
A HIGH THROUGHPUT LIMITED SEARCH TRELLIS DECODER FOR
CONVOLUTIONAL CODE DECODING

Tong Zhang

Electrical, Computer and Systems Engineering Department
Rensselaer Polytechnic Institute

Troy, New York, USA
tzhang@ecse.rpi.edu

ABSTRACT

Due to the lack of operational parallelism and structured data stor-
age/retrieval, limited search trellis decoding algorithms have been
traditionally ruled out for applications demanding high throughput
convolutional code decoding. Among various limited search algo-
rithms, theT-algorithm performs breadth-first limited search and
has good potential for parallel decoding. In this paper, we pro-
pose two techniques at the algorithm and VLSI architecture lev-
els for theT -algorithm to improve the decoding parallelism and
tackle the data storage/retrieval problem, which enables the high
throughput path-parallelT-algorithm decoder VLSI implementa-
tion. This work provides a vehicle for exploiting the merits of the
T-algorithm, i.e., low computational complexity that is adaptive to
the channel distortion, in high throughput applications.

1. INTRODUCTION

Convolutional code with Viterbi decoding is widely used in digital
communication systems. Viterbi algorithm (VA) performs breadth-
first exhaustive search on the code trellis to achieve the maximum
likelihood (ML) decoding at the cost of a computational complex-
ity increasing exponentially with the memory order of the con-
volutional code encoder. In contrast, limited search decoding al-
gorithms [1] perform non-exhaustive search on the code trellis
to achieve or approximate the ML decoding. The computational
complexity of limited search algorithms is generally much less
than that of VA. Moreover, many limited search decoding algo-
rithms exhibit inherent adaptation of the computational effort to
the channel distortion. Thiseffort-self-adaptationtogether with
the low computational complexity show great promise to realize
low complexity, low power convolutional code decoders.

However, the real-world application of limited search decod-
ing algorithms lags far behind of that of VA. This is mainly due to
the fact that most limited search decoding algorithms, in their cur-
rent formulations, lack the operational parallelism and structured
data storage/retrieval, which makes their high throughput parallel
VLSI decoder implementations problematic. As breadth-first lim-
ited search algorithms,M-algorithm [2] andT-algorithm [3] have
great potential for high throughput path-parallel decoding. Nev-
ertheless, all the previous work only targeted on thepath-serial
hardware decoder design of these two algorithms. Bengough and
Simons [4] and Simons [5,6] developed several sorting-based and
nonsorting-based path-serialM-/T- algorithm decoders. Chan et
al. [7] developed a path-serial modifiedT-algorithm decoder that

is similar to the state-serial Viterbi decoder. We note that the draw-
back of unstructured data storage/retrieval inM-/T- algorithms is
concealedby the path-serial decoding process and thus is not a
critical issue in path-serial decoders. The power efficiency ofT-
algorithm over VA has been demonstrated by computer simula-
tions [8].

Distinguished from previous work, in this paper, we present a
high throughputpath-parallel T-algorithm decoder design. We
first propose a speculation technique to modify the originalT-
algorithm, leading to a SPEC-T algorithm, to speed up the par-
allel decoding. The modifiedT-algorithm in [7] can be considered
as a special case of SPEC-T algorithm when the speedup is min-
imized. In sharp contrast to the path-serial decoder design, the
unstructured data storage/retrieval becomes a big challenge in the
path-parallel decoder design. To tackle this problem, we develop
a data re-distribution scheme based on token bus to support paral-
lel data storage/retrieval. Compared with astate-parallel Viterbi
decoder, to achieve comparable error-correcting performance, this
path-parallel SPEC-T decoder can achieve only few times slower
throughput while consuming much (even an order of magnitude)
less energy consumption and silicon area.

2. BACKGROUND

Broadly speaking, breadth-first decoding algorithms extend all the
survivor paths at each trellis depth at once, purge some paths ac-
cording to certain criterion, and then continue on to the next trel-
lis depth. Various breadth-first algorithms primarily differ on the
purging rules. Readers are referred to [1,2] for detailed analysis of
different breadth-first algorithms.

In T-algorithm, at each decoding depth, all the paths whose
cumulative path metric falls outside of aretention bandwill be
purged. Its operations at each depth are as follows:

1. Branch Metric Computation & Path Extension: Given in-
put dataun at depthn, compute the branch metrics and
extend the survivor paths from the previous depth to obtain
the contender paths.

2. Best Metric Search: Find the contender path having the best
(largest) path metric, denoted asΓ

(n)
B , and release its oldest

path symbol as the output symbol.

3. Path Purge: (a) Purge the contender path whose metric
Γ (n) satisfiesΓ (n)

B − Γ (n) > T , whereT is a pre-specified



Input un

Best Metric

Speculation

Search
Best Metric 

(Low parallelism)

Branch Metric

Computation (High parallelism)

Path Extension
Search

Best Metric 

(Low parallelism)

Path Purge

(High parallelism)
Delay

Input un

Path Purge

(High parallelism)

(High parallelism)

Path ExtensionBranch Metric

Computation

Delay

Decoding Module

Correction ModuleOutput symbol

Output symbols

(a) The original T−algorithm (b) The high throughput SPEC−T algorithm

n mod v = 0

Fig. 1. The structure of originalT-algorithm and SPEC-T algorithm.

threshold, and (b) purge all the contender paths that do not
agree with the output symbol.

T-algorithm can achieve near-ML decoding performance with the
average number of survivors much less than the number of trellis
states. However, it is a challenge to implement a high throughput
path-parallelT-algorithm VLSI decoder mainly due to the follow-
ing issues:

Algorithm-inherent path-parallel decoding throughput bottle-
neck: As remarked in Fig. 1 (a), although we can perform the
Path Extensionand Path Purgein parallel among all the paths
with a delay of only few additions and subtractions, theBest Met-
ric Searchincurs a relatively large delay due to theserial essence
of the search operation, which prevents the path-parallel decoder
from achieving high throughput.

Unstructured data storage/retrieval: To enable path-parallel de-
coding, the decoder should be able to read and update all the sur-
vivor path data in parallel. However, the set of survivor paths
varies from each decoding depth to the next. This makes the par-
allel path data access patterndynamicandunstructured, whereas
VLSI implementations always favor static and structured paral-
lel data access patterns such as that of state-parallel VA decoder.
The unstructured parallel data storage/retrieval may significantly
degrade the throughput and power consumption performance of
path-parallel decoder.

3. PROPOSED SPEC-T ALGORITHM

In this section, we present a modifiedT-algorithm, called SPEC-T
algorithm, in which the search-the-best-metric throughput bottle-
neck is eliminated. The basic idea isbest metric speculation with
lagged correction: instead of searching the exact best metric at
each depth, wespeculatethe best metric based on the current input
and perform anoff-the-main-recursionsearch to correct the spec-
ulation error with a certain delay. Fig. 1 (b) shows the data-flow
diagram of the SPEC-T algorithm, which contains two recursive
data-paths performed by two modules, respectively:

Decoding Moduleperforms the branch metric calculation, path
extension, and path purge byspeculatingthe best metric. Given a

fixed integerv as one decoder parameter, at depthn, it speculates
the best metriĉΓ (n)

B as follows:

• If n mod v 6= 0, thenΓ̂
(n)
B = Γ̂

(n−1)
B + BM

(n)
B , where

BM
(n)
B is the best branch metric given the input dataun.

Notice that we may directly obtainBM
(n)
B from the branch

that matches the hard decision of inputun.

• If n mod v = 0, thenΓ̂
(n)
B = Γ̂

(n−1)
B + BM

(n)
B − E,

whereE is provided by the Correction Module to compen-
sate for the accumulated speculation error.

Whenn mod v = 0, the Decoding Module passes{Γ̂ (n)
B −Γ

(n)
i }

and thev oldest path symbols of all the contender paths to the Cor-
rection Module.

Correction Moduleperforms asearch-the-best-metricoperation to
adjust the speculated best metric. It searches forE = min{Γ̂ (n)

B −
Γ

(n)
i } and releases thev symbols associated with the best path as

the decoding output. Whenn mod v = 0, it sendsE to the De-
coding Module and receives a new set of{Γ̂ (n)

B − Γ
(n)
i } and path

symbols from the Decoding Module.

It is clear that the Decoding Module can operate on all the
paths in fully parallel without any serial search operation, and
hence can realize high throughput path-parallel decoding. In or-
der to compenstate the unmatched delay of these two modules,
Correction Module runsv times slower than Decoding Module.
The value ofv is determined by the specific implementations. We
note that, whenv = 1, SPEC-T algorithm reduces to the modified
T-algorithm proposed in [7].

The laggedcorrection of the speculation error inevitably re-
sults in certain performance degradation, particularly whenv is
large. The question is whether such degradation is tolerable for
the specific applications. As we will show later in one example,
the performance degradation is very small.

4. PATH-PARALLEL SPEC- T DECODER DESIGN

Fig. 2 shows the proposed path-parallel SPEC-T decoder struc-
ture, which uses a data re-distribution scheme based on atoken
busto tackle the unstructured data storage/retrieval problem. Let



M denote the maximum number of survivors kept at each decod-
ing depth, which is typically much less than the number of trellis
states. This decoder containsM processing element PEs. Each
PEi extends one survivor path and performs the path purge, where
the corresponding survivor path data is stored in register array PDi.
To enable path-parallel decoding, each PDi should contain at most
one survivor path at the beginning of each decoding depth. How-
ever, at the end of each decoding depth, some PDs may contain
more than one survivor path and some others may not contain any
survivor paths. This demandsre-distributepath data among PDs at
the end of each decoding depth to make each PDi contain at most
one survivor path.

1PE

PE2

PEM

Module

Correction

Output symbols

PD1

PD2

PDM

Best Metric
Speculation RT

BT

Survivor Path Data Bus

Fig. 2. The path-parallel decoder structure.

We develop a scheme using the concept of token bus, as il-
lustrated in Fig. 2, to effectively realize such data re-distribution.
Notice that after the path purge, based on their contents, the PDs
fall into three categories: (1) empty register arrays PDE

i that do not
contain any survivor paths, (2) carefree register arrays PDC

i that
only contain one survivor path, and (3) congested register arrays
PDG

i that contain more than one survivor path. As shown in Fig. 2,
after the path purge, the decoder launches two tokens,broadcast-
ing token BT andreceivingtoken RT, which flow through the PDs.
We have the following operation rules:

1. Carefree register array PDC
i simply bypasses both the BT

and RT;

2. Empty register array PDEi intercepts the RT and bypasses
the BT;

3. Congested register array PDG
i intercepts the BT and by-

passes the RT.

The PDG
i that holds BT broadcasts one survivor path data to

the data bus at once, which is received by the PDC
i that holds

RT. A PDG
i that containsg survivor paths releases the BT after

it has broadcastedg − 1 survivor path data to the bus. The PDE
i

will release the RT once it receives one survivor path data. The
data broadcast-receive operation will terminate whenever one to-
ken, BT or RT, reaches the other end. If RT is the first, the de-
coder knows that the number of survivor paths exceeds the limit
M , which is called decoding overflow, and repeats the current de-
coding depth by reducing the speculated best metricΓ̂

(k)
B by a

pre-specified valueR.
We note that this path-parallel SPEC-T decoder has four desir-

able properties from the VLSI implmenetation perspective:

1. The decoder has a regular structure with low interconnec-
tion complexity.

2. Because the average number of survivors is small as shown
later in one example, it is reasonable to expect that the
power consumption due to the computation and data re-
distribution is low.

3. Because of the simple operations involved in the data re-
distribution, the clock that controls the data re-distribution
can run much faster than the clock that controls the oper-
ation of PEs. Thus the overall delay incurred by the data
re-distribution will not be significant.

4. The decoder can detect the occurrence of overflow by sim-
ply observing the arrival of the BT and RT.

5. SIMULATION RESULTS

Consider the decoding of 1024 information bits per frame, rate-
1/2 convolutional codes modulated by BPSK and transmitted over
an AWGN channel. For bothT-algorithm and SPEC-T algorithm,
we use ODP (Optimum Distance Profile) systematic feed-forward
convolutional encoder, as suggested in [10]. The generatorGs =
(2000000, 7144761) (in octal notation) has the memory ofm =

19. For VA, we use three encoder generators:G
(4)
v = (35, 23)

with m = 4, G
(6)
v = (171, 133) with m = 6, and G

(8)
v =

(753, 561) with m = 8 (used in IS-95 standard).
With the transmission power of each codeword bit normalized

as1, we use the following decoder configurations: for the original
T-algorithm,T = 6; for SPEC-T algorithm,T = 8, v = 4, and
R = 1. Fig. 3 shows the simulated BER vs. SNR and the average
number of survivors at each decoding depth. Notice that the num-
bers of survivors are fixed as24 = 16, 26 = 64, and28 = 256
in Viterbi decoders. We note that, compared withT-algorithm, the
performance degradation of SPEC-T due to the lagged (by 4 depths
in this example) best metric correction of the speculation error is
not significant.

In Table 5, we present the simulation results of two parameters
pertaining to the path-parallel SPEC-T decoder throughput:

1. the average number of overflows in each1024-bit frame,
denoted asDLo, and

2. the average number of the data broadcast-receive operations
to complete the data re-distribution at each decoding depth,
denoted asNCr.

SNR 2 dB 3 dB 4 dB 5 dB 6 dB

M = 64 DLo 50.5 24.0 11.5 5.0 1.8
NCr 6.8 5.4 4.6 4.1 3.7

M = 128 DLo 20.0 7.0 2.0 0.6 0.1
NCr 7.9 5.9 4.8 4.1 3.7

Table 1. Simulation results of two parameters pertaining to the
decoder throughput.

6. CONCLUSIONS

This paper presents two techniques at the algorithm and VLSI
architecture levels for hardware implementation of path-parallel



2 2.5 3 3.5 4 4.5 5 5.5
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

(a)

B
E

R

E
b
/N

0
(dB)

Viterbi
T−alg
SPEC−T alg

2 3 4 5 6
5

10

15

20

25

30

35
(b)

N
um

be
r 

of
 A

ve
ra

ge
 S

ur
vi

vo
rs

E
b
/N

0
(dB)

T−alg
SPEC−T alg

m=4 

m=6 

m=8 

M=128 

M=64 

M=128 

M=64 

Fig. 3. Simulation results of (a) BER vs. SNR, and (b) average number of survivors vs. SNR.

high throughputT-algorithm decoder. A SPEC-T algorithm is pro-
posed to eliminate the algorithm-inherent search-the-best-metric
decoding throughput bottleneck in the originalT-algorithm. We
develop a path-parallel SPEC-T decoder structure, in which a data
re-distribution scheme based on token bus is proposed to tackle
the design challenge due to the unstructured data storage/retrieval.
Such path-parallel high throughput SPEC-T decoder provides an
unique opportunity to exploit the attributes of theT-algorithm,
i.e., low computational complexity that is adaptive to the channel
distortion, to significantly reduce the convolutional code decoder
power consumption and implementation complexity while achiev-
ing very high decoding throughput.

7. REFERENCES

[1] J. B. Anderson, “Limited search trellis decoding of convo-
lutional codes,” IEEE Transactions on Information Theory,
vol. 35, pp. 944–955, Sept. 1989.

[2] J. B. Anderson and S. Mohan, “Sequential coding algo-
rithms: A survey and cost analysis,”IEEE Transactions on
Communications, vol. 32, pp. 169–176, Feb. 1984.

[3] S. J. Simmons, “Breadth-first trellis decoding with adaptive
effort,” IEEE Transactions on Communications, vol. 38, pp.
3–12, Jan. 1990.

[4] P. A. Bengough and S. J. Simmons, “Sorting-based VLSI
architectures for the M-algorithm and T-algorithm trellis de-
coders,”IEEE Transactions on Communications, vol. 43, pp.
514–522, Feb. 1995.

[5] S. J. Simmons, “A nonsorting VLSI structure for implement-
ing the (M, L) algorithm,” IEEE Journal on Selected Areas
in Communications, vol. 6, pp. 538–546, April 1988.

[6] S. J. Simmons, “A bitonic-sorter based VLSI implementa-
tion of the M-algorithm,” inProc. IEEE Pacific Rim Confer-

ence on Communications, Computers and Signal Processing,
June 1989, pp. 337–340.

[7] M.-H. Chan, W.-T Lee, M.-C. Lin, and L.-G. Chen, “IC
design of an adaptive Viterbi decoder,”IEEE Transactions
on Consumer Electronics, vol. 42, pp. 52–62, Feb. 1996.

[8] R. Henning and C. Chakrabarti, “Low-power approach for
decoding convolutional codes with adaptive viterbi algorithm
approximations,” inProceedings of the 2002 International
Low Power Electronics and Design, 2002, pp. 68–71.

[9] G. J. Pottie, “Low latency sequential decoding,” inProc.
IEEE International Symposium on Information Theory, July
1997, p. 499.

[10] H. Osthoff, J. B. Anderson, R. Johannesson, and C.-F. Lin,
“Systematic feed-forward convolutional encoders are better
than other encoders with an M-algorithm decoder,”IEEE
Transactions on Information Theory, vol. 44, pp. 831–838,
March 1998.


