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ABSTRACT

Efficient VLSI implementation of multiple-input multiple-output
(MIMO) detectors plays an important role in the real-life imple-
mentation of MIMO communication systems. However, most high-
performance MIMO detection algorithms developed so far largely
lack the operationalparallelismandregularity that are essential for
high-throughput and low-power VLSI implementations. In this pa-
per, following the theme of parallelism/regularity-driven algorithm
design, we propose hard/soft-output MIMO detection algorithms
that have high operational parallelism and regular/static data flow
structure with fixed detection delay. Besides those properties de-
sirable for VLSI implementations, such algorithms can achieve su-
perior detection performance as demonstrated in the simulations.

1. INTRODUCTION

The signal detector is a key element in multiple-input multiple-
output (MIMO) communication systems. Different detectors fall
into two categories: hard-output detectors and soft-output detec-
tors. Hard-output detectors only provide the hard estimation of the
transmitted bits; soft-output detectors provide a posteriori proba-
bility (APP) information about each bit, which can be used to re-
alize iterative detection in conjunction with an outer channel code
such as low-density parity-check (LDPC) codes or Turbo codes.

In general the maximum-likelihood (ML) hard/soft-output MIMO
detectors based on exhaustive search incurs prohibitive computa-
tional complexities, and therefore development of suboptimal de-
tectors with reduced computational complexity attracted many at-
tentions. One family of suboptimal detectors are linear detectors
including detectors based on principles of minimum mean-square
error (MMSE) and zero-forcing (ZF). Although they can dramat-
ically reduce the computational complexity, they suffer from sig-
nificant performance degradation. Their performance can be im-
proved by certain techniques such as soft interference cancella-
tion at the cost of increased computational complexity. To achieve
a performance much closer to the optimal detection, researchers
have proposed several nonlinear suboptimal hard/soft-output de-
tectors that are based on the essentially same idea: approximate
the ML exhaustive search by sequential non-exhaustive tree-search
using a set of additive metrics. Different nonlinear suboptimal de-
tectors mainly differ on how to perform the sequential search.

In this work, we are interested in the design of nonlinear sub-
optimal hard/soft-output detectors. As pointed out by ITRS (Inter-
national Technology Roadmap for Semiconductors) [1], with the
continuous scaling of CMOS technology,parallelism and regu-

larity at the algorithm/architecture level are increasingly important
for high-throughput and low-power VLSI implementations. Hence
this work follows the theme of parallelism/regularity-driven algo-
rithm design. Among various nonlinear suboptimal detectors, two
different types of sequential tree-search have been used:depth-
first search[2–4] using sphere decoding or stack algorithms and
breadth-first search[5, 6] usingM-algorithm [7]. From the VLSI
implementation perspective, as demonstrated in [8], the latter is
more favorable because of its higher operational parallelism and
better regularity. In this work, inspired by the excellent paral-
lelism/regularity of Viterbi algorithm for breadth-first trellis search,
we re-formulate the original tree-search problem as a trellis-search
problem, based on which hard-output and soft-output nonlinear
suboptimal MIMO detectors are developed. They include the hard-
output detector proposed in [5] as a special case when the paral-
lelism is minimized. Besides the high parallelism/regularity, these
algorithms can achieve very good detection performance as demon-
strated in our simulations.

2. SYSTEM MODEL AND BACKGROUND
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Fig. 1. Coded MIMO system model.

In this paper, we consider a MIMO system withspatial multi-
plexingsignaling (i.e., the signals transmitted from individual an-
tennas are independent of each other). Fig. 1 illustrates a coded
MIMO system, where the soft-output MIMO detector and chan-
nel decoder work iteratively on the received data to approach the
channel capacity. For an uncoded MIMO system, a hard-output
MIMO detector is used. LetNt andNr represent the number of
transmit and receive antennas, respectively. Assume the transmit-
ted symbol is taken from aM -QAM constellation withM = 2q.
At once, the transmitter maps oneqNt × 1 binary vectorx to an
Nt × 1 symbol vectors. The transmission of each vectors over
MIMO channels can be modelled asy = H · s + n, wherey is
an Nr × 1 signal vector received by a MIMO detector,H is an
Nr ×Nt channel matrix, andn is a noise vector whose entries are
independent complex Gaussian random variables with zero mean
and varianceN0/2.



Following the principle of maximum likelihood (ML) detec-
tion, the task of the hard-output MIMO detector is to solve

min
x∈Ω

‖y −H · s‖2, (1)

whereΩ contains all theMNt possible transmitted symbol vec-
tors. The task of the soft-output MIMO detector is to compute the
log-likelihood value of each bit, which is defined as

L(xi|y) = ln
P (xi = +1|y)

P (xi = −1|y)
= LA(xi) + LE(y|xi), (2)

whereLA represents thea priori L-value provided by the channel
decoder andLE represents the so-calledextrinsic informationthat
is computed by the MIMO detector and fed to the channel decoder.
Through standard simplification,L(xi|y) can be approximated as
[3,4]:

L(xi|y) ≈ max
xi=+1

{Λ(x,y, LA)} − max
xi=−1

{Λ(x,y, LA)}, where

Λ(x,y, LA) = − 1

N0
‖y −H · s‖2 +

1

2
xT · LA, (3)

andLA denotes the vector whose entries are theLA values. In a
straightforward manner, hard/soft-output MIMO detection can be
realized byexhaustivelyexamining all theMNt possible symbol
vectors according to (1) or (3), which nevertheless leads to com-
putational complexity prohibitive for practical applications when
Nt and/orM is large.

Using standard matrix decompositions such as Cholesky or
QR decomposition, we can obtainH∗H = L∗L, whereL =
(li,j) is a lower triangular matrix and(·)∗ denotes the complex
conjugate transpose. Letŝ = (H∗H)−1H∗y, we have

‖y −H · s‖2 = (s− ŝ)∗L∗L(s− ŝ)

+ y∗(I−H(H∗H)−1H∗)y. (4)

Since the second term in (4) is independent ofs and the matrixL
is lower triangular, we can modify (1) andΛ(x,y, LA) in (3) as

min
x∈Ω

“ NtX
i=1

˛̨̨ iX
j=1

li,j(sj − ŝj)
˛̨̨2”
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x∈Ω

“ NtX
i=1

Λh
i

”
(5)

and Λ(x,y, LA) =

NtX
i=1

“
− 1

N0

˛̨̨ iX
j=1

li,j(sj − ŝj)
˛̨̨2

+
1

2

i·qX
j=(i−1)·q+1

(xjLA(xj)
”

=

NtX
i=1

Λs
i . (6)

Hence, we obtainadditive metricswith the metric incrementsΛh
i

andΛs
i that depend only onxj for j ≤ i. This can be leveraged

to design nonlinear suboptimal hard/soft-output detectors thatse-
quentially and non-exhaustivelysearch anNt-depthM -ary tree
as illustrated in Fig. 2(a), where each node hasM child nodes
labelled with1, 2, . . . , M , respectively, corresponding to theM
possible QAM points. Thei-th depth of this tree corresponds to
thei-th transmit antenna.

The tree can be searched by using either depth-first search al-
gorithms or breadth-first search algorithms. Although they have
similar computational complexities, breadth-first search algorithms
have better parallelism/regularity than depth-first search algorithms.

The breadth-firstM-algorithm has been used in the design of a
hard-output detector [6] and a soft-output detector [5]. We note
that all the soft-output MIMO detectors developed so far cannot
guarantee to find the two terms in the evaluation ofL(xi|y) ac-
cording to (3). To solve this problem, a fixed pre-defined value
is used as the soft-output when the algorithms fail to find the two
terms for certain bits. The performance is sensitive to this pre-
defined value and it is not trivial to determine the appropriate value.

3. PROPOSED MIMO DETECTION ALGORITHMS

This section presents the hard-output and soft-output nonlinear
suboptimal detectors developed under the theme of parallelism-
and regularity-driven algorithm design. Belonging to the family
of breadth-first search algorithms, they have two main advantages
compared with prior work: (a) They have higher parallelism and
better regularity, hence are more favorable to VLSI implementa-
tions; (b) The soft-output detector can always find the two terms
in the evaluation ofL(xi|y) according to (3), hence obviate the
search for an appropriate pre-defined soft-output value as in other
soft-output detectors.

3.1. Hard-Output MIMO Detector

Inspired by the excellent parallelism and regularity of the Viterbi
algorithm that works on depth-invariant trellises, we propose to
fold the original tree structure as shown in Fig. 2(a) to anNt-
depth trellis structure as shown in Fig. 2(b), based on which the
breadth-first search for hard-output MIMO detection is carried out.
There are three important parameters associated with this trellis:
(i) u: there areu statesat each depth; (ii)v: each state con-
tains v sub-nodes corresponding tov distinct QAM points, and
we haveu · v = M ; (iii) p: each state-to-state transition channel
contains at mostp parallel branches, hence each state at most re-
ceivesp · u incoming paths. To approximate the ML hard-output
detection according to (5), we sequentially and non-exhaustively
search through the trellis depth-by-depth by extending incoming
paths and keeping certain number of survivor paths with best addi-
tive metrics at each state. The operation at each depth is outlined
as follows:

1. Path Extension: Each state extends all the incoming paths (at
mostp · u) with its v sub-nodes, which leads to totally at most
p · u · v = p · M extended paths. Each path at thek-th depth has
one path metric

Pk
i=1 Λh

i .

2. Path Purge: Given a threshold valueTk at thek-th depth, each
state purges all its extended paths whose path metrics are worse
thanTk.

3. Path Search: According to the path metrics, each state finds the
bestp extended paths, which are calledsurvivor pathssimilar to
the Viterbi algorithm. If the number of extended paths left after the
path purge is less thanp, we simply make all the extended paths as
survivor paths. Finally, each state copies the survivor paths to all
its u output channels towards next depth.

After theNt-th depth, we obtain at mostp ·u survivor paths, along
each path there areq ·Nt bits. We select the one with the best path
metric as the final survivor and output theq ·Nt bits along this final
survivor as the hard output. The above trellis search hard-output
detection is similar to the reduced-state trellis search using Viterbi
algorithm; the difference is that the additive metric in Viterbi algo-
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Fig. 2. (a) Original tree structure and (b) the trellis structure for MIMO detection.

rithm is only dependent on the current depth but the additive metric
in this context is dependent on the current and all the priori depths
along the path. Meanwhile, the operation within each state is sim-
ilar to theM-algorithm, i.e., we keep thep best extended paths as
survivors. The choice of{u, v, p} plays a key role in the trade-off
among detection performance, computational complexity, and de-
tection speed:

(a)Detection performance: Intuitively, the more survivors (at most
p · u) are kept at each depth, the better the detection performance
we can achieve. Moreover, even with the same value ofp · u, dif-
ferent choices ofu and p will also lead to certain difference in
performance (as shown by the simulation results in Section 4).

(b) Computational complexity: The total computational complex-
ity is in the range ofO(M3). Within this range, we can reduce the
complexity by reducing the value ofp · u.

(c) Detection speed: At each depth, the path extension andsearch-
the-best-p-pathsoperations among all theu states can be carried
out in fully parallel. Due to its serial essence, the search-the-best-
p-paths operation at each state is the real speed limiter, which has
a delay proportional top · M . Hence, subject to the samep · u,
larger value ofu (i.e., higher parallelism) can help to reducep,
hence improve the detection speed. Ifu = 1 when the parallelism
and hence speed is minimized, the detector will reduce to the one
proposed in [6].

The role of threshold valueTk is similar to that of the radiusr in
sphere decoding. In this work, we simply make allTk ’s equal to
a fixed valueT , whereT is selected as‖L(ŝ(d) − ŝ)‖2 with ŝ(d)

denoting the closest symbol vector toŝ. Finally, we note that the
overall data flow is very regular and static with fixed delay, similar
to the Viterbi algorithm, which provides great potential on reduc-
ing the power consumption and improving throughput for VLSI
implementation.

3.2. Soft-Output MIMO Detector

To realize soft-output MIMO detection, we need to find a set of
candidate paths to obtain the two terms in the evaluation ofL(xi|y)
according to (3) for each bitxi. Using the above hard-output de-
tection, we obtain at mostp·u survivor paths after the last depth. If
we simply use those survivor paths as the candidate paths for soft-
output detection, we cannot guarantee that we can always obtain
the two terms in the evaluation ofL(xi|y) for eachxi, since these

paths may all agree on one bit position (i.e., all these paths contain
a +1 (or -1) at the same position). Clearly, to solve this problem,
we need more candidate paths. To this end, we propose to modify
the above hard-output detector as follows to support soft-output
detection:

(a) At the last depth (i.e.,Nt-th depth) of the trellis search, instead
of searching the bestp paths among all the extended paths left by
path purge in each state, we search for the best path among those
paths extended by the same sub-node. If, after path purge, there
is no extended paths that are extended by certain sub-node, then
we recover those purged paths extended by this node and search
the best one among them. In this way, after the last trellis depth,
we will get v survivor paths at each state and totallyu · v = M
survivor paths, each one ends with one distinct sub-node. For each
bit in the symbol transmitted by theNt-th antenna,M/2 survivor
paths will have the decision of +1 and the otherM/2 will have -1.
Hence, we can directly evaluate theL(xi|y) for all the q bits in
the symbol transmitted by theNt-th antenna.

(b) We perform the above modified trellis search process onNt

differently orderedtrellises, where the last depth of each trellis cor-
responds to one distinct transmit antenna. We may consider this as
performing the same trellis search onNt re-ordered copies of the
same received data. Meanwhile, we should permute the original
channel matrixH corresponding to theNt different orders. After
applying matrix decomposition, we will haveNt different lower
triangular matricesL.

Moreover, the threshold valueT in the trellis search is calculated
asT = − 1

N0
‖L(ŝ(d) − ŝ)‖2 + 1

2
xT · LA. Applying the above

re-ordered modified trellis search, we obtain totallyM ·Nt candi-
date paths, among which, for each bitxi, at leastM/2 paths have
the decision of +1 and at leastM/2 paths have the decision of -1.
Therefore, we can always find the two terms in the evaluation of
L(xi|y) for eachxi. We note that such soft-output MIMO detec-
tor has the following two features:

(i) It can guarantee the direct calculation of the soft-outputL(xi|y)
for all the bits, hence obviate the issue of determining an appro-
priate pre-defined fixed soft-output value as in all the previously
proposed nonlinear suboptimal soft-output detectors;

(ii) At the first glance, it has the computational complexityNt

times higher than the hard-output detector. A closer observation
suggests that, if two differently ordered data sequences are iden-
tical at the firstt positions, the computation in the firstt depth
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Fig. 3. Simulation results for (a) 4× 4 16QAM, and (b) 8× 8 16QAM.

trellis search can be shared. This provides a potential to further re-
duce the computational complexity. Clearly, different re-ordering
scheme will lead to different computational complexity reduction,
meanwhile the detection performance may be also different. Opti-
mum choice of re-ordering scheme for maximized complexity re-
duction while realizing good detection performance is still under
investigation.

4. SIMULATION RESULTS

In this work, we use the uncoded and coded MIMO orthogonal
frequency division multiplexing (OFDM) system as a test vehicle
to demonstrate the performance of the proposed detection algo-
rithms. For high data rate wireless communication, OFDM can
effectively mitigate the effects of intersymbol interference. We
assume that the OFDM modulation employs 64-point FFT as in
the IEEE 802.11a standard. For coded systems, we use a rate-
1/2 LDPC code with the block size of 9216 bits, and we perform
four iterations over the detection/decoding loop and three itera-
tions within the LDPC decoder. Fig. 3 shows the simulated perfor-
mance forNt = Nr = 4 (i.e.,4 × 4 channel) andNt = Nr = 8
(i.e., 8 × 8 channel). LetR denote the code rate (R = 1 for un-
coded system), the definition of SNR follows the one presented
in [3]:

Eb

N0

˛̨̨
dB

=
Es

N0

˛̨̨
dB

+ 10 log10

Nr

R ·Nt · q
,

whereEs denotes the average symbol energy of theM -QAM con-
stellation.

5. CONCLUSIONS

This paper presents nonlinear suboptimal hard/soft-output MIMO
detection algorithms with high operational parallelism and regu-
larity that are of great importance from VLSI implementation per-
spective. The basic idea is to re-formulate the tree-search problem
for nonlinear MIMO detection to a breath-first trellis-search prob-
lem leading to significant improvement on parallelism and regu-
larity. For soft-output MIMO detection, a re-ordered trellis search
scheme is proposed to guarantee the direct calculation of the soft

output for all the bits in the received data vector. Besides the
high parallelism and regularity, the good detection performance
has been demonstrated in the simulations. Future research is di-
rected to the development of the parallel VLSI architecture design
and circuit implementation.
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