
JOINT CODE-ENCODER-DECODER DESIGN FOR LDPC CODING SYSTEM VLSI
IMPLEMENTATION

Hao Zhong and Tong Zhang

Electrical, Computer and Systems Engineering Department
Rensselaer Polytechnic Institute, USA

ABSTRACT

This paper presents a design approach for low-density parity-check
(LDPC) coding system hardware implementation by jointly con-
ceiving irregular LDPC code construction and VLSI implementa-
tions of encoder and decoder. The key idea is to construct good
irregular LDPC codes subject to two constraints that ensure the ef-
fective LDPC encoder and decoder hardware implementations. We
propose a heuristic algorithm to construct such implementation-
aware irregular LDPC codes that can achieve very good error cor-
rection performance. The encoder and decoder hardware architec-
tures are correspondingly presented.

1. INTRODUCTION

Low-density parity-check (LDPC) codes have received much at-
tention because of their excellent error-correcting performance and
highly parallelizable decoding algorithm. However, the effective
VLSI implementations of the LDPC encoder and decoder remain
a big challenge and a crucial issue in determining how well we can
exploit the attractive merits of LDPC codes in real applications.

It has been well recognized that the conventional code to en-
coder/decoder design strategy (i.e., first construct a code exclu-
sively optimized for error-correcting performance, then implement
the encoder and decoder for that code) is not applicable to LDPC
coding system implementations. Consequently, joint design be-
comes a key in most recent work [1–5]. However, two challenges
still remain largely unsolved: (1) Complexity reduction and effec-
tive VLSI architecture design for LDPC encoder remainlargely
unexplored; (2) Given the desired node degree distribution, no
systematic method has ever been proposed to construct the code
for hardware implementation. The current practice largely relies
on handcraft, e.g., the code template presented in [2].

In this paper, we propose ajoint code-encoder-decoderde-
sign for irregular LDPC codes to tackle the above two challenges.
The key is implementation-aware irregular LDPC code construc-
tion subject to two constraints that ensure effective encoder and
decoder hardware implementation. A heuristic algorithm inspired
by rules of thumb for constructing good LDPC code is proposed
to construct the code. Encoder and decoder hardware architectures
are correspondingly presented. To the best of our knowledge, this
is the first complete solution for LDPC coding system implemen-
tation in the open literature.

2. BACKGROUND

In this section, we summarize some important facts and state of the
art in LDPC code construction and encoder/decoder design, which

directly inspired the joint design solution proposed in this paper.
LDPC Code Construction: To achieve good performance, LDPC
codes should have the following properties: (a)Large code length:
The performance improves as the code length increases, and the
code length cannot be too small (at least 1K); (b)Not too many
small cycles: Too many small cycles in the code bipartite graph
will seriously degrade the error-correcting performance; (c)Irreg-
ular node degree distribution: It has been well demonstrated that
carefully designed LDPC codes with irregular node degree distri-
butions remarkably outperform regular ones.
LDPC Encoder: The straightforward encoding process using the
generator matrix results in prohibitive VLSI implementation com-
plexity. Richardson and Urbanke [6] demonstrated that, if the
parity check matrix is approximate upper triangular, the encoding
complexity can be significantly reduced. However, the encoding
algorithm in [6] suffers from extensive usage of back-substitution
operations that will increase the encoding latency and make ef-
fective hardware implementation problematic. The authors of [4]
showed that all the back-substitution operations can be replaced by
a few matrix-vector multiplications if the approximate upper trian-
gular parity check matrix has the form as shown in Fig. 1, where
I1 andI2 are identity matrices andO is a zero matrix.

g

I1

I2

O

Fig. 1. The encoder-aware parity check matrix structure.

LDPC Decoder: Most recently proposed LDPC decoder design
schemes share the same property: The parity check matrix is a
block structured matrix that can be partitioned into an array of
square block matrices, each one is either a zero matrix or a cyclic
shift of an identity matrix. Such block structured parity check ma-
trix directly leads to effective decoder hardware implementations.

3. PROPOSED JOINT DESIGN APPROACH

Motivated by the above summarized state of the art, we propose
a joint code-encoder-decoder design as a complete solution for
LDPC coding system implementations. In the following, we first
present an implementation-aware code construction approach, then
present the corresponding encoder and decoder design and hard-
ware architectures.

3.1. Implementation-Aware Irregular Code Construction

The basic idea is to build the parity check matrix of irregular LDPC
code subject to two constraints: (1) It has an approximate upper
triangular form as shown in Fig. 1 withg as small as possible; (2)
It is a block structured matrix. These two constraints ensure the
effective encoder and decoder hardware implementations.

The design challenge is how to, under the above two con-
straints, construct good LDPC codes. This can be formulated as:
Given the code construction parameters, i.e., size of parity check
matrix, size of each block matrix, node degree distribution1, and
expected value of g, how to construct a good LDPC code?We
present an approach to tackle this design challenge as follows.

Firstly, we note that, for irregular LDPC codes, the variable
nodes with high degree tend to converge more quickly than those
with low degree. Therefore, with finite number of decoding itera-
tions, not all the small cycles in the code bipartite graph are equally
harmful, i.e., those small cycles passing too many low-degree vari-
able nodes degrade the performance more seriously than the oth-
ers. Thus, it is intuitive that we should prevent small cycles from
passing too many low-degree variable nodes. To this end, we in-
troduce a concept of cycle degree:

Definition 3.1 We define the sum of degrees of all the variable
nodes on a cycle as thecycle degreeof this cycle.

It is intuitively desirable to make the cycle degree as large as
possible for those unavoidable small cycles. Motivated by such in-
tuition, we propose an algorithm, called Heuristic Block Padding
(HBP), to construct LDPC codes subject to above two structural
constraints, i.e., the parity check matrix has the the structure as
shown in Fig. 2. The algorithm is described as follows:

Code construction parameters: The size of each block matrix
is p × p, the size of parity check matrix is(m · p) × (n · p),
and g = γ · p. The row and column weight distributions are
{w(r)

1 , w
(r)
2 , · · · , w

(r)
m } and{w(c)

1 , w
(c)
2 , · · · , w

(c)
n }, wherew

(r)
i

andw
(c)
j represent the weight ofi-th block rows andj-th block

columns, respectively.
Output : (m · p)× (n · p) parity check matrixH with the structure
as shown in Fig. 2 , in which eachp×p block matrixHi,j is either
a zero matrix or a right cyclic shift of an identity matrix.
Procedure:

1. Generate an(m · p) × (n · p) matrix with the structure as
shown in Fig. 2, whereI1 and I2 are identity matrices with
roughly the same size andO is a zero matrix. All the blocks
in the un-shaded region are initially set as NULL blocks.

2. According to the column weight distribution, generate a set
{a1, a2, · · · , an}, in whichaj = w

(c)
j if 1 ≤ j ≤ n−m+

γ, andaj = w
(c)
j − 1 if n − m + γ + 1 ≤ j ≤ n.

3. According to the row weight distribution, generate a set
{b1, b2, · · · , bm}, in whichbi = w

(r)
i −1 if 1 ≤ i ≤ m−γ,

andbi = w
(r)
i if m − γ + 1 ≤ i ≤ m.

4. Initialize the cycle degree constraintd = dinit.
5. For j = 1 to n, replaceaj NULL blocks on thej-th block

column withaj right cyclic shifted identity matrices:
(a) Randomly picki ∈ {1, 2, · · · , m} such thatbi > 0

andHi,j is a NULL block. ReplaceHi,j with a right

1Notice that the node degree distribution is equivalent to parity check
matrix row and column weight distribution. The good distributions can be
obtained using density evolution [7].

cyclic shift of ap × p identity matrix with randomly
generated shift value.

(b) Letf(H) denote the minimum cycle degree in the bi-
partite graph corresponding to the current matrixH.
If f(H) < d or the bipartite graph contains 4-cycles,
reject the replacement and go back to (a). Iff(H) re-
mains less thand after a certain number of iterations,
decreased by one before go back to (a).

(c) bi = bi − 1.
(d) Terminate and restart the procedure ifd < dmin,

wheredmin is the minimum allowable cycle degree.
6. Replace all the remaining NULL blocks with zero matrices

and output the matrixH.

H1,1

Hm,1

I1

Hm,n

p

p

H1,n

I2

O
H1,j

Hm,j

Hi,jHi,1

.

.

.

. . .
. . .

. . .
. . .

. . .
. .

 .
. .

 .
g

g= p(n-m) p.

m p.

.γ

n p.

Fig. 2. The parity check matrixH.

3.2. LDPC Encoder Design

In the following, we present an encoder design by exploiting the
structural property of the code parity check matrix. We first de-
scribe an encoding process, which is similar to that presented in [6]
but does not contain any back-substitution operations. Then we
present the encoder hardware architecture design.

Encoding Process: According to Fig. 2, we can write the parity
check matrix2 as

H =

[
A B T
C D E

]
, (1)

whereA is (m · p − g) × ((n − m) · p), B is (m · p − g) × g,
the upper triangular matrixT is (m · p − g) × (m · p − g), C is
g × ((n − m) · p), D is g × g, andE is g × (m · p − g). Let
[z1, z2, z3] be a codeword decomposed according to (1), where
z1 is the information bit vector with the length of(n − m) · p,
redundant parity check bit vectorz2 andz3 have the length ofg
andm · p − g, respectively. Because of the structural property of
the binary upper triangular matrixT, we can proveT=T−1. Fig. 3
shows the encoding flow diagram, whereΦ = −ETB + D.

In the encoding process, except the step of multiply byΦ−1,
all the other steps perform multiplication between asparsematrix
and a vector. Although the complexity of multiply byΦ−1 scales
with g2, the value ofg can be very small compared to the matrix
size. Thus the overall computational complexity of the encoding
is much less than that of the encoding based on generator matrix.

2We assume that the parity check matrix is full rank, i.e., them · p
rows are linearly independent. In our computer simulation, all the matrices
constructed using the above HBP algorithm are full rank.

z1
T

multiply by A

multiply by T

1−Φmultiply by

multiply by E

multiply by T multiply by C

addition

addition
multiply by B

pipeline

 z3 = T [Az1
T + Bz2

T]

(XOR)

(XOR)

z2 =
1−Φ [ET Az1

T+ Cz1
T]

Fig. 3. Flow diagram of encoding process.

Encoder Architecture: The above encoding process mainly con-
sists of six large sparse matrix-vector multiplications and one small
dense matrix-vector multiplication. Directly mapping these large
sparse matrix-vector multiplications to silicon can achieve very
high speed but will suffer from significant logic gate and inter-
connection complexities.

Leveraging the structural property of the parity check matrix,
we propose an approach to trade the speed for complexity reduc-
tion in the implementation of such large sparse matrix-vector mul-
tiplications. Since each large sparse matrix is block structured, the
matrix-vector multiplications can be written as:

U1,1 U1,2 . . . U1,s

U2,1 U2,2 . . . U1,s

...
... . . .

...
Ut,1 Ut,2 . . . Ut,s

x1

x2

...
xs

 =

y1

y2

...
yt

 , (2)

where eachp × p block matrixUi,j is either a zero matrix or a
right cyclic shift of an identity matrix, and eachxj andyi are
p × 1 vectors. Let the column and row weight distributions of
matrix U be{q1, q2, · · · , qs} and{r1, r2, · · · , rt}, whereqj and
ri represent the weights ofj-th block columns andi-th block rows.

To trade the speed for complexity reduction, we propose to
perform such large sparse matrix-vector multiplication in ainter-
vector-parallel/intra-vector-serialfashion: compute all thet vec-
tors y1,y2, · · · ,yt in parallel, but only 1 bit of each vector is
computed at once. Define a setP = {(i, j)|∀ Ui,j is non-zero.}.
Since each non-zeroUi,j is a right cyclic shift of an identity ma-
trix, we haveyi =

∑
(i,j)∈P xj [↑ di,j], wheredi,j is the right

cyclic shift value ofUi,j andxj [↑ di,j] represents cyclic shifting
up the vectorxj by di,j positions. To reduce the implementation
complexity, we compute each vectoryi bit by bit via sharing the
same computational resource, i.e., anri-input XOR tree.

Fig. 4 shows a hardware architecture to implement the sparse
matrix-vector multiplication in such inter-vector-parallel/intra-vector-
serial fashion. Each input vectorxj and output vectoryi are stored
in memory Xj and Yi, respectively. The entire matrix-vector mul-
tiplication is completed inp clock cycles, each clock cycle it com-
putest bits at the same position in thet vectorsy1,y2, · · · ,yt.

Y1

Yt

address
generators

input memory
banks

hardwired
interconnections

XOR
trees

output memory
banks

. .
 .

AG1,1

...

AG1,s

... ...
...

1

q1

(p bits)

(p bits)

1

qs

(p bits)

(p bits)

1

...

XOR

1 bit

1

r1

...

XOR

1 bit

log2 p bits

log2 p bits

log2 p bits

1 bit

1 bit
1 bit

1 bit

1 bit

1 bit

1 bit
1 bit

log2 p bits

. .
 . . .
 .

. .
 .

rt

AGq ,11

AGq ,ss

...
...

X1

Xs

Fig. 4. Hardware design for sparse matrix-vector multiplication.

This demands that the memory banks Xj ’s should provide|P| bits
at the same position in the|P| vectors{xj [↑ di,j]|∀(i, j) ∈ P}.
To fulfill this requirement, each Xj providesqj 1-bit outputs with
addresses generated byqj address generators AG1,j , · · · , AGqj ,j .
Each address generator AGk,j is simply a binary counter which is
initialized with a distinct value in{di,j |∀(i, j) ∈ P}.

As illustrated in Fig.3, the encoding is realized with 6-stage
pipelining and the encoder contains six inter-vector-parallel/intra-
vector-serial sparse matrix-vector multiplication blocks and one
dense matrix-vector multiplication block that is directly mapped
to silicon after logic minimization. To support the pipelining, we
should double the size of input memory banks in each sparse matrix-
vector multiplication block, i.e., two sets of input memory banks
alternatively receive the output from the previous stage and pro-
vide the data for current computation.

To estimate the encoder logic gate complexity in terms of the
number of 2-input NAND gates, we count each 2-input XOR gate
as three 2-input NAND gates and eachl-bit binary counter as8l
2-input NAND gates. Assume the number of non-zero block ma-
trices in sub-matrixT is 2m and the small dense matrix-vector
multiplication can be realized usingg2/6 2-input XOR gates. Let
fE denote the clock frequency of the encoder. We estimate the key
metrics of this 6-stage pipelined encoder as follows:

User Data Rate Memory (bits) # of Gates
(n − m) · fE (2n + m) · p + 3g 3 · |P| + g2/2 +

8 · dlog2 pe · |P|

3.3. LDPC Decoder Design

The LDPC code constructed above, whose parity check matrix has
the structure as shown in Fig. 2, directly fits to a decoder architec-
ture as illustrated in Fig. 5. It containsm check node computa-
tion units (CNUs) andn variable node computation units (VNUs),
which perform all the node computation in time-division multi-
plexing fashion. The decoder usesn memory blocks to store the
n ·p channel input message and|P| memory blocks to store all the
decoding message, recall that|P| is the total number of non-zero
block matrices.

|P| + n Memory Blocks

VNUn

CNUmCNUiCNU1

VNUi
VNU1

.

.

Fig. 5. Decoder architecture.

The message passing between variable and check nodes is
jointly realized by memory addressing and hardwired interconnec-
tion between memory blocks and node computation units. Since
each non-zero block matrix is a right cyclic shift of an identity ma-
trix, the access address for each memory block can be simply gen-
erated by a binary counter. We note that this design strategy shares
the same basic idea with the state of the art decoder design [1–3].

Given each decoding message quantized toq bits, we estimate
that each CNU and VNU require320 · q and250 ·q gates (in terms
of 2-input NAND gate), respectively. LetfD denote the clock
frequency of the decoder and the average number of iterations is
Davg. We estimate the key metrics of the decoder as:

User Data Rate Memory (bits) # of Gates
(n−m)·fD

2Davg
(n + |P|) · p · q (320m + 250n) · q

4. AN EXAMPLE

Applying our proposed HBP algorithm, we constructed a rate-1/2,
8K irregular LDPC code. The column weights are 2, 3, 4, and 5,
and the row weights are 6 and 7. Letm = 64, n = 128, p = 64,
andγ = 3. We have each block matrix is64× 64 andg = γ · p =
192. When constructing the code using HBP algorithm, we set the
minimum allowable cycle degreedmin = 8. We simulate the code
error-correcting performance by assuming the code is modulated
by BPSK and transmitted over AWGN channel.

1 1.1 1.2 1.3 1.4
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

(a)

B
E

R
(F

E
R

)

E
b
/N

0
(dB)

−BER
−FER

1 1.1 1.2 1.3 1.4
15

20

25

30

35

40

45
(b)

A
ve

ra
ge

 N
um

be
r

of
 It

er
at

io
ns

E
b
/N

0
(dB)

Fig. 6. Simulation results.

Fig. 6 shows the simulated bit error rate (BER), frame error
rate (FER) and the average number of iterations. We note that
such error-correcting performance is better or comparable to the
published results in the open literature.

The parity check matrix of the constructed rate-1/2, 8K code
contains 404 non-zero block matrices. Denote the clock frequen-
cies of encoder and decoder asfE andfD, respectively. Suppose
each decoding message is quantized to 4 bits and the average num-
ber of iterations is 20. Based on the key metrics estimation of the
encoder and decoder listed in Sections 3.2 and 3.3, we have the
following estimated key metrics of the coding system implemen-
tations for this rate-1/2, 8K code:

LDPC User Data Rate Memory (bits) # of Gates
Encoder 64·fE 21K 38K
Decoder 1.6·fD 133K 205K

5. CONCLUSION

In this paper, we presented a joint code-encoder-decoder design
approach for practical LDPC coding system hardware implemen-
tations. The basic idea is implementation-aware LDPC code de-
sign, which constructs irregular LDPC code subject to to two con-
straints that ensure the effective LDPC encoder and decoder hard-
ware implementations. A heuristic algorithm has been developed
to perform the code construction aiming to optimize the error cor-
rection performance. The efficient encoding process was described
and a pipelined encoder hardware architecture was developed. The
decoder hardware architecture is also presented. This proposed ap-
proach for the first time provides a complete systematic solution
for LDPC coding system hardware implementation.

6. REFERENCES

[1] M. M. Mansour, M. M. Mansour, and N. R. Shanbhag,
“A novel design methodology for high-performance pro-
grammable decoder cores for AA-LDPC codes,” inIEEE
Workshop on Signal Processing Systems (SiPS), Seoul, Korea,
August 2003.

[2] D. E. Hocevar, “LDPC code construction with flexible hard-
ware implementation,” inIEEE International Conference on
Communications, 2003, pp. 2708 –2712.

[3] Y. Chen and D. Hocevar, “An FPGA and ASIC implemen-
tation of rate 1/2 8088-b irregular low density parity check
decoder,” inProc. of Globecom, 2003.

[4] T. Zhang and K. K. Parhi, “Joint (3, k)-regular LDPC code
and decoder/encoder design,”to appear IEEE Transactions
on Signal Processing, 2003.

[5] E. Yeo, B. Nikolic, and V. Anantharam, “Architectures and
implementation of low-density parity-check decoding algo-
rithms,” in 45th IEEE Midwest Symposium on Circuits and
Systems, August 2002, pp. 437–440.

[6] T. Richardson and R. Urbanke, “Efficient encoding of low-
density parity-check codes,”IEEE Transactions on Informa-
tion Theory, vol. 47, no. 2, pp. 638–656, Feb. 2001.

[7] T. Richardson, A. Shokrollahi, and R. Urbanke, “Design of
capacity-approaching low-density parity-check codes,”IEEE
Transactions on Information Theory, vol. 47, no. 2, pp. 619–
637, Feb. 2001.

