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ABSTRACT

In this paper, we analyze the finite precision effects on the decod-
ing performance of Gallager’s low density parity check (LDPC)
codes and develop optimal finite word lengths of variables as far
as the tradeoffs between the performance and hardware complex-
ity are concerned. We have found that 4 bits and 6 bits are ad-
equate for representing the received data and extrinsic informa-
tion, respectively. Simulation results indicate that the quantization
scheme we have developed for the LDPC decoder is effective in
approximating the infinite precision implementation.

1. INTRODUCTION

Low Density Parity Check (LDPC) codes, first introduced by Gal-
lager [1][2], have recently received a lot of attention because of
their excellent performance on the binary symmetric channel (BSC)
as well as on the additive white Gaussian noise (AWGN) channel.
LDPC codes are widely considered as serious competitor to turbo
codes. The main advantages of LDPC codes over turbo codes
are: 1) they empirically don’t make undetected errors because of
good distance properties; 2) there exist low complexity and highly
parallelizable decoding approaches. However, the high complex-
ity encoding process is the main deficiency of LDPC codes. Re-
cently, several efficient encoding approaches have been proposed
in [3][4].

Originally, as proposed in [1][2], LDPC codes are specified by
a very sparse regular parity check matrix with a small fixed number�����

of 1’s per column and a small fixed number � ���
of 1’s per

row. It has been shown that regular LDPC codes have good per-
formance, but a little worse than turbo codes. Recently, Richard-
son, Shokrollahi and Urbanke [5] proposed irregular LDPC codes,
which outperform, on memoryless channels, the best known turbo
codes.

LDPC codes can be efficiently decoded using the iterative be-
lief propagation (BP) algorithm [6], which approximates the max-
imum likelihood decoding. In the hardware implementation, the
Log-BP algorithm would be employed in order to decrease the
decoder complexity. As we will see later, in BP algorithm, ex-
trinsic information need to be iteratively exchanged between two
decoding steps. In LDPC decoder implementation, the hardware
implementing this message exchange is called interleaver. With
increase of block size, the interleaver will become more and more
complicated and take a large portion of overall hardware resource.
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Compared with the irregular ones, although the performance of
regular LDPC codes is a bit worse, it can be efficiently constructed
by using the partly “structured” approach [2], which may signifi-
cantly simplify the interleaver design in the decoder. Thus, consid-
ering the tradeoff between hardware complexity and performance,
the regular LDPC codes seem to be a good choice for many appli-
cations.

As far as a practical system implementation is concerned, the
finite precision effects is an important issue to be considered. How-
ever, up to our best knowledge, the precision effects on the perfor-
mance of the LDPC codes decoder have not been addressed in the
literature. Among various variables, the word lengths of received
data (soft input) and extrinsic information are especially impor-
tant. In this paper, we analyze the finite precision effects on the
Log-BP based regular LDPC codes decoder performance and de-
rive the optimal word lengths considering tradeoffs between the
hardware complexity and the performance. Furthermore, we pro-
pose a novel quantization scheme for extrinsic information, which
can improve up to 0.1 dB over AWGN channel compared with
conventional uniform quantization scheme.

2. DECODING ALGORITHM

LDPC codes can be efficiently decoded by iterative BP algorithm.
But the BP algorithm [6] contains many multiplications which will
result in high computation complexity if implemented directly in
hardware. In order to reduce the complexity, we can convert these
complicated operations into additive form by introducing some
logarithmic quantities, which leads to the Log-BP algorithm [2].
In the following, we summarize the iterative decoding of LDPC
codes based on the Log-BP algorithm. As to the details of BP
algorithm, readers are referred to [6].

Before the brief description of the decoding algorithm, we in-
troduce some definitions. Let 	 denote the parity check matrix.
We define the set of bits 
 that participate in parity check � as�� 
�������
���	�������� � . Similarly, we define the set of parity
checks � in which bit 
 participates as !  �"���#�$�%�&	 ��� �� � . We denote the set !  �"� with bit 
 excluded by !  �"�('�
 ,
and the set

�� 
)� with parity check � excluded by
�� 
��)'�� .

The iterative decoding algorithm based on the Log-BP ap-
proach is given as follows:

Algorithm 2.1

Input: The prior probabilities *�+� �-, /. � �-01� and *�2� �, /. �3�4���5�6�879* +� , 
:�4�<;�=>=>=>;?! ;
Output: The hard decision of codeword, @. � ;)
"�6�<;�=>=>=>;A! ;
Procedure:
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1. Initialization. For each 
 , set � � ��������� 	
� �
 and for each � ; 
)���� �� ; � ��� 	�� � �6�$� , compute� � � ��� ��� 
  � � ������� � ����� �"! # 
 !
�87$� �"! # 
 !&%�'

2. Iterative Decoding( Horizontal step. For each � , 
 , compute) � � �*�+��� � ���,� �.-
�87/� �.- % 0�21436587 �89;:A� � �4� 
  � ���21 �

where � �=< � 1 36587 �89;:A� � � � �21 � .( Vertical step. For each � , 
 , update� � � ��� ��� 
  � ��� �6���2� � �>��� �"! #@? 
 !
� 7$� �"! #@? 
 ! %

where � � � �A� �B�=< �1436CD7 � 9E: � ) ��1 � . For each
 , update the “pseudo-posterior log-likelihood ra-
tio” F � at this iteration, given byF � �G� � � H�I3 CJ7 �29 ) � � '( Decision step.

(a) Do hard decision on decoded codeword @K �L @. �NM such that @. �9� 0 if F � � 0 and @. �9��� ifFPO 0 ;

(b) If 	 @. � 0 then algorithm terminates, else go
to Horizontal step. A failure will be declared
if pre-set maximum number of iterations occurs
without successfully decoding.

The above algorithm contains a function Q /. � �*���2�  2&RTS@UTV WXV2 � S UTV WXV � ,which can be implemented as a Look-Up Table (LUT) in hardware.
In this work, we assume that the binary

 !:; � ; � � LDPC codes con-
sidered are modulated by BPSK and used for error control over
AWGN channel with noise spectrum density ! + . So in above al-

gorithm, the prior probabilities , /. �3� 0 � � S UNYZW\[
�]�^`_&a 	2&RTS UNYZW [
 ]�^`_&a 	 and

thus the � � is initialized to 7cb .ed��fhg\i ! + , where
.ed� and fhg denote

the soft information input and coded bit energy, respectively.

3. CODE CONSTRUCTION AND DECODER
STRUCTURE

The binary regular LDPC codes j  !:; � ;A� � have block length !
and parity-check matrix with exactly

� ��k�� in each column and �� k � in each row. When constructing the regular LDPC codes, we
can use the following partly “structured” approach [2] (as shown
in Fig. 1): Let � be a divisor of ! , and the

 !:; � ;A� � parity check
matrix 	 consist of ! � i � rows. Matrix 	 is divided into

�
sub-

matrices 	 2 ;�=>=>=>;A	 � , each has the dimension of
 ! i � ; !"� and

contains a single 1 in every column. The first of these submatri-
ces, 	 2 , contains all its � k � in descending order, such that the

�&l�m
row contains � k � in columns

�� 7 ��� �T� � to
� � . The successive

� 7 �
submatrices are formed by random permutation of the columns of
the first matrix 	 2 , that is, 	Dn �po 2  	 2 � ;>=>= =>;A	q� �poN� � 2  	 2 � ,
where o � ’s are independent column permutations. Through Monte
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Fig. 1. Partly “Structured” Code Construction

Carlo simulation, it’s shown that, empirically, there is no perfor-
mance difference between this construction approach and the fully
random construction ones.

Based on above construction approach, we present a decoder
structure that consists of three processor arrays and three inter-
leaver blocks. The schematic block diagram that illustrates the
decoder structure is shown in Fig. 2.
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Fig. 2. Decoding Iteration Structure

In the decoder, each interleaver block consists of
� 7�� inter-

leavers ( o � or or� 2� ) and each interleaver takes the incoming data
block with size ! and rearrange them independently according to
the corresponding permutation pattern. Various interleaving (or
permutation) schemes have been intensively studied for Turbo-
codes and except the fully random interleaving, many other in-
terleaving strategies were proposed for Turbo-codes, which can be
very likely used for regular LDPC codes. This issue is beyond the
range of this paper and interested readers are referred to [8][9][10].

H PU array consists of a number of Horizontal updating Pro-
cessor Unit (H PU) which compute the extrinsic information

) � �
in parallel. Similarly, V PU array consists of Vertical updating
Processor Unit (V PU) which compute � � � in parallel. These
two processor units array execute the horizontal and vertical step
in Log-BP algorithm, respectively. The slicer performs the hard
decision on each bit

. � according to the pseudo-posterior log-
likelihood ratio F � , and Parity check Processor Unit (P PU) array
performs the parity check on the tentative codeword, where each
P PU simply contains some XOR gates. The block diagram of
H PU and V PU is shown in Fig. 3.
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Fig. 3. (a) Horizontal updating Processor Unit (H PU), (b) Vertical
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2



4. FINITE PRECISION ANALYSIS

In this section, we analyze the finite word length effect on the per-
formance of regular LDPC codes decoder. The possible trade-
off between hardware complexity and decoding performance is
discussed. Furthermore, a novel quantization scheme for extrin-
sic information � � � and

) ��� is proposed. The simulation re-
sults are presented for two different code configurations, i.e., (a)! � �>0 � 0 ,

� ��� and � ��� , and (b) ! � b 0�� � ,
� ��� and�"��� . The code rate of both cases are � i � . In this work, LDPC

codes are modulated by BPSK and transfered over AWGN chan-
nel. We note that in both code length configurations, we pick 30
permutation patterns at random and select the one leading to the
best results.

4.1. Quantization of Received Data

We first consider the quantization of received data. Since receiving
buffer is needed to store the received data, quantization of received
data significantly affect the total decoder complexity. A large word
length not only increases the hardware overhead for the buffers but
also causes a large number of hardware for the iterative decoding
computation. A small word length may result in very poor per-
formance. Hence, our concerns are limited to �$� � � 3, 4 and
5.

Let � �rQ denote the quantization scheme in which totally �
bits are used, of which Q bits are used for the fractional part of the
value. Under the same value of � , the precision that can be main-
tained is proportional to the value of Q , but the presented dynamic
range is in inverse relation to Q . Various quantization schemes
for the received data such as 3:1, 3:2, 4:1, 4:2, 4:3, 5:2 and 5:3
have been investigated. It’s shown that for different value of � ,
i.e., 3, 4 and 5, the quantization schemes 3:1, 4:2 and 5:3 have
the best performance, respectively, and the simulation results for
these schemes are shown in Fig. 4. We can see that the difference
between 4:2 and 5:3 cases is quite small within a wide range of
BER, but the difference between 4:2 and 3:1 is significant. Thus it
turns out that using the 4:2 scheme seems to be the optimal tradeoff
between hardware complexity and decoding performance.
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Fig. 4. Finite precision simulations with various quantization
schemes of received data for (a) N=1020 and (b) N=4092, where
solid lines correspond to the 3:1 scheme, dash and dash dot lines
for the 5:3 and 4:2 schemes, respectively.

4.2. Quantization of � � � and
) ���

We have known that the whole Log-BP decoding process mainly
consists of iteratively exchanging and updating the extrinsic infor-
mation � � � and

) � � , performed by interleaver block I & II and
updating processor unit arrays, respectively. Therefore, quantiza-
tion of � � � and

) � � is also critical for hardware implementation.
In Log-BP decoding algorithm, the magnitudes of both � � �

and
) ��� are the outputs of function Q /. � � ����� �

2&R S UTV W V2 � S UTV W V % ,

which is implemented as a LUT in hardware as shown in Fig. 3.
The curve of Q /. � (for

. � 0 ) is shown as in Fig. 5. Since the
magnitudes of input and output of function Q /. � may range from 0
to �
	 , we must saturate the input and output with the maximum
value ������ and � ���� , respectively. From simulation, it shows
that when both ������ and � ���� are set between 3.5 and 4, there
is nearly no performance degradation and at the same time only 3
bits (including 1 sign bit) are needed for integral part of � ��� and) ��� .
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Fig. 5. Curve of function Q /. � (
. � 0 )

From Fig. 5, we can see that Q /. � is non-linear and its slope
decreases with the increase of

.
. It is intuitive that the larger the

slope, the smaller quantization step should be used for a good per-
formance. Thus, under the same total quantization bit number � ,
a non-uniform quantization scheme will outperform the uniform
one. Therefore, instead of using uniform quantization scheme, i.e.,
��� Q , for � � � and

) � � , we propose a novel variable precision
quantization scheme: If the magnitude of output of LUT, denoted
as � , is less than 1, then � is represented by ����� 7�� scheme and
its MSB ��� � 2 is set to 0 ; else its MSB ��� � 2 will be set to 1 and the
point lies between ��� ��� and ��� ��� , and the value of integral part is
interpreted as

��� � 2 = ��� � n = ��� ��� = � n ����� � n = � ����� ���
where ��� represent the bitwise complement of �2� . Combining this
magnitude with its sign bit produces the final representation of� � � and

) � � .
In this work, different values of � for � � � and

) ��� , such as
5, 6, and 7, have been examined for both uniform quantization
and the above variable precision quantization schemes. It turns
out that ����� is the best choice for both cases considering the
optimal tradeoff between hardware complexity and performance.
Simulation results for the uniform 6:3 quantization and proposed
variable precision quantization schemes are shown in Fig. 6. It can
be seen that compared with uniform quantization scheme, variable
precision scheme improves the performance (about 0.1 dB in some
range of SNR). It needs to be pointed out that using variable pre-
cision scheme will slightly increase the hardware overhead in the
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adder array, i.e., circuit to decide the location of point, which is
ignorable even only compared with the adder array.
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Fig. 6. Finite precision simulations with various quantization
schemes of extrinsic information for (a) N=1020 and (b) N=4092,
where � � � , solid lines correspond to 6:3 scheme and dash dot
lines for the variable precision quantization scheme.

4.3. Simulation Results Summary

Infinite precision and finite precision simulation results are shown
in Fig. 7, including the BER vs. SNR and average number of iter-
ations vs. SNR. The average number of iterations is an important
parameter representing the decoding speed and power consump-
tion. The quantization schemes used are 4:2 for received data and
variable precision quantization for extrinsic information � � � and) � � with � � � . Three values of maximum number of iterations,
i.e., 5, 10, and 20, are used. It can be seen that, for both ! �6��0 � 0
and ! �*b 0�� � cases, the total quantization loss compared with the
infinite precision case is no more than 0.1 dB.
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Fig. 7. Infinite precision vs. finite precision simulations for (a)(c)
N=1020 and (b)(d) N=4092, where solid lines correspond to infi-
nite case, dash dot lines for the finite case.

5. CONCLUSION

Various quantization schemes for the received data and extrinsic
information for Log-BP based LDPC codes decoder were investi-
gated and the optimal choice considering the tradeoff between the
hardware complexity and the performance were addressed in this
paper. A novel variable precision quantization scheme for extrin-
sic information was proposed to improve the performance. The
overall finite precision simulations have shown that the quantiza-
tion scheme we have developed for the Log-BP based decoder is
effective in approximating the infinite precision implementation.
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