� c�5 � ?@?@? � � � O, .

This decoder completes each decoding iteration in �0� clock cycles, and CNU’s access the extrinsic infor-

mation stored in �/� , � � and � � in the � ��� , � � � and �
� � � clock cycles, respectively. We denote the �0��? �

check nodes associated with the extrinsic information stored in ��� and � � as deterministic check nodes, and

the other �~? � check nodes associated with the extrinsic information stored in � � as random check nodes.

During the first �0� clock cycles, we bypass the [-layer shuffle network by setting the output of RPG as a

zero vector, and set all other control signals in the same way as the above (� ���)-regular LDPC decoder. Thus

this decoder realizes the interconnection pattern specified by �� � � � � , � � � 5 � � between all variable nodes and

the �0�~? � deterministic check nodes during the first �0� clock cycles.

During the last � clock cycles, this decoder realizes the interconnection between all variable nodes and the

�=? � random check nodes, which is represented by an �=? � by �=? � � matrix
� � . This decoder has the following

properties during the � clock cycles:

13

z RPG performs as a hash function � : � �0� �@?@?@? � �0�g;b��� ;�� �93 �@?@?@? � � � ;b��� and its [-bit output vector �

configures the [-layer shuffle network;z The configuration bit � c�5 �.3 so that the 1-layer shuffle network performs the identity permutation;z AG 	R� � provides address to � � with the counter set to
� 	R� � ��� 	R� � at o!� �0� , where � 	R� � TU�93 �@?@?@? � � ;���� .

It is clear that in
� � defined by this decoder each row contains � 1’s and each column contains a single 1. Thus

this decoder defines a � � ���)-regular LDPC code ensemble, in which each code has the parity check matrix� ��� ��� , � ��� 5 � ���� � � , where
� , and

� 5 have the deterministic structures as shown in Fig. 3, and matrix
� � is

jointly specified by each � 	R� � , the hash function � and the [-layer shuffle network. In order to guarantee that this

code ensemble only contains 4-cycle free codes and facilitate the design process, we propose to construct the

hash function � and the [-layer shuffle network in fully random and generate the value of each � 	R� � in random

with the following constraints:

1. Given 0 , we have � 	R� � Q ���� 	R� � 	 , � � 5 � � ��T �4� �@?@?@? ���n� ;
2. Given � , we have � 	 Q � � ;�� 	 	 � � �� �S��0 5 ; 0 �@
 ?���
��2I"��� , �>0 5 �S0 ��T �4� �@?@?@? ���n� .

In the following, we briefly prove that the above two constraints are sufficient for generating 4-cycle free LDPC

codes. Notice that the existence of 4-cycle is equivalent to existence of two variable nodes being connected to

(or sharing) the same two check nodes. For each code defined by the above decoder, two variable nodes share

one check node iff their extrinsic information are delivered to the same CNU in the same clock cycle. During

the � ��� � clock cycles, if the extrinsic information associated with two variable nodes are delivered to the same

CNU in the same clock cycle, they must be stored in the same address of �/� in two memory banks with the

same 0 -index. According to the first constraint, we know that two extrinsic information associated with such

two variable nodes in � � will never be accessed in the same clock cycle. So such two variable nodes have

no chance to share one random check node no matter how we generate the hash function � and the [-layer

shuffle network. Since the interconnection pattern realized in the � ��� � clock cycles is specified by
� , , we may

conclude that the first constraint guarantees that any two variable nodes sharing one deterministic check node

specified by submatrix
� , never share one random check node. Similarly, the second constraint guarantees

that any two variable nodes sharing one deterministic check node specified by submatrix
� 5 never share one

random check node. Therefore, we know that each code defined by the above decoder does not contain two

variable nodes sharing the same two check nodes, or each code is 4-cycle free.

14

We call the code ensemble defined by the above decoder as implementation-oriented (� ���)-regular LDPC

code ensemble. For real applications, we must select a good code from this code ensemble. In this work, we

propose to combine the girth average comparison and computer simulations together to effectively find a good

code: first randomly generate a certain number of implementation-oriented (� ���)-regular LDPC codes, then

pick few codes with high girth averages and finally select the one leading to the best simulation result in the

time-consuming computer simulations.

3.4 Design Examples

Before presenting the efficient-encoding scheme for the implementation-oriented (� ���)-regular LDPC codes,

we develop two such codes with different code length to illustrate the above design methodology. We select

two values of � : � 5 � � � and � ��� � � � , where the requirement that � can not be factored as ��? � , where

� ����T��93 �@?@?@? ��� ;�� � �V� , is satisfied. Using the above decoder, we may obtain two code ensembles with

different code length: � 5 � � 5 ? � � � � �R30� and � �m��� � ? � � � � �R3 � . In both cases we set [�� � so that the

decoder contains a 1-layer deterministic shuffle network (� c�5 or Id) and a 3-layer random shuffle network.

7.1 7.2 7.3 7.4 7.5 7.6
0

0.02

0.04

0.06

0.08

0.1
(a) Random N=2304

7.1 7.2 7.3 7.4 7.5 7.6
0

0.02

0.04

0.06

0.08

0.1
(b) Decoder_First N=2304

7 7.5 8
0

0.02

0.04

0.06

0.08

0.1
(c) Implementation_Oriented N=2304

7.65 7.7 7.75 7.8 7.85 7.9
0

0.02

0.04

0.06

0.08

0.1
(d) Random N=4608

7.65 7.7 7.75 7.8 7.85 7.9
0

0.02

0.04

0.06

0.08

0.1
(e) Decoder_First N=4608

7.4 7.6 7.8 8 8.2 8.4
0

0.02

0.04

0.06

0.08

0.1
(f) Implementation_Oriented N=4608

Selected
 Code

Selected
 Code

Selected
 Code

Selected
 Code

Selected
 Code

Selected
 Code

Figure 7: Histograms of girth average for (a)(d) fully random codes, (b)(e) codes developed by decoder-first

code design, and (c)(f) implementation-oriented codes.

For each case, we independently generate 500 groups of hash function � , 3-layer shuffle network and all

� 	R� � in random under the above two constraints on � 	R� � . Then we apply these parameters to the (� � �)-regular

LDPC decoder and subsequently obtain two code ensembles, each one contains 500 codes. The histograms

15

of the girth averages of the two code ensembles are shown in Fig. 7 (c) and (f). For each case, we choose

5 codes with relatively high girth averages and select the one leading to the best performance based on the

computer simulations. In the computer simulation, we assume that the LDPC codes are modulated by BPSK

and transmitted over AWGN channel.

1.5 2 2.5 3 3.5
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

(a) N=2304

B
E

R

E
b
/N

0
(dB)

Max_Iteration=5
Max_Iteration=10
Max_Iteration=20

1.5 2 2.5 3 3.5
4

6

8

10

12

14

16

18

20
(b) N=2304

A
ve

ra
ge

 n
um

be
r

of
 it

er
at

io
ns

E
b
/N

0
(dB)

Max_Iteration=5
Max_Iteration=10
Max_Iteration=20

1.5 2 2.5 3 3.5
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

(c) N=4608

B
E

R

E
b
/N

0
(dB)

Max_Iteration=5
Max_Iteration=10
Max_Iteration=20

1.5 2 2.5 3 3.5
4

6

8

10

12

14

16

18

20
(d) N=4608

A
ve

ra
ge

 n
um

be
r

of
 it

er
at

io
ns

E
b
/N

0
(dB)

Max_Iteration=5
Max_Iteration=10
Max_Iteration=20

Figure 8: Finite precision simulation results where solid lines correspond to � �� , dash lines and dash dot lines

for � �� and � ���� , respectively.

We denote the selected implementation-oriented (� � �)-regular LDPC codes with � 5 � � �R30� and � � �
� �R3 � as � 5� and � �� , respectively. Since the parity check matrices of both � 5� and � �� contain 2 redundant

checks, �25� and � �� are (� �R30� ���L�
� �) and (� �R3 � � � �R3 �) codes. For each code configuration, we also randomly

generate two 4-cycle free (� � �)-regular LDPC code ensembles, one is generated in fully random and another

is generated using the decoder-first code design approach. Each code ensemble contains 500 codes and the

histogram of the girth averages is shown in Fig. 7. Denote the selected fully random codes with � 5 and � � as

16

�75� and � �� and the selected codes developed from decoder-first code design approach with � 5 and � � as � 5���
and � ���� . Both � 5� and � 5��� are (� �R30� ���L�
� �) codes and both � �� and � ���� are (� �R3 � � � �R30�) codes.

The finite precision simulation results of each � �� , � �� and � ���� are shown in Fig. 8, including the BER vs.

SNR and average number of iterations vs. SNR. In the finite precision simulations, we adopt the quantization

scheme developed in [35]: received data 0�� is quantized with 4 bits, extrinsic information Y � � � and
{ � � �

are represented with 6 bits with a variable precision representation scheme proposed in [35]. Moreover, the

intrinsic information F � is also represented with 6 bits. The function � ��0�
/� GJILKn� 5���� 	��
��5Sc�� 	��
��
 is realized by a

� � � � � Look-Up Table (LUT). In order to guarantee the simulation accuracy, especially at high SNR, each

point in the simulation results of BER vs. SNR is obtained under the condition that the frame error number at

least exceeds 100.

3.5 Systematic Efficient-Encoding Scheme

For the random LDPC codes, the generator matrix is typically used to perform encoding, which has quadratic

complexity in the block length. One efficient-encoding scheme, suggested in [29] and [30], is to construct

random LDPC code using an approximate upper triangular parity check matrix so that the encoding complexity

can be reduced significantly. In this section, we show that the above idea can be used to obtain an efficient-

encoding scheme for the implementation-oriented (� ���)-regular LDPC codes. The developed encoding scheme

is more efficient in the sense that it does not contain any less-efficient back-substitution operations which are

extensively used in [29] and [30] for general random LDPC codes but will incur long encoding latency.

In [30] the greedy algorithms are used to construct approximate upper triangular LDPC parity check ma-

trix. Different from that approach, based on the specific structure of implementation-oriented (� ���)-regular

LDPC codes, we propose a systematic approach for their efficient encoding: First we obtain an approximate

upper triangular matrix
� � � � � � � �
 by introducing a deterministic column permutation � � , then obtain AB by

performing efficient-encoding based on
� � � , and finally get the codeword B � � c�5� ��AB
 .

Construction of
� � � : Recall that the parity check matrix of implementation-oriented (� ���)-regular LDPC

code can be written as
� � � � � , � � � 5 � � � � � � , where

� , and
� 5 are shown in Fig. 3 and

� � is specified by

the decoder. Denote the submatrix consisting all the columns of H which go through the block matrix � 	R� � in� , as
� �-	R� � � , e.g.,

� � 5 � � � as shown in Fig. 9. We introduce a column permutation ��� to sequentially move

each
� � 5 � 	 � forward to the position exactly next to

� � � � 5 � where 0 increases from � to � successively. From

the construction of
 	R� � in Section 3.1, we know that each
 5 � � is actually an identity matrix. Therefore, the

17

matrix
� � � � � � � �
 has the structure as shown in Fig. 9, and we can write matrix

� � � in block matrix form:

� � � � (* � � �
� � �

+. x (6)

k,k

1,1P Pk,1

1,k

k,2

k,k

1,2P P
P P

Ik,2I

1,1I 1,2I

I k,1

I 1,kI 1,2

k,1P

1,1I

P

I k,1

I

I 1,k

I

1,1

H =
en

 (H)=cπ

D

H =

B
(1,2)

H

0

A

T

πc

C E

Figure 9: Structure of matrix
� � � .

Let � � ����?�� and suppose matrix
�

has o redundant checks, the left � by � � ; o4
 submatrix of
� � � is(

* � �
� �

+
. � (7)

in which
�

is a � ���2; �9
k?
� by � ���/;|�9
k?�� upper triangular submatrix.

Encoding Process: Next, we describe how the efficient-encoding is carried out based on the matrix
� � � . LetAB � ��AB�� �VAB�� �VAB �
 be a tentative codeword decomposed according to (6), where AB � is the information bits with

the length of ��; � `�o , redundant bits AB�� and AB�� have the length of � ���];��9
L? � and � �k` �9
L? �7;!o , respectively.

Procedure 3.1

1. Compute 	 � � � ?nAB � and
 � � � ?>AB � , which is efficient because both
�

and
�

are sparse;

2. Solve
� ?nAB / � ��	 � . Since

�
has the form as shown in Fig. 9, we can prove that

� c�5 � � . Thus we haveAB / � � � ?
� � , which can be easily computed since � is sparse;

3. Evaluate A� � � ? AB / � `

 � , which is also efficient since � is sparse;

4. Compute AB�� ��� ? A� , where � �8� � ? � ? � ` �
�c�5 . In this step, the complexity is scaled by �S� � `7�9
�? �N;�o4
 � .
18

5. Finally we can obtain AB�� by solving
� ?�AB�� � � ?VAB�� ` 	 � . Since

� c�5(� � , AB�� � � ?�� � ? AB�� ` 	 �
 . This

is efficient since both
�

and
�

are sparse.

We note that the above encoding process is similar to that in [30]. However, in [30], AB / � and AB�� have to be

solved using the less-efficient back-substitution method since
� c�5 �� � in general cases. Moreover, since the

non-zero entries in submatrices
�

,
�

and
�

are only contained in certain block matrices, the routing overhead

in hardware implementation of matrix-vector multiplication for these matrices will be much lower compared

with general sparse matrix-vector multiplications.

Finally, we obtain the real codeword B � � c�5� � AB
 so that B is a valid implementation-oriented (� ���)-regular

LDPC codeword and the information bits on the decoder side can be easily obtained by performing the column

permutation � � on the decoder output.

4 Modified Joint Design for High-Rate Applications

In the above joint design, the partly parallel (� ���)-regular LDPC decoder contains � CNU’s, � � VNU’s and

several shuffle networks with the routing complexity scaled by � � . For large � , i.e., the high-rate (� ���)-regular

LDPC codes, the implementation complexity due to all the processor units and shuffle networks may still be

too high for some silicon area critical applications. In this section, we propose a modified joint design scheme

to further reduce the decoder hardware complexity for high-rate cases.

For high-rate (� ���)-regular LDPC code, provided that � is divisible by Z , applying the proposed modified

joint design we can obtain a decoder consisting of ���RZ CNU’s, � � �RZ VNU’s and several shuffle networks with

the routing complexity scaled by � � �RZ . The schematic diagram of the modified joint design is shown in Fig. 10:

We apply a deterministic column permutation � to �� so that A� � � � ��
 , which also defines a (� ���)-regular

LDPC code with girth of 12, can be exploited to develop a modified partly parallel (� ���)-regular LDPC decoder

with reduced complexity. Then following the same joint design methodology as the above, we can obtain a

(� ���)-regular LDPC decoder and an efficient-encoding scheme. It is clear that the crucial step is how to find

such a deterministic column permutation � . In the following we first describe an approach to construct � , and

then briefly present the jointly developed decoder and efficient encoding scheme.

Construction of A� � � � ��
 : Let �� � 	R� � � denote the submatrix of �� consisting of all the columns going through

the block matrix �
	R� � in
� , . Each �� �-	R� � � is referred as unit submatrix since it will be treated as an indivisible

unit in the column permutation � . Let each � consecutive unit submatrices constitute an u-block submatrix

�� ��� � : �� � � � ��� �� � 5 � � � �@?@?@? � �� � � � � � � .
19

H2

(3,k)−regular LDPC code
ensemble defined by

H=
H

Parity Check Matrix
Transformation

H

H2

Constrained Random
Parameters

:Column Permutationπ
πH= ()H0H

1H
H=

Construction of

Selected Code

Efficient Encoding

Computer Simulations
and

Girth Average Comparison
deterministic

input

random input

extension

LDPC Decoder
Modified (3,k)−regular

LDPC Decoder
Modified (2,k)−regular

Figure 10: Modified joint design flow diagram.

Provided that � is divisible by Z , we denote �=� ���RZ and write matrix �� in block matrix form: �� �
� �� 5 � �� � �@?@?@? � �� � � , where each block matrix �� � consists of Z consecutive u-block submatrices:

�� � ��� �� �^��� c�5 � � � � 5 � � �� ��� � c�5 � � � � � � �@?@?@? � �� ��� � � � � x
Then we apply an unit submatrix permutation

�
to each submatrix �� � and obtainA� � � � ���� �
:��� A� �^��� c�5 � � � � 5 � � A� ��� � c�5 � � � � � � �@?@?@? � A� ��� � � � � �

where each u-block matrix A� ��� � consists of Z unit submatrices:A� ��� � � � �� � 	 QP � � QP � � �� � 	 	P � � 	P � �@?@?@? � �� �-	�� P � ���P � � x (8)

Let �b� ��� ;.�9
 ?�� `�� , where � ��� � � and � � � � � , the unit submatrix permutation
�

is constructed in

such a way that the index of each unit submatrix, ��0��� � ����
 , in (8) can be computed as

rsut 0��� �8�S� ��`
	 ; �p
��2I�� �
'`.� �
���� � �S�S��� ; �9
k?�Z(`�	�;|�9
 �2I"� �
6`.� x

Applied with the same column permutation
�
, each �� � is permuted to A� � and the overall permutation is denoted

as � : A� � � A� 5 � A� � �@?@?@? � A� � �� � � ���� 5
 � � � �� �
 �@?@?@? � � � �� �
 � � � � ��
 x (9)

Modified (� ���)-regular LDPC Decoder: In (9), we can write each matrix A� � in the block matrix form:A� � � � A� � 5 �� �@?@?@? � A� � � �� �
, each A� � � �� consists of consecutive �~?�Z columns. We can prove that each A� �u� �� has the

structure as shown in Fig. 11.

20

u ,v11
P

Pu ,vs s

1

(j)

2

i

 L s

2L k

Ii , js s

i , 1jI

0

0

2

22

0H :

Ii , j

Pu ,v

Figure 11: Structure of each A� � � �� .

Denote the (� ���)-regular LDPC code defined by A� as A� � . We arrange the � ? � � variable nodes of A� � into

�m? � groups, each group VG �^� � contains the � ? Z variable nodes corresponding to the � ? Z columns A� � � �� . Notice

that in A� �u� �� each column contains a single 1 and �b?pZ rows out of the �0�|? � rows contain a single 1 and all

other rows are zero row vectors. Based on the above observation and referring to the original joint design, we

can obtain a partly parallel decoder for A� � and extend it to a (� ���)-regular LDPC decoder as shown in Fig. 12,

in which both the number of node processor unit and shuffle network complexity are scaled by � �RZ compared

with the decoder developed in the above original design. Similarly, configured by a set of constrained random

parameters, this decoder defines a (� ���)-regular LDPC code ensemble, the parity check matrix of each code in

this ensemble is �0�g? � by �~? � � and has the form
� ��� A��� � ���� � � .

r=0 ... 3sL−1

g−layer Shuffle Network

VN Block

M

CNU1

AGAG

r=0 ... 3sL−1 VNUVN Block

CNU

VNU

M

RPG

t

V1

0 2
c g−1=(c , ..., c)

sL

Vt

Counter

i,1

i,1

k−10D D0 D k−1

or Idψ

D

r=mL

−1c
Comparator

(i,k)

I

E2
E1

E3

C

Array Cyclic Shifter

0

0

(i,1)

Q

C

D

E3

E1
E2

I

Qk−1

Dk−1

Adder

Pi,1

G Adder

CounterP

G

r=mL
i,k

i,k

i,k

VN Block V i

Figure 12: (� ���)-regular LDPC decoder architecture.

This decoder principally contains �@�q� ���RZR
 identical VN Blocks, a � -layer shuffle network (� or Id), a[-layer shuffle network configured by a Random Permutation Generator (RPG) and � CNU’s. Each VN Block
� � contains � memory banks, each one � ����� � � for � � � � � stores all the decoding information associated

with �.?�Z variable nodes in group VG ��� � . This decoder completes each decoding iteration in �LZ7? � clock

21

cycles: during the first �LZ�?0� clock cycles, it realizes the interconnections between all the variable nodes and

�0��? � check nodes specified by A� ; during the last Z]?�� clock cycles, it defines the interconnections between all

variable nodes and the other � ? � check nodes. To achieve the above requirements and ensure that all the codes

in the code ensemble are 4-cycle free, this decoder possesses the features as summarized in the following.z As shown in Fig. 12, each AG ��� � is realized by a modulo- � binary counter followed by an adder. Each

counter is preset with an initial value - ��� � ��	�
 every � clock cycles, i.e., at o��))? � where 	 T�93 �@?@?@? � �LZ�;���� . The address is generated by adding the counter’s output with a parameter � �^� � ��	�
 .
Each � ��� � ��	�
 is defined as

� �^� � ��	�
 � rs t �S��	 `.�<; �W
���I��7Z�
 ?
� � 	 � Zf; � ���	 �2I"�7Z�
 ?
� � Z �|	 � �LZm;|� x
Each - ��� � ��	�
 is generated as follows: For each 	 , let ��� 	 �2I"��Z , we first introduce an one to one

mapping � � �1��� � �W
 � ��0 � �
 defined as

rs t 0=� �S� �m`�� ; �9
��2I"� �
'`�� �
���8�S�S��� ; �9
 ?�Z*`��
 �2I�� �
�`.� x

For each - ��� � ��	�
 , let ��0 � �
:��� � ����� �V
 and construct - ��� � ��	�
:� A- 	R� � by

- ��� � ��	�
]� A- 	R� � � r����s
����
t 3 � 	 ��ZN; � ��S��0=; �9
k?��
��2I�� � � Z �|	 � �LZN; � �
� 	R� � � �LZ �|	 � �LZm; � � (10)

where each � 	R� � is chosen in random with the following constraints:

1. Given 0 , we have � 	R� � Q ���� 	R� � 	 , � � 5 � � � T �4� �@?@?@? ���n� ;
2. Given � , we have � 	 Q � � ;�� 	 	 � � �� �S��0 5 ; 0 �@
 ?���
��2I"��� , �>0 5 �S0 ��T �4� �@?@?@? ���n� .z As shown in Fig. 12, the Array Cyclic Shifter in each VN Block, configured by oE�.	 ?�� , performs left

cyclic shift on ��� , �@?@?@? ��� � c�5 � to obtain � � , �@?@?@? � � � c�5 � by

rsut � � ��� ��� � � � 5 �
	���
 � � 	 ��Zf;�� �
� � ��� � � Z �|	 � �LZf; � xz During the first �LZE? � clock cycles, the output of RPG is a zero vector, and during the last ZE?0� clock

cycles, RPG performs as a hash function � : � �LZ�� �@?@?@? � �LZ�� ; ��� ;�� �93 �@?@?@? � � � ; ��� .
22

z The 1-layer shuffle network performs the permutation �
�

	 Q . � permutes ��0 , �@?@?@? �S0 � � � c�5 � to ��0�� � , � �@?@?@? �S0�� � � � � c�5 � � :
�m����
*�8� �^� �RZ � �2I�� �
k? �E`��^� � � � ?�Z x (11)

z The 1-bit output of comparator � c�5 �8� if o w Z<?�� , � c�5 �.3 otherwise;

Similarly with the original joint design, we can use girth average comparison and computer simulations to

select a good code from the code ensemble defined by the above decoder. Since A� is only a column permutation

of �� , we can obtain an efficient-encoding scheme that is nearly same with that described in Section 3.5 except

that the approximate upper triangular matrix is obtained as
� � � � � � � � c�5�� �
S
 .

Design Examples: Consider two different � � � � � ZL� : � 5 ���@3 , � 5 � � � and Z 5 � � ; ��� � �
� , � ��� � �

and Z ����� . We obtain two decoders that define two code ensembles with different code length and code rate:

� 5 � � 5 ? � �5 � � �R3L3 and � 5 � �!; � � � 5 ��3 x � ; � �=� � ��? � �� � � � � � and � �=� �E; � � � � � 3 x � . In

both cases, we set [U� � and generate a code ensemble containing 500 codes. We denote the selected codes

with � 5 ��3 x � and � �!��3 x � as � 5� and � �� , respectively. Moreover, we randomly generate two fully random

4-cycle free (� ���)-regular LDPC code ensembles with the same code length and code rate as � 5� and � �� , from

which two good codes are selected, denoted as �/5� and � �� , respectively. The finite precision simulation results

of each � �� and � �� are shown in Fig. 13. Again, in order to guarantee the accuracy, especially at high SNR,

each point in the BER simulation results is obtained under the condition that the frame error number at least

exceeds 100.

0 2 4 6 8 10
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

B
E

R

E
b
/N

0
(dB)

Max_Iteration=10
Max_Iteration=30

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

5

10

15

20

25

30

A
ve

ra
ge

 n
um

be
r

of
 it

er
at

io
ns

E
b
/N

0
(dB)

Max_Iteration=10
Max_Iteration=30

Uncoded

N=5175
Rate=0.8 N=2300

Rate=0.7
N=5175
Rate=0.8

N=2300
Rate=0.7

Figure 13: Finite precision simulation results where solid lines and dash lines correspond to � �� and � �� , re-

spectively.

23

5 Conclusions and Future Work

A joint (� ���)-regular LDPC code and decoder/encoder design approach has been proposed in this paper. We

first propose a novel method to explicitly construct high-girth (� ���)-regular LDPC code that exactly fits to a

high-speed partly parallel decoder. Then by extending this decoder, we obtain a partly parallel (� ���)-regular

LDPC decoder that is configured by a set of constrained random parameters and defines a (� ���)-regular LDPC

code ensemble. Each code in this ensemble is essentially constructed by inserting certain check nodes into

the high-girth (� ���)-regular LDPC code under the constraint specified by the decoder. Thus it is reasonable

to expect that codes in this code ensemble more likely don’t contain too many short cycles and we can easily

select a good code from it, which has been illustrated by two design examples. Compared with the decoder-

first code design, the proposed joint design approach eliminates the implementations of those random number

generators so that the hardware complexity is much lower and the entire design process is much more simple.

Moreover, we present how to effectively exploit the structure of its parity check matrix to obtain a systematic

efficient-encoding scheme for such LDPC code. We also propose a modified joint design scheme to further

reduce the decoder hardware complexity for high-rate codes applied to silicon area critical applications.

We believe such joint design approach should be a key for practical LDPC coding system implementa-

tions. Future research work will be directed towards investigating the joint design approaches for the more

general(�����)-regular LDPC codes and irregular LDPC codes, where the later one seems more promising from

practical point of view.

APPENDIX A: Proof of Theorem 3.1

First, we arrange all the check nodes in Tanner graph � into two disjoint sets � and � , where � and � contain

the � ? � check nodes correspond to the � ? � rows in
� , and

� 5 , respectively. Moreover, we label the check

node in set � (�) corresponding to the o ��� row in
� , (

� 5) as + 	R� � (� � � �), where 0 � � � c�5� �
(� � � � c�5� �

) and

���8��o�; �9
 �2I"��� (���8��o�; �9
 �2I�� �).

Because each column in
� , and

� 5 contains a single 1, each variable node in � has degree of 2 and always

connects to one check node + 	R� � T�� and one check node � � � � T�� . Thus if we introduce a new graph �� that

only consists of all the check nodes in � and two nodes are connected iff they connect to the same variable

node in � , graph �� will be also a bipartite graph and each edge always connects + 	R� � T	� with � � � � T
� . The

original graph � can be directly reconstructed from �� by inserting one variable node on each edge in �� . Thus

24

the girth of � is two times of the girth of �� and Theorem 3.1 is equivalent to following theorem:

Theorem 5.1 If � can not be factored as �|��� ?�� , where � ����Tg�93 �@?@?@? ���2;���� , then the girth of �� is always

6 and there is at least one 6-cycle passing each node in �� .

Proof: Based on the fact that the length of each cycle in a bipartite graph is a multiple of 2, we prove the above

theorem in the following steps:

1. First prove that whether two nodes + 	R� �~T � and � � � �gT � are connected is solely dependent on the

relationship between their indices: ��0 � ��
 and � � � �
 ;
2. Then prove no 2- and 4-cycle exist in graph �� ;

3. Finally show that there is at least one 6-cycle passing each node.

From the constructions of
� , and

� 5 in Section 3.1 and the above computation rules for the index (0 � �) of+ 	R� � and index (� � �) of � � � � , we know that the � non-zero entries of the row in
� , corresponding to node + 	R� �

have the column indices � � � � ? �/?W��0�` ��
k` � `�� for � �83 �@?@?@? ����;�� and each �
���� column goes through

the block matrix
 	 � 5 � � � 5 in
� 5 . Node + 	R� � connects to � nodes in � that correspond to � distinct rows of

� 5
containing a 1 at column index � � for 3 ��� � ��; � . Because each block matrix
 	 � 5 � � � 5 is obtained through

right cyclic shifting an identity matrix by ��0/?4����`.�9
 �2I�� �(
 columns, it can be shown that iff

o � � �'?��U`.�]`�� �2; 0�?4��� `.�9
S
 �2I"��� � (A-1)

the entry at the position ��o � � � �
 in submatrix
� 5 is 1. Moreover, the o ���� row in submatrix

� 5 corresponds to

node � � � � � � , where

� � � � o���;|�� � �����
� � � ��o � ;|�9
 �2I"���b�8� � ;g0/?V����`.�9
S
 �2I�� � x (A-2)

Therefore, let + 	R� ��� � � � � denote the node + 	R� � connects to node � � � � , we have

+ 	R� ��� � � � ����� �2�8� �2; 0/?4� ��`.�9
S
 �2I"��� x (A-3)

This completes the step 1.

From the construction of
� , and

� 5 in Section 3.1, it is clear that there is no 4-cycles in graph � , or there

is no 2-cycles in graph �� . In the following, based on (A-3), we will prove that �� is 4-cycle free by reduction to

25

contradiction. Suppose there is a 4-cycle in �� . Since �� is a bipartite graph, this 4-cycle must pass two nodes

in � , denoted as + 	 Q � � Q , + 	 	 � � 	 , and two nodes in � , denoted as � � Q � � Q and � � 	 � � 	 . According to (A-3), we have

� 5 �8� � 5 ;�� � 5 `��9
k?�0 5
��2I"��� � (A-4)

� �f�8� � 5 ; � � �]`��9
k?�0 5
��2I"��� � (A-5)

and

� 5 �8� � � ;�� � 5 `��9
k?�0 �
��2I"��� � (A-6)

� � �8� � � ; � � � `��9
k?�0 �
��2I"��� x (A-7)

First we show that 0 5 ���0 � and � 5 �� � � . Suppose 0 5 ��0 � , then � 5 �� � � (otherwise + 	 Q � � Q and + 	 	 � � 	 will

be the same node), from (A-4) and (A-6), we have

3!�8� � 5 ; � �
 ��I�� � x (A-8)

However, from the condition that � can not be factored as � � �7? � for � ���2T|�93 �@?@?@? ���/;.��� , we know that

� v � . Since X � 5 ; � �LX w � , we may conclude that the equation (A-8) can not hold for any � 5 �� � � . So we

have 0 5 �� 0 � . Similarly, we also have � 5 �� � � .
From (A-4), (A-5), (A-6) and (A-7) we get

� 5 ; � �f�8� � ��; � 5
k?@0 5 �2I"���
� 5 ; � � �8� � � ; � 5
k?@0 � �2I"���

���

� � � 3!� ��0 5 ; 0 �9
 ?V� � ��; � 5
 �2I"� � x (A-9)

Since 0 5 �S0 � � � 5 � � ��T��93 �@?@?@? ����;.��� , 0 5 �� 0 � and � 5 �� � � , both X 0 5 ; 0 �pX and X � �m; � 5 X will be less than

� . Again, from the condition that � can not be factored as ��� �=? � for � ���~T �93 �@?@?@? ����;C��� , we have��0 5 ;�0 ��
 ?�� � �]; � 5
 �2I"� � ��.3 for all 0 5 �S0 � � � 5 � � ��TU�93 �@?@?@? ���E;~��� , which is contradictory to (A-9). Thus

we conclude that there is no 4-cycles in graph �� . This completes the step 2.

Finally we show that there is at least one 6-cycle passing each node in graph �� in a constructive approach.

Notice that ��; � � 3 for any � � ���
 LDPC codes. �E+ 	 Q � � Q T � , if 0 5 � ��; � , we have 0 5 ` � � �/;�� and

define ��0 � � � ��
:� ��0 5 `.� �9� � 5 `.�9
 �2I"� �(
 �$��0 $ � � $�
:�8��0 5 ` � �9� � 5 ` �V
 �2I"���
 �� � 5 � � 5
:� �i3 �9� � 5 ; 0 5
��2I"���
 � � � � � � �9
:�8� � �9� � 5 ; ��0 5 ; �p
 �2I"���
 �� � $ � � $
:� � � �9� � 5 ; ��0 5
��2I"���
 �
26

if 0 5 � �2; � , we have 0 5 v � and define��0 � � � ��
:� ��0 5 ; � �9� � 5 ; �9
 �2I"� �(
 �$��0 $ � � $�
:�8��0 5 ; � �9� � 5 ; �V
 �2I"���
 �� � 5 � � 5
:� �i3 �9� � 5 ; 0 5
��2I"���
 � � � � � � �9
:�8� � �9� � 5 ; ��0 5 ` �p
 �2I"���
 �� � $ � � $9
:� � � �9� � 5 ; ��0 5
��2I"���
 x
Applying (A-3), we can easily verify that

+ 	 Q � � Q � � � Q � � Q � + 	 	 � � 	 � � � 	 � � 	 � + 	�� � ��� � � � ��� ��� � + 	 Q � � Q x
The sequence ��+ 	 Q � � Q � � � Q � � Q �i+ 	 	 � � 	 � � � 	 � � 	 �i+ 	 � � � � � � ��� � � � �i+ 	 Q � � Q
 forms a 6-cycle in graph �� passing node + 	 Q � � Q .
Similarly, � � � Q � � Q T � , if � 5 � �7; � , define� � � � �
�9
 � � � 5 `.� � � 5
 � � ��$ � � $9
:�8� � 5 ` � � � 5 ; �p
 ���0 5 � � 5
]�8�i3 � � 5
 � ��0 � � � �9
 �8� � �9� � 5 ` � � 5 ` �V
 �2I�� �(
 ���0 $ � � $
]�8� � �9� � 5 ` � � 5
��2I"���
 �
else define � � � � � �9
 �8� � 5 ; � � � 5
 � � ��$ � �0$9
]�8� � 5 ; � � � 5 ` �p
 ���0 5 � � 5
:�8�i3 � � 5
 � ��0 � � � �@
]�8� � �9� � 5 ` � � 5
��2I"���
 ���0 $ � � $�
:�8� � �9� � 5 ` � 5 `.�9
 �2I"���
 x
Applying (A-3), we also can easily verify that

� � Q � � Q � + 	 Q � � Q � � � 	 � � 	 � + 	 	 � � 	 � � � ��� ��� � + 	���� ��� � � � Q � � Q x
The sequence � � � Q � � Q �i+ 	 Q � � Q � � � 	 � � 	 �i+ 	 	 � � 	 � � ��� � � � �i+ 	 � � � � � � � Q � � Q
 forms a 6-cycle in graph �� passing node � � Q � � Q .
This completes the proof.

References

[1] R. G. Gallager, Low-Density Parity-Check Codes, M.I.T Press, 1963. available at

http://justice.mit.edu/people/gallager.html.

[2] R. G. Gallager, “Low-density parity-check codes”, IRE Transactions on Information Theory, vol. IT-8, pp. 21–28,

Jan. 1962.

[3] V. Zyablov and M. Pinsker, “Estimation of the error-crrection complexity of Gallager low-density codes”, Problemy

Peredachi Informatsii, vol. 11, pp. 23–26, Jan. 1975.

[4] R. M. Tanner, “A recursive approach to low complexity codes”, IEEE Transactions on Information Theory, vol.

IT-27, pp. 533–547, Sept. 1981. available at http://www.cse.ucsc.edu/˜tanner/pubs.html.

27

[5] G. A. Margulis, “Explicit constructions of graphs without short cycles and low density codes”, Combinatorica, vol.

2, pp. 71–78, 1982.

[6] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near shannon limit error-correcting coding and decoding: Turbo-

codes”, in Proc. of ICC’93, pp. 1064–1070, Geneve, Switzerland, May 1993.

[7] N. Wiberg, “Codes and decoding on general graphs”, Ph.D. Dissertation, Linkoping University, Sweden, 1996.

available at http://www.essrl.wustl.edu/˜jao/itrg2000/.

[8] D. J. C. MacKay and R. M. Neal, “Near Shannon limit performance of low density parity check codes”, Electronics

Letters, vol. 32, pp. 1645–1646, Aug. 1996.

[9] D. J. C. MacKay, “Good error-correcting codes based on very sparse matrices”, IEEE Transactions on Information

Theory, vol. 45, pp. 399–431, Mar. 1999.

[10] M. C. Davey and D. J. C. MacKay, “Low-density parity check codes over
���������

”, IEEE Commun. Letters, vol. 2,

pp. 165–167, June 1998.

[11] M. G. Luby, M. Shokrolloahi, M. A. Mizenmacher, and D. Spielman, “Improved low-density parity-check codes

using irregular graphs and belief propagation”, in Proc. 1998 IEEE Intl. Symp. Inform. Theory, p. 117, Cambridge,

MA, Aug. 1998. availabel at http://http.icsi.berkeley.edu/˜luby/.

[12] T. Richardson and R. Urbanke, “The capacity of low-density parity check codes under message-passing

decoding”, IEEE Transactions on Information Theory, vol. 47, pp. 599–618, Feb. 2001. available at

http://lthcwww.epfl.ch/publications.html.

[13] T. Richardson, A. Shokrollahi, and R. Urbanke, “Design of capacity-approaching low-density parity check codes”,

IEEE Transactions on Information Theory, vol. 47, pp. 619–637, Feb.

[14] S.-Y. Chung, T. J. Richardson, and R. L. Urbanke, “Analysis of sum-product decoding of low-density parity-check

codes using a Gaussian approximation”, IEEE Transactions on Information Theory, vol. 47, pp. 657–670, Feb. 2001.

[15] M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. A. Spielman, “Improved low-density parity-check codes

using irregular graphs”, IEEE Transactions on Information Theory, vol. 47, pp. 585–598, Feb. 2001.

[16] S. Chung, G. D. Forney, T. Richardson, and R. Urbanke, “On the design of low-density parity-check codes

within 0.0045 dB of the shannon limit”, IEEE Communications Letters, vol. 5, pp. 58–60, Feb. 2001. available

at http://lthcwww.epfl.ch/publications.html.

[17] J. Hou, P. H. Siegel, and L. B. Milstein, “Performance analysis and code optimization of low density parity-check

codes on Rayleigh fading channels”, IEEE Journal on Selected Areas in Communications, vol. 19, pp. 924–934,

May 2001.

[18] G. Miller and D. Burshtein, “Bounds on the maximum-likelihood decoding error probability of low-density parity-

check codes”, IEEE Transactions on Information Theory, vol. 47, pp. 2696–2710, Nov. 2001.

[19] C. Howland and A. Blanksby, “Parallel decoding architectures for low density parity check codes”, in Proc. of 2001

IEEE Int. Symp. on Circuits and Systems, Sydney, May 2001.

[20] K. K. Parhi, VLSI Digital Signal Processing Systems: Design and Implementation, John Wiley & Sons, 1999.

[21] E. Boutillon, J. Castura, and F. R. Kschischang, “Decoder-first code design”, in Proceedings of the 2nd Inter-

national Symposium on Turbo Codes and Related Topics, pp. 459–462, Brest, France, Sept. 2000. available at

http://lester.univ-ubs.fr:8080/˜boutillon/publications.html.

[22] Y. Kou, S. Lin, and M. Fossorier, “Construction of low density parity check code: a geometric approach”, in

Proceedings of the 2nd International Symposium on Turbo Codes and Related Topics, pp. 137–140, Brest, France,

Sept. 2000.

28

[23] T. Mittelholzer, “Construction of Steiner systems and high-rate low-density parity-check codes”, IBM Research

Report, 2000.

[24] J. Rosenthal and P. O. Vontobel, “Construction of LDPC codes using Ramanujan graphs and ideas from Margulis”,

in Proc. of 38th Allerton Conference on Communication, Control and Computing, Monticello, Illinois, Oct. 2000.

available at http://www.nd.edu/˜eecoding/pub1.html.

[25] J. Lafferty and D. Rockmore, “Codes and iterative decoding on algebraic expander graphs”, in In-

ternational Symposium on Information Theory and its Application, Honolulu, Hawaii, 2000. availabel at

http://www.cs.cmu.edu/˜lafferty/.

[26] Y. Mao and A. Banihashemi, “Design of good LDPC codes using girth distribution”, in IEEE International Sympo-

sium on Information Theory, Italy, June 2000.

[27] T. Zhang and K. K. Parhi, “VLSI implementation-oriented (� �
)-regular low-density parity-check

codes”, pp. 25–36, IEEE Workshop on Signal Processing Systems (SiPS), Sept. 2001. available at

http://www.ece.umn.edu/groups/ddp/turbo/.

[28] M. Chiani, A. Conti, and A. Ventura, “Evaluation of low-density parity-check codes over block fading channels”, in

2000 IEEE International Conference on Communications, pp. 1183–1187, 2000.

[29] David J. C. MacKay, Simon T. Wilson, and Matthew C. Davey, “Comparison of constructions of irregular Gallager

codes”, IEEE Transactions on Communications, vol. 47, pp. 1449–1454, Oct. 1999.

[30] T. Richardson and R. Urbanke, “Efficient encoding of low-density parity-check codes”, IEEE Transactions on

Information Theory, vol. 47, pp. 638–656, Feb. 2001.

[31] T. Zhang and K. K. Parhi, “A class of efficient-encoding generalized low-density parity-check codes”, in Proc. of

2001 IEEE Int. Conference on Acoustics, Speech, and Signal Processing, Salt Lake City, Utah, May 2001. available

at http://www.ece.umn.edu/groups/ddp/turbo/.

[32] P. J. Cameron and J. H. Van Lint, Graph Theory, Coding Theory and Block Designs, Cambridge: Cambridge Univ.

Press, 1975.

[33] H. V. Maldeghem, Generalized Polygons, Birkhauser Verlag, 1998.

[34] A. Lubotzky, R. Philips, and P. Sarnak, “Ramanujan graphs”, Combinatorica, vol. 8, pp. 261–277, 1988.

[35] T. Zhang, Z. Wang, and K. K. Parhi, “On finite precision implementation of low-density parity-check codes

decoder”, in Proc. of 2001 IEEE Int. Symp. on Circuits and Systems, Sydney, May 2001. available at

http://www.ece.umn.edu/groups/ddp/turbo/.

29

