
PROC. OF GLOBECOM’01, SAN ANTONIO, TX, NOV. 2001 1

High-Performance, Low-Complexity Decoding of Generalized Low-Density
Parity-Check Codes

Tong Zhang and Keshab K. Parhi
Department of Electrical and Computer Engineering

University of Minnesota, Minneapolis, MN 55455, USA

Abstract—A class of pseudo-random compound error-correcting codes,
called Generalized Low-Density (GLD) Parity-Check codes, has been pro-
posed recently. As a generalization of Gallager’s Low-Density Parity-
Check (LDPC) codes, GLD codes are also asymptotically good in the sense
of minimum distance criterion and can be effectively decoded based on iter-
ative soft-input soft-output (SISO) decoding of individual constituent codes.
The code performance and decoding complexity of GLD code are heav-
ily dependent on the employed SISO decoding algorithm. In this paper,
we show that Max-Log-MAP is an attractive SISO decoding algorithm for
GLD coding scheme, considering the trade-off between performance and
complexity in the practical implementations. A normalized Max-Log-MAP
is presented to improve the GLD code performance significantly compared
with using conventional Max-Log-MAP. Moreover, we propose two tech-
niques, decoding task scheduling and reduced search Max-Log-MAP, to
effectively reduce the decoding complexity without any performance degra-
dation.

I. INTRODUCTION

Low-Density Parity-Check (LDPC) codes, first introduced
by Gallager [1], have recently received a lot of attention be-
cause of their excellent performance and many new develop-
ments have been brought in this area. As a direct generaliza-
tion of Gallager’s LDPC codes, GLD codes were introduced
by Lentmaier [2] and Boutros [3], independently. GLD codes
are constructed by replacing each single parity check in Gal-
lager’s LDPC codes with the parity check matrix of a small
linear block code called the constituent code. It has been
shown that GLD codes are asymptotically good in the sense
of minimum distance and exhibit an excellent performance
over both AWGN and Rayleigh channels [2][3][4]. Moreover,
Pothier [4] demonstrates that GLD codes also can be consid-
ered as a generalization of product codes, and because of their
higher flexibility on the selection of code length, GLD codes
turn out to be a promising alternative to product codes in many
applications.

GLD codes can be effectively decoded based on iterative
SISO decoding of individual constituent codes, where the
code performance and decoding complexity are heavily de-
pendent on the employed SISO decoding algorithm. Exploit-
ing the fact that the constituent code usually has a small code
length and high code rate, the trellis-based MAP (maximum
a posteriori probability) algorithm [5], also referred as BCJR,
or its low-complexity modification, Max-Log-MAP algorithm

This research was supported by the Army Research Office by grant number DA/DAAD19-
01-1-0705.

[6], can be used to obtain high error-correcting performance
with reasonable decoding complexity.

In this paper, by introducing several techniques to improve
performance and reduce decoding complexity, we show that
Max-Log-MAP is an attractive SISO decoding algorithm for
GLD coding scheme. The paper is organized as follows: In
section II, short reviews of GLD code and Max-Log-MAP al-
gorithm are given and an earlier stopping criterion for GLD
decoding is presented. By introducing a scaling factor, in sec-
tion III, we present a normalized Max-Log-MAP algorithm
to improve the GLD code performance. In section IV, we
propose two techniques, task scheduling and reduced search
Max-Log-MAP algorithm, to reduce the decoding complexity
without any performance degradation. The conclusions are
drawn in section V.

II. BACKGROUND

A. GLD Codes

In the following, according to [4], we briefly describe
the construction of GLD codes and their iterative decoding
scheme. As a generalization of LDPC codes, GLD codes are
also defined by a sparse parity check matrix

�
, constructed by

replacing each row in LDPC parity check matrix with (�����)
rows including one copy of the parity check matrix

���
of con-

stituent code � �
	 ������ , a � -dimensional linear code of length
� . The structure of the GLD parity check matrix

�
is de-

picted in Fig. 1. We divide
�

into � submatrices,
�������������

,
each containing a single column of constituent parity check
matrix

���
in each column.

���
is a block diagonal matrix

and produces the direct sum of ����� constituent codes, where
� is the GLD code length. All other submatrices are con-
structed as:

����� � ��! � 	 � � � for " �$#%�&��� � , where
� �'! �

represents a random column permutation. A
	 �(�)���*�+� GLD

code � can be considered as the intersection of � super-codes
� � � ���'� ��� � , whose parity check matrices are the � submatri-
ces,
��� � �'��� � ��� , respectively.

GLD codes can be effectively decoded using the following
iterative decoding scheme: For each bit, we compute its prob-
ability given its received sample considering that it belongs
to the super-code � � . We use ���,� SISO decoders working
in parallel on the ����� independent constituent codes of � � .
This step generates for each coded bit an a posteriori prob-
ability (APP) and an extrinsic probability. The latter one, as
an a priori information, is fed to the SISO decoders working

PROC. OF GLOBECOM’01, SAN ANTONIO, TX, NOV. 2001 2

(H)
N

1

0

0

0H =

1

H =
J

H =
1

π 1
H

1

(H)

H =

n

n-k

2
H =

π J-1

Fig. 1. Structure of GLD parity check matrix H

on the ����� constituent codes of super-code ��� . This pro-
cess is iterated on each super-code: � ��� ��� � �&�����
� ��� � ��� �'��� , until the preset maximum iteration number
is reached.

It has been shown that binary GLD codes with only � � #
levels is asymptotically good. Furthermore, GLD codes with

#
levels have the highest code rate and simple decoder structure.
Thus, in this work, we only consider the decoding of (�(� # �*�)
binary GLD codes.

B. Max-Log-MAP Decoding of Linear Binary Block Codes

Consider a binary (� ��) linear block code � with a minimal
bit-level trellis � [7]. Each path through the trellis � repre-
sents one distinct codeword in � . Let 	 � 	�
 � �
 � �������
�� �
be a codeword in � . Assume 	 be modulated by BPSK
and transmitted over AWGN channel with noise spectrum
density � � . Denote the received noisy sequence as � �	�� � � � � �������� ��� � .

Let ��� denote a state in trellis � at time- � and ��� 	 � � de-
note the set of all branches

	 � � ! � ��� � � that connect the states
at time-

	 � ����� and time- � in � . Let � �� 	 � � and � �� 	 � � de-
note the two disjoint subsets of � � 	 � � that correspond to the
output code bits

 � ���
and

 � � � , respectively. The MAP
rule provides us the log-likelihood ratio (LLR) associated with
each bit

 � :��� 	�
 � � � �! � � �#" � 	�
 � �$ %'& ()+*-,/.1032�4 "
57638 9 .;:=<?> :@4BA@CED2 .1FG4@H � ! � 	 �GI � ��J � 	 � �9 .;:=<?> :@4BA@CGK2 .1FG4@H � ! � 	 � I � ��J � 	 � �$ %'& ()ML�.10 2 4

(1)

where the channel probability
� �ONQP�RS K (T denotes the

coded bit energy),
� 	�
 � � is the a priori value of

516=8�U .1032�V � 4U .1032�V � 4
and the sum of

�! � � � and
� 	�
 � � , denoted as

�XW7� 	�
 � � ,
is called intrinsic information. The third term

�XY 	�
 � � is
called extrinsic information in which forward recursion metricH � 	 � � and backward recursion metric

J � 	 � � are recursively
calculated asH � 	 � � � Z.;:@<�> :[4?A[C�23.7F\4 H � ! � 	 � I � ��] .1^�2=_)+*7,�.;0=2�4`4 �J � ! � 	 � I � � Z.;:@<�> :[4?A[C�23.7F\4 J � 	 � � ��] .;^ 2 _)M*7,a.10 2 4b4 �

where c � � �ed 2 ! �� and f �hgji � ���lk represents the label of the
branch

	 �GI ��� � . In the iterative decoding, only the extrinsic
information

�XY 	�
 � � will be fed to the successive decoder as a
priori value

� 	�
 � � . Let mH � 	 � � � 516=8 	 H � 	 � �*� and mJ � 	 �\I � �516=8 	 J � 	 �GI �*� , and introduce the approximation
516=8]�n "]�o �qprtslu 	�v ��w�� , we easily obtain the Max-Log-MAP realization of

MAP rule as��� 	�
 � � � �XW7� 	�
 � � " rtslu.;:=<?> :@4BA@CED2 .1FG4 	 mH � ! � 	 � I � " mJ � 	 � �*�
� rtslu.;:=<?> :[4BA@C K2 .1FG4 	 mH � ! � 	 � I � " mJ � 	 � �*� (2)

wherexy 2=zb{[|~} �#����7� <?� �������a23�7�/�G� xy 2� D z-{ < |M�t�=2�����*7,/zb�@2�|?��� (3)x� 2�� D z-{ < |�} �#����7� < � �������a23�7�/�G� x� 2 z-{[|+��� 2 ��� *7, z-� 2 |B��� (4)

At the beginning of iterative decoding, we usually assume� 	�
 � � �'� ��� 	�
 � ��� � . Thus, it can be shown from
(2), (3), and (4) that, throughout the entire iterative decoding
process, all the extrinsic information and intrinsic information
will contain the channel probability

�!
as a factor. There-

fore, we can eliminate the multiplication of
�X

without any
performance degradation and intrinsic information

� W-��	�
 � �
becomes

� � " � 	�
 � � , where the
� 	�
 �
� is a scaled a priori

value:
�) R 516=8 U .10 2 V � 4U .1032�V � 4 .

C. An Earlier Stopping Criterion for GLD decoding

For (�(� # �*�) GLD codes, after the decoding of each super-
code (� � or � �), we will obtain the hard decision �� W of each
bit. Because GLD codes have good distance properties (the
minimum distance scales linearly with the block length), it’s
intuitive that we can use the parity check result as an earlier
stopping criterion: if

�$� �� ���
, then the decoder stops and�� is output as the decoding result. Theoretically, using such

stopping criterion will incur some undetected errors. Because
of their good distance properties, the rate of occurrence of un-
detected errors is extremely small. In all our simulations with
GLD code of block length greater than 1000, undetected er-
rors have never occurred when the stopping criterion is being
used. Therefore, if the GLD code length is large enough, we
may believe that such adaptive approach empirically doesn’t
make undetected errors.

Moreover, it has been shown in [6] that Max-Log-MAP
algorithm makes the same hard decisions as the well-known
Viterbi algorithm, in another word, Max-Log-MAP performs
the maximum likelihood (ML) decoding. So if we use Max-
Log-MAP algorithm to decode ����� constituent codes of each
super-code, the hard decision �� obtained after decoding each
super-code (� � or ���) is a valid super-codeword (

��� � �� ���
or
� � � �� � �

). Thus, to check whether �� is a valid GLD

PROC. OF GLOBECOM’01, SAN ANTONIO, TX, NOV. 2001 3

code, we only need to multiply �� with the parity check matrix
of another super-code (

� � or
���

) in stead of the entire parity
check matrix

�
.

We note that in this paper, under the assumption of BPSK
modulation and AWGN channel transformation, the GLD
codes simulations are presented for two different GLD code
configurations, i.e., (a)

	�� ����� � # �� � � GLD code with Ham-
ming
	 � � ���3��� constituent code, the GLD code rate is

� � ����� ,
and (b)

	�� � � �
� # � � �'� GLD code with Hamming
	 � � � # � � con-

stituent code, the GLD code rate is
� � ����� . The earlier stopping

criterion is used in all the simulations and undetected errors
have never occurred.

III. NORMALIZED MAX-LOG-MAP DECODING

When a Max-Log-MAP decoder is fed with Gaussian dis-
tributed input, the output extrinsic information also approxi-
mate Gaussian distribution. Using the similar analysis method
presented in [8], we have: The probability density function of
the Max-Log-MAP output extrinsic information � given input
bits

 ���
can be approximately described as

	 	 ��

 ��� � � �� #,� ��] ! D� � �� . !�� � 4 � (5)

where � and �E� are the mean and variance of � . Let
� 0 �516=8 U .103V ��� 4U .103V � � 4 denote the conditional LLR, given the observa-

tion of Max-Log-MAP output � , and assume
� 	�
 � ��� �� 	�
 ��� � . Using Bayes’ rule, we have� 0 � 516=8 � 	 ��

 � �'�� 	 ��

 ��� � � ��� #� � �/� (6)

The above result indicates that a scaling factor � � ���� �: ��
should be used to normalize the output extrinsic information
of Max-Log-MAP decoder in order to obtain the more accu-
rate a priori value for the next decoding step (unless � � �).
Moreover, as discussed in section II-B, in the practical imple-
mentation of Max-Log-MAP, the multiplication by the chan-
nel probability

�q
is typically eliminated and the extrinsic in-

formation provides a scaled a priori value:
�) R 57638 U . � 0=V � 4U . � 0=V � 4 .

So the scaling factor for extrinsic information in this case
should be � � � ��! �� #� � � (7)

When Max-Log-MAP is used in the iterative decoding of
GLD code, we found that, during the first few iterations, the
extrinsic information is Gaussian distributed in good approx-
imation. But with the continuation of the iterative decoding,
the extrinsic information can’t be approximated as Gaussian
distribution anymore, as shown in Fig. 2.

Therefore, during first several iterations we could calculate
the expected scaling factor using (7) to normalize the extrinsic
information. For practical implementation, we may calculate

−25 −20 −15 −10 −5 0 5 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

p(
v)

v

1st iteration
2nd iteration
3rd iteration
4th iteration

Fig. 2. Probability density function of Max-Log-MAP output at different num-
ber of iterations in (4035,2,15) GLD decoding.

the expected scaling factors based on simulations and then use
them as the preset values in the real decoding. With the con-
tinuation of iteration, although the extrinsic information can’t
be well approximated as Gaussian distribution, we found that
multiplying the extrinsic information with a scaling factor still
improves the performance. However, in such cases, have to
apply the near-exhaustive trials to identify the suitable preset
scaling factors.

Theoretically, the preset scaling factors should include a
series of scaling factors corresponding to different SNR val-
ues, different GLD code configurations and different iteration
numbers, which will make things quite complicated. From
our simulations, we observed that nearly all the expected scal-
ing factors lie between 0.7 and 0.9, and small modification
of these values won’t affect the performance much. Thus,
for the sake of efficient implementation, we propose to use a
fixed scaling factor 0.75 throughout the entire GLD decoding,
which is referred as normalized Max-Log-MAP algorithm in
the following. The performance improvement gained by using
this normalized Max-Log-MAP is shown in Fig. 3. We can see
that, in both cases, the performance difference between Log-
MAP and normalized Max-Log-MAP is always less than 0.1
dB. Compared with conventional Max-Log-MAP, by intro-
ducing a fixed normalization scaling factor, normalized Max-
Log-MAP improves the performance significantly. Moreover,
Fig. 4 depicts the average number of iterations, where maxi-
mum iteration number equals to 5 for both cases.

IV. COMPLEXITY REDUCTION TECHNIQUES

In this section, based on the fact that Max-Log-MAP per-
forms ML decoding and there is an earlier stopping criterion in
GLD decoding, we present two techniques to reduce the GLD
decoding complexity without any performance degradation.
We first introduce the following denotations: The decoding
of each super-code consists of � �,� Max-Log-MAP decoding
tasks, each task is denoted as �] � . W 4 , ������� � �,� . Let �

. W 4W7�
denote the intrinsic information fed to �] � . W 4 and � . W 4W-� denote
the hard decision on �

. W 4W7� . The hard decision on output LLR��� 	�
 � � of each �] � . W 4 is denoted as � . W 4� 0! . If � . W 4W7� is a valid

PROC. OF GLOBECOM’01, SAN ANTONIO, TX, NOV. 2001 4

1 1.5 2 2.5 3 3.5
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

(a) (4035,2,15) GLD code, rate=0.467

B
E

R

E
b
/N

0
(dB)

Iteration #1
Iteration #3
Iteration #5

1 1.5 2 2.5 3 3.5
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

(b) (4061,2,31) GLD code, rate=0.677

B
E

R

E
b
/N

0
(dB)

Iteration #1
Iteration #2
Iteration #5

Fig. 3. Performance comparison. In both cases, solid lines correspond to Log-
MAP, dash dot and dash lines for normalized Max-Log-MAP and conventional
Max-Log-MAP, respectively.

1 1.5 2 2.5 3 3.5
1.5

2

2.5

3

3.5

4

4.5

5
(a) (4035,2,15) GLD code, rate=0.467

A
ve

ra
ge

 n
um

be
r

of
 it

er
at

io
ns

E
b
/N

0
(dB)

Log−MAP
Max−Log−MAP
Normalized Max−Log−MAP

1 1.5 2 2.5 3 3.5
1.5

2

2.5

3

3.5

4

4.5

5
(b) (4061,2,31) GLD code, rate=0.677

A
ve

ra
ge

 n
um

be
r

of
 it

er
at

io
ns

E
b
/N

0
(dB)

Log−MAP
Max−Log−MAP
Normalized Max−Log−MAP

Fig. 4. Average of iteration numbers.

constituent codeword, that is
���%� � . W 4W7� ���

, the decoding task
�] � . W 4 is referred as

�
-type decoding task, otherwise, �] � . W 4

is referred as � -type decoding task.

A. Task Scheduling

The first technique, task scheduling, can effectively elim-
inate all the unnecessary decoding tasks in the final decod-
ing step. The final decoding step means the decoding of
one super-code after which we obtain a valid GLD codeword.
Since each constituent code decoding task �] � . W 4 is either � -
type or

�
-type, we can put all ���,� tasks in the final decoding

step into two disjoint sets � and � which contain all the
�

-
type and � -type tasks, respectively.

From the discussion in section II-C, we know that Max-
Log-MAP makes the hard decision representing a ML path
through the trellis. For each �] � . W 4 g � , its � . W 4W-� is already
a valid constituent codeword and we may easily prove that� . W 4� 0! produced by each �] � . W 4 g � is always identical to � . W 4W7� .
Therefore in the final decoding step, only performing the � -
type decoding tasks is sufficient to obtain the final valid GLD
codeword. With the convergence of GLD decoding, it’s rea-
sonable to expect that the number of � -type decoding tasks
in the final decoding step is very small compared with the to-
tal decoding task number � �,� . Moreover, as shown in Fig.
4, the average number of iterations in GLD decoding is not
large. So if we only perform the � -type decoding tasks in
the final decoding step, the decoding complexity will be re-

duced significantly. However, the crucial problem here is that
before completing each super-code decoding, we never know
whether this step is the final one or not.

To solve the above problem, we can simply be so optimistic
that we expect each super-code decoding will be the final step.
Thus prior to each super-code decoding, we always put � �,�
decoding tasks into � and � which contain all the

�
-type and

� -type tasks, respectively. Let ��� �
 �
 and � U �
 �
 .
First we perform the � � � -type decoding tasks, then, if we
don’t get a valid GLD codeword, perform the remaining � U�

-type decoding tasks. Using such task scheduling technique,
the corresponding flow diagram of each super-code decoding
becomes as shown in Fig. 5(b).

Valid GLD
Codeword?

Valid GLD
Codeword?

No
Stop Decoding

Yes

To next super−code

F

N/n Max−Log−MAP
Decoding

To next super−code

Valid GLD
Codeword? (P−type decoding tasks)

Stop DecodingNo

Yes

(a)

From last super−code

No

Yes

Stop Decoding

From last super−code

(b)

R Max−Log−MAP Decoding
(F−type decoding tasks)

R Max−Log−MAP DecodingP

Fig. 5. One super-code decoding flow diagram (a) original (b)task scheduling.

It’s clear that, except in the final decoding step, both orig-
inal approach (Fig. 5(a)) and task scheduling approach (Fig.
5(b)) perform � �,� decoding tasks. For the latter, we also
need to perform ����� ��� � � . W 4W7� operations to distinguish be-
tween � -type tasks and

�
-type tasks and perform one more

parity check,
� � � �� or

� � � �� , which will incur some extra
implementation complexity and make the control mechanism
more complicated. Since all these extra operations only in-
volve simple logic computations, i.e., XOR and AND, it’s rea-
sonable to expect their complexities are ignorable compared
with each constituent code decoding task. Through our sim-
ulations, the above task scheduling technique turns out to be
a very effective approach to reduce the entire GLD decoding
complexity. Table I shows the average decoding task savings
of task scheduling approach over original approach without
scheduling. Obviously, all the savings are achieved in the fi-
nal decoding steps.

B. Reduced Search Max-Log-MAP

Another technique, called reduced search Max-Log-MAP,
is used to reduce the complexity of

�
-type decoding task. As

shown in (2), Max-Log-MAP produces the extrinsic informa-

PROC. OF GLOBECOM’01, SAN ANTONIO, TX, NOV. 2001 5

TABLE I

THE AVERAGE DECODING TASK SAVINGS FOR (4035,2,15) GLD CODE

AND (4061,2,31) GLD CODE, WHERE NORMALIZED MAX-LOG-MAP IS

USED AND MAXIMUM ITERATION NUMBER IS 5.

SNR 2.0 dB 2.5 dB 3.0 dB 3.5 dB

(4035,2,15) code 12.4% 15.7% 20.0% 23.9%
(4061,2,31) code 3.1% 12.6% 18.7% 24.9%

tion
�!Y 	�
 � � based on two paths per step: the best with bit

zero and the best with the bit one at each time- � , one of these
two paths will always be the ML path [6]. Therefore one
of the two terms for computing

�XY 	�
 � � in (2) will equal to	 mH � ! � 	 �GI�) � " mJ � 	 � �h) �*� , where branch
	 �GI�) ��� �h) � is on

the ML path. If we have known the ML path before comput-
ing the extrinsic information, one term can always be com-
puted using only one addition, thus the computations associ-
ated with computing extrinsic information can be reduced by
nearly ��� # . From (2), (3) and (4), we also know that the com-
plexities of computing mH � , mJ � and

� Y
	�
 �
� are nearly equal.
So we may expect that, if we know the ML path prior to
computing

�!Y 	�
 � � , the entire computation complexity can be
roughly reduced by ��� � . We refer such approach as reduced
search Max-Log-MAP.

In general cases, in order to find out the ML path before
computing

�XY 	�
 � � , we have to complete the two recursions
(for computing all mH and mJ) first, then by tracing back mH ormJ along the trellis � to obtain the ML path (just like in the
Viterbi algorithm), finally calculate extrinsic information

� Y
using the reduced search Max-Log-MAP. Since each

��Y 	�
 � �
at time- � can be calculated as soon as both mH � ! � ’s and mJ � ’s
are available, the above approach actually trades decoding
speed for computation complexity and will lead to longer de-
coding. In the following, we show that we can apply the re-
duced search Max-Log-MAP to

�
-type decoding task without

incurring extra delay.
Let �] � . W 4 be a

�
-type decoding task. As discussed earlier,

we know that � . W 4� 0 will be identical to � . W 4W7� , which means that� . W 4W7� corresponds to the ML path in current Max-Log-MAP de-
coding. Therefore we can simply use � . W 4W7� to identify the ML
path before the execution of

�
-type decoding task. Further-

more, in the
�

-type decoding task, the complexity of comput-
ing recursion metrics also can be slightly reduced: In stead of
using (3) and (4), the computations of mH � 	 � � and mJ � 	 � � of the
states along the ML path can be performed as:mH � 	 � �) � � mH � ! � 	 � I�) � " c � ���!W-� 	�
 � �)�mJ � ! � 	 � I�) � � mJ � 	 � �) � " c � ��� W7� 	�
 � �'�

Based on our simulation results as shown in Table II, the oc-
currence rates of

�
-type decoding task during the entire GLD

decoding process are very high, which indicates that applying
the reduced search Max-Log-MAP to only

�
-type decoding

tasks is an effective approach to reduce the computation com-
plexity without incurring extra delay. We note that, as shown
in Table II, when reduced search Max-Log-MAP is used to-
gether with task scheduling, the savings will be smaller com-
pared with only using reduced search Max-Log-MAP. The
reason is that, when using task scheduling, we don’t count the�

-type decoding tasks in the final decoding step since such
tasks won’t be actually executed in this case.

TABLE II

THE OCCURRENCE RATE OF � -TYPE DECODING TASK IN DECODING OF

(4035,2,15) GLD CODE AND (4061,2,31) GLD CODE, WHERE

NORMALIZED MAX-LOG-MAP IS USED AND MAXIMUM ITERATION

NUMBER IS 5.

SNR 2.0 dB 2.5 dB 3.0 dB 3.5 dB

(4035,2,15) I 47.6% 52.7% 57.2% 61.5%
GLD code II 36.0% 37.0% 37.4% 37.6%
(4061,2,31) I 26.2% 42.0% 49.2% 55.5%
GLD code II 23.7% 29.5% 30.7% 30.6%

1I: without task scheduling; II: with task scheduling

V. CONCLUSIONS

This paper has presented several techniques to improve per-
formance and reduce complexity for practical implementa-
tions of GLD decoder when Max-Log-MAP is used to de-
code constituent codes. A normalized Max-Log-MAP algo-
rithm is proposed to improve the performance of GLD codes
up to less than 0.1 dB inferior to GLD decoding based on Log-
MAP algorithm. Moreover, two effective techniques have
been proposed to effectively reduce the GLD decoding com-
plexity without any performance degradation. With the good
performance and significantly reduced decoding complexity,
Max-Log-MAP turns out to be a very attractive constituent
code decoding algorithm for the practical GLD decoder im-
plementation.

REFERENCES

[1] R. G. Gallager, Low-Density Parity-Check Codes, M.I.T Press, 1963.
[2] M. Lentmaier and K. S. Ziganfirov, “Iterative decoding of generalized low-density

parity-check codes”, in Proceedings of IEEE International Symposium on Information
Theory, p. 149, 1998.

[3] J. Boutros, O. Pothier, and G. Zemor, “Generalized low density (Tanner) codes”, in
Proceedings of ICC’99, pp. 441–445, Vancouver, June 1999.

[4] O. Pothier, “Compound codes based on graphs and their iterative decoding”, Ph.D.
thesis, Ecole Nationale Suprieure des Tlcommunications, Jan. 2000.

[5] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear codes for
minimizing symbol error rate”, IEEE Trans. Inform. Theory, vol. IT-20, pp. 284–287,
March 1974.

[6] P. Robertson, E. Villeburn, and P. Hoeher, “A comparison of optimal and sub-optimal
MAP decoding algorithms operating in the log domain”, in IEEE International Confer-
ence on Communications, ICC’95, vol. 2, pp. 1009–1013, Seattle, 1995.

[7] S. Lin, T. Kasami, T. Fujiwara, and M. Fossorier, Trellises and Trellis-Based Decoding
Algorithms for Linear Block Codes, Kluwer Academic Publishers, 1998.

[8] L. Papke, P. Robertson, and E. Villebrun, “Improved decoding with the SOVA in a
parallel concatenated (turbo-code) scheme”, in IEEE International Conference on Com-
munications, ICC’96, vol. 1, pp. 102–106, 1996.

