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ABSTRACT larity at the algorithm/architecture level are increasingly important

for high-throughput and low-power VLS| implementations. Hence

Efficient VLS| implementation of multiple-input multiple-output
(MIMO) detectors plays an important role in the real-life imple-
mentation of MIMO communication systems. However, most high-
performance MIMO detection algorithms developed so far largely
lack the operationglarallelismandregularitythat are essential for
high-throughput and low-power VLSI implementations. In this pa-

this work follows the theme of parallelism/regularity-driven algo-
rithm design. Among various nonlinear suboptimal detectors, two
different types of sequential tree-search have been udepth-
first search[2—4] using sphere decoding or stack algorithms and
breadth-first searclf5, 6] usingM-algorithm [7]. From the VLSI
implementation perspective, as demonstrated in [8], the latter is

per,.following the theme of paralIelism/regularity-driyen algorjthm more favorable because of its higher operational parallelism and
dhesm?]n, Wﬁ_prr]opose hard/lsoft-olllth_)ut MIMdO detlec/tlon _al?jonthfllns better regularity. In this work, inspired by the excellent paral-
that have !gh fpp%ritlona_parg\ Ielsnéan_d reg‘; arstatic data gwlelism/regularity of Viterbi algorithm for breadth-first trellis search,
sFructure wit Ixe etectlor) elay. besl e§t ose prope_rtles €we re-formulate the original tree-search problem as a trellis-search
sirable for VLSI implementations, such algorithms can achieve su- problem, based on which hard-output and soft-output nonlinear

perior detection performance as demonstrated in the simulations. suboptimal MIMO detectors are developed. They include the hard-
output detector proposed in [5] as a special case when the paral-
lelism is minimized. Besides the high parallelism/regularity, these
algorithms can achieve very good detection performance as demon-
The signal detector is a key element in multiple-input multiple- strated in our simulations.

output (MIMO) communication systems. Different detectors fall
into two categories: hard-output detectors and soft-output detec-
tors. Hard-output detectors only provide the hard estimation of the
transmitted bits; soft-output detectors provide a posteriori proba-
bility (APP) information about each bit, which can be used to re-
alize iterative detection in conjunction with an outer channel code
such as low-density parity-check (LDPC) codes or Turbo codes.

In general the maximum-likelihood (ML) hard/soft-output MIMO
detectors based on exhaustive search incurs prohibitive computa-
tional complexities, and therefore development of suboptimal de-
tectors with reduced computational complexity attracted many at-
tentions. One family of suboptimal detectors are linear detectors
including detectors based on principles of minimum mean-square  In this paper, we consider a MIMO system wipatial multi-
error (MMSE) and zero-forcing (ZF). Although they can dramat- plexingsignaling (i.e., the signals transmitted from individual an-
ically reduce the computational complexity, they suffer from sig- tennas are independent of each other). Fig. 1 illustrates a coded
nificant performance degradation. Their performance can be im-MIMO system, where the soft-output MIMO detector and chan-
proved by certain techniques such as soft interference cancellanel decoder work iteratively on the received data to approach the
tion at the cost of increased computational complexity. To achieve channel capacity. For an uncoded MIMO system, a hard-output
a performance much closer to the optimal detection, researchersMIMO detector is used. LelV; and N, represent the number of
have proposed several nonlinear suboptimal hard/soft-output de-transmit and receive antennas, respectively. Assume the transmit-
tectors that are based on the essentially same idea: approximatéed symbol is taken from a/-QAM constellation withM = 29,
the ML exhaustive search by sequential non-exhaustive tree-searclt once, the transmitter maps opé’; x 1 binary vectorx to an
using a set of additive metrics. Different nonlinear suboptimal de- N; x 1 symbol vectors. The transmission of each vectoover
tectors mainly differ on how to perform the sequential search. MIMO channels can be modelled gs= H - s + n, wherey is

In this work, we are interested in the design of nonlinear sub- an N,. x 1 signal vector received by a MIMO detectd is an
optimal hard/soft-output detectors. As pointed out by ITRS (Inter- N,. x N; channel matrix, ana is a noise vector whose entries are
national Technology Roadmap for Semiconductors) [1], with the independent complex Gaussian random variables with zero mean
continuous scaling of CMOS technologyarallelism andregu- and varianceVy /2.

1. INTRODUCTION

2. SYSTEM MODEL AND BACKGROUND
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Fig. 1. Coded MIMO system model.
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Following the principle of maximum likelihood (ML) detec- The breadth-firstM-algorithm has been used in the design of a

tion, the task of the hard-output MIMO detector is to solve hard-output detector [6] and a soft-output detector [5]. We note
] ) that all the soft-output MIMO detectors developed so far cannot
min [y —H-s|%, @) guarantee to find the two terms in the evaluation.¢f;|y) ac-

cording to (3). To solve this problem, a fixed pre-defined value

where contains all theh/ ™t possible transmitted symbol vec- is used as the soft-output when the algorithms fail to find the two
tors. The task of the soft-output MIMO detector is to compute the terms for certain bits. The performance is sensitive to this pre-

log-likelihood value of each bit, which is defined as defined value and itis not trivial to determine the appropriate value.
Plzi = +1ly)
L(zily) = In P(z: = —1ly) La(zi) + Le(ylx), 2 3. PROPOSED MIMO DETECTION ALGORITHMS
whereL 4 represents tha priori L-value provided by the channel ~ This section presents the hard-output and soft-output nonlinear
decoder and. i represents the so-calledtrinsic informatiorthat suboptimal detectors developed under the theme of parallelism-

is computed by the MIMO detector and fed to the channel decoder.@nd regularity-driven algorithm design. Belonging to the family
Through standard simplificatiod,(z;|y) can be approximated as ~ Of breadth-first search algorithms, they have two main advantages

13,4]: compared with prior work: (a) They have higher parallelism and
better regularity, hence are more favorable to VLSI implementa-
L(z]y) ~ max {A(x,y, L)} — max {A(x,y,La)},where tions; (b) The soft-output detector can always find the two terms
@i=+1 @i==1 in the evaluation of.(x;|y) according to (3), hence obviate the
1 2, 1.7 search for an appropriate pre-defined soft-output value as in other
AX,y,La) = ——|ly —H-s|* + =x7 - La, 3 pprop p p
(¥, La) No Iy | 2 4 3 soft-output detectors.

andL 4 denotes the vector whose entries are thevalues. In a
straightforward manner, hard/soft-output MIMO detection can be 3.1. Hard-Output MIMO Detector
realized byexhaustivelyexamining all theM ™ possible symbol
vectors according to (1) or (3), which nevertheless leads to com-
putational complexity prohibitive for practical applications when
N; and/orM is large.

Using standard matrix decompositions such as Cholesky or
QR decomposition, we can obtaH*H = L*L, whereL =
(1;,;) is a lower triangular matrix an¢)* denotes the complex
conjugate transpose. Lét= (H*H) 'H*y, we have

Inspired by the excellent parallelism and regularity of the Viterbi
algorithm that works on depth-invariant trellises, we propose to
fold the original tree structure as shown in Fig. 2(a) to /s
depth trellis structure as shown in Fig. 2(b), based on which the
breadth-first search for hard-output MIMO detection is carried out.
There are three important parameters associated with this trellis:
() u: there areu statesat each depth; (iiy: each state con-
tains v sub-nodes corresponding todistinct QAM points, and
ly —H-s|? = (s — §)*L*L(s — §) we haveu - v = M; (iiil)I ;lxbeachhstati-to-state tLansition channel
. gy — 1 contains at mosp parallel branches, hence each state at most re-
+y (I-HEHH) " H)y. “) ceivesp - u incoming paths. To approximate the ML hard-output
detection according to (5), we sequentially and non-exhaustively
search through the trellis depth-by-depth by extending incoming
paths and keeping certain number of survivor paths with best addi-
Nt tive metrics at each state. The operation at each depth is outlined
2) = min (Z A?) (5) as follows:
x€eN \ 4
=1 1. Path Extension Each state extends all the incoming paths (at
mostp - u) with its v sub-nodes, which leads to totally at most

p-u-v =p- M extended paths. Each path at fhéh depth has
one path metrig_"_| Al

1 irg Nt 2. Path Purge Given a threshold valug, at thek-th depth, each
+§ Z (ijA(a:j)) = ZA?. (6) state purges all its extended paths whose path metrics are worse
j=(i—1)-g+1 i=1 thanTy.

3. Path SearchAccording to the path metrics, each state finds the
bestp extended paths, which are callsdrvivor pathssimilar to

the Viterbi algorithm. If the number of extended paths left after the
path purge is less than we simply make all the extended paths as
survivor paths. Finally, each state copies the survivor paths to all
its u output channels towards next depth.

Since the second term in (4) is independent ahd the matrix
is lower triangular, we can modify (1) ant(x, y, L4) in (3) as

Ny i

min ‘ l;i(s; — 8,

min (3|3 bis(s; —3))
i=1 j=1

and  A(x,y,La)=)_ ( - NL()’ D lii(si —35)
i=1

Hence, we obtaimdditive metricswith the metric incrementa?
andA; that depend only on; for j < 4. This can be leveraged
to design nonlinear suboptimal hard/soft-output detectorssthat
guentially and non-exhaustivelgearch anV;-depth M-ary tree
as illustrated in Fig. 2(a), where each node Wdschild nodes
labelled with1,2, ..., M, respectively, corresponding to thd
possible QAM points. The-th depth of this tree corresponds to  After the N;-th depth, we obtain at mogt u survivor paths, along
thei-th transmit antenna. each path there arg N, bits. We select the one with the best path
The tree can be searched by using either depth-first search almetric as the final survivor and output theV; bits along this final
gorithms or breadth-first search algorithms. Although they have survivor as the hard output. The above trellis search hard-output
similar computational complexities, breadth-first search algorithms detection is similar to the reduced-state trellis search using Viterbi
have better parallelism/regularity than depth-first search algorithmsalgorithm; the difference is that the additive metric in Viterbi algo-
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Fig. 2. (a) Original tree structure and (b)

rithm is only dependent on the current depth but the additive metric
in this context is dependent on the current and all the priori depths
along the path. Meanwhile, the operation within each state is sim-
ilar to theM-algorithm, i.e., we keep the best extended paths as
survivors. The choice ofu, v, p} plays a key role in the trade-off
among detection performance, computational complexity, and de-
tection speed:

(a) Detection performancentuitively, the more survivors (at most

depth 2

depth 3

(b)

the trellis structure for MIMO detection.

paths may all agree on one bit position (i.e., all these paths contain
a +1 (or -1) at the same position). Clearly, to solve this problem,
we need more candidate paths. To this end, we propose to modify
the above hard-output detector as follows to support soft-output
detection:

(a) At the last depth (i.elV;-th depth) of the trellis search, instead
of searching the begtpaths among all the extended paths left by
path purge in each state, we search for the best path among those

p - u) are kept at each depth, the better the detection performancepaths extended by the same sub-node. If, after path purge, there

we can achieve. Moreover, even with the same valye-af, dif-
ferent choices of. and p will also lead to certain difference in
performance (as shown by the simulation results in Section 4).

(b) Computational complexityThe total computational complex-
ity is in the range of2(M*). Within this range, we can reduce the
complexity by reducing the value of- u.

(c) Detection speedAt each depth, the path extension asagrch-
the-bestp-pathsoperations among all the states can be carried
out in fully parallel. Due to its serial essence, the search-the-best-
p-paths operation at each state is the real speed limiter, which ha
a delay proportional t@ - M. Hence, subject to the same u,
larger value ofu (i.e., higher parallelism) can help to reduge
hence improve the detection speedu = 1 when the parallelism

and hence speed is minimized, the detector will reduce to the one

proposed in [6].

The role of threshold valug}, is similar to that of the radius in
sphere decoding. In this work, we simply make&lls equal to

a fixed valueT’, whereT is selected a§L(5'? — §)||? with §(@
denoting the closest symbol vectordoFinally, we note that the
overall data flow is very regular and static with fixed delay, similar
to the Viterbi algorithm, which provides great potential on reduc-
ing the power consumption and improving throughput for VLSI
implementation.

3.2. Soft-Output MIMO Detector

To realize soft-output MIMO detection, we need to find a set of
candidate paths to obtain the two terms in the evaluatidi of|y)
according to (3) for each bit;. Using the above hard-output de-
tection, we obtain at mogt u survivor paths after the last depth. If

is no extended paths that are extended by certain sub-node, then
we recover those purged paths extended by this node and search
the best one among them. In this way, after the last trellis depth,
we will getv survivor paths at each state and totallyv = M
survivor paths, each one ends with one distinct sub-node. For each
bit in the symbol transmitted by th¥-th antenna}\/ /2 survivor

paths will have the decision of +1 and the otfidy2 will have -1.
Hence, we can directly evaluate tii€z;|y) for all the ¢ bits in

the symbol transmitted by th¥;-th antenna.

s(b) We perform the above modified trellis search processven

differently orderedrellises, where the last depth of each trellis cor-
responds to one distinct transmit antenna. We may consider this as
performing the same trellis search 8h re-ordered copies of the
same received data. Meanwhile, we should permute the original
channel matrixH corresponding to thév, different orders. After
applying matrix decomposition, we will haw¥, different lower
triangular matriced..

Moreover, the threshold valug in the trellis search is calculated
asT = —3- L™ —8)||> + 3x” - La. Applying the above
re-ordered modified trellis search, we obtain totalfy- N; candi-
date paths, among which, for each bijt at least\ /2 paths have
the decision of +1 and at leadf/2 paths have the decision of -1.
Therefore, we can always find the two terms in the evaluation of
L(z;|y) for eachz;. We note that such soft-output MIMO detec-
tor has the following two features:

(i) It can guarantee the direct calculation of the soft-oufp(t; |y )

for all the bits, hence obviate the issue of determining an appro-
priate pre-defined fixed soft-output value as in all the previously
proposed nonlinear suboptimal soft-output detectors;

(ii) At the first glance, it has the computational complexity

we simply use those survivor paths as the candidate paths for softfimes higher than the hard-output detector. A closer observation
output detection, we cannot guarantee that we can always obtairsuggests that, if two differently ordered data sequences are iden-

the two terms in the evaluation &f(x;|y) for eachz;, since these

tical at the firstt positions, the computation in the firstdepth
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Fig. 3. Simulation results for (a) 4« 4 16QAM, and (b) 8x 8 16QAM.

trellis search can be shared. This provides a potential to further re-output for all the bits in the received data vector. Besides the
duce the computational complexity. Clearly, different re-ordering high parallelism and regularity, the good detection performance
scheme will lead to different computational complexity reduction, has been demonstrated in the simulations. Future research is di-
meanwhile the detection performance may be also different. Opti- rected to the development of the parallel VLSI architecture design
mum choice of re-ordering scheme for maximized complexity re- and circuit implementation.

duction while realizing good detection performance is still under
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