
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 21, NO. 4, APRIL 2013 771

Brief Papers

Exploring the Use of Emerging Nonvolatile Memory
Technologies in Future FPGAs

Yangyang Pan, Yiran Li, Hongbin Sun, Wei Xu,
Nanning Zheng, and Tong Zhang

Abstract— As new nonvolatile memory technologies become
increasingly mature, there has been a growing interest on
investigating their use in future field-programmable gate arrays
(FPGAs). Similar to existing FPGAs with embedded Flash mem-
ory, future FPGAs can embed these new nonvolatile memories to
persistently store configuration data. By comparing with prior
work, we first propose the more appropriate design style for
new nonvolatile configuration data storage memory. Moreover,
this brief studies a dynamic random-access memory (DRAM)-
based FPGA design strategy enabled by high-density embedded
nonvolatile memory. Existing FPGAs do not use on-chip DRAM
cells for configuration data storage mainly because DRAM self-
refresh involves destructive DRAM read. This problem can be
solved, if we use embedded nonvolatile memory as primary
FPGA configuration data storage and externally refresh on-chip
DRAM cells. Analysis and simulations have been carried out to
demonstrate the potential advantages of such a design strategy.

Index Terms— Dynamic random-access memory (DRAM),
field-programmable gate arrays (FPGA), magnetoresistive
random-access memory (MRAM), nonvolatile memory.

I. INTRODUCTION

Over the past decade, the semiconductor industry has
experienced a resurgence of interest in the search for highly
scalable memory technologies. Among various new memory
technologies, phase-change random-access memory (PCRAM)
and magnetoresistive random-access memory (MRAM) are the
two most promising candidates and hence have received a lot
of attention [1]. In this brief, we are interested in exploring the
potential of realizing embedded nonvolatile configuration data
storage for future field-programmable gate arrays (FPGAs).
Most FPGAs use distributed on-chip static random-access
meomory (SRAM) cells to store the data for configuring both

Manuscript received January 3, 2011; revised February 15, 2012; accepted
April 12, 2012. Date of publication May 11, 2012; date of current version
March 18, 2013. This work was supported in part by the National Natural
Science Foundation of China, under Grant 61103048, and the National
Science and Technology Major Project of China, under Grant 2010ZX01032-
001-001-5.

Y. Pan, Y. Li, and T. Zhang are with the Department of Electronics, Com-
puters, and System Engineering, Rensselaer Polytechnic Institute, Troy, NY
12180 USA (e-mail: pany2@rpi.edu; liy16@rpi.edu; tzhang@ecse.rpi.edu).

H. Sun and N. Zheng are with the Institute of Artificial Intelligence
and Robotics, Xi’an Jiaotong University, Xi’an 710049, China (e-mail:
sunsir@mail.xjtu.edu.cn; nnzheng@mail.xjtu.edu.cn).

W. Xu is with Marvell Technology, Santa Clara, CA 95050 USA (e-mail:
xuwei@marvell.com).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVLSI.2012.2195786

logic components and interconnects, where configuration data
are persistently stored off-chip and loaded to initialize on-chip
SRAM cells during power-up. Flash memory has been used
to realize nonvolatile FPGAs with two different design
styles: 1) distributed-embedded Flash memory cells can
replace SRAM cells to store configuration data and configure
logic components and interconnect (e.g., FPGA devices from
Actel [2]), which is referred to as fully distributed design
style in this brief and 2) standard SRAM-based FPGAs are
supplemented with one embedded Flash memory block that
stores configuration data and initializes distributed SRAM
cells during power-up (e.g., nonvolatile FPGA devices from
Lattice [3]), which is referred to as fully centralized design
style in this brief. Compared with embedded Flash memory,
both PCRAM and MRAM can achieve higher storage density
and require fewer mask layers [4].

With respect to using the emerging nonvolatile memory in
FPGAs, prior work [5], [6] focused on the fully distributed
design style with the use of MRAM. Since PCRAM and
MRAM realize data storage by modulating the resistance
of each memory cell and full-swing voltage signals are
required in FPGA configurations, we have to convert the
stored configuration data from resistance state to voltage level.
Although this can be easily done in the context of a centralized
memory block, such resistance-to-voltage conversion becomes
nontrivial when the fully distributed style is being used. As a
result, prior work mainly focused on how to address such fully
distributed resistance-to-voltage conversion issue.

In [5], each configuration bit is persistently stored in a
pair of magnetic tunneling junctions (MTJs) that are pro-
grammed differentially, which is used to bias one SRAM
cell that converts the differential resistance into a full-swing
voltage signal. After the conversion during power-up, each
SRAM cell holds the configuration bit and configures the
corresponding logic element or interconnect. Apparently, this
design approach increases the area overhead for configuration
data storage. Aiming at reducing the area overhead, the authors
of [6] proposed to use a pair of differential MTJs to form
a voltage divider that directly converts the configuration bit
from resistance domain to voltage domain. To obtain a full-
swing voltage signal at minimal area overhead, architecture of
FPGA logic elements is modified so that several MTJ-based
voltage dividers can share one SRAM cell. Although such a
fully distributed design style enables true instant-on FPGAs, it
is subject to two major issues, including: 1) due to the increas-
ingly significant device variability and reduced allowable sens-
ing current as these emerging memory technologies are being
scaled down, there may not be sufficient operational margin
to ensure reliable resistance-to-voltage conversion, especially
when MTJs are directly used to build a voltage divider as in [6]
and 2) more importantly, those emerging memory technologies
may suffer from relatively high defect density and/or write

1063-8210/$31.00 © 2012 IEEE

772 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 21, NO. 4, APRIL 2013

failure rate. However, such a fully distributed design style
may not be able to use conventional memory fault tolerance
techniques to handle the defects and write failures.

In this brief, we focus on the use of MRAM, and the
design/evaluation strategy can be readily extended to the case
of PCRAM. First, we use VPR [7] to evaluate the area and
speed performance of FPGAs with fully distributed MRAM
memory cells, which are further compared with conventional
SRAM-based FPGAs. Even if we very optimistically estimate
the MRAM cell size and ignore any possible memory cell
defects, compared with its SRAM-based counterpart, such a
fully distributed design approach can result in an area overhead
of 14.4%, which also leads to noticeable speed performance
degradation. Next, we evaluate the fully centralized design
approach, where a single embedded MRAM block is used
to persistently store the configuration data and initialize the
distributed SRAM cells during power-up. Even assuming the
use of error correction codes for memory defect tolerance,
this design approach only results in an area overhead of
7.9% and can maintain almost the same speed performance as
conventional design practice. Hence, the results suggest that
a fully centralized design style is more favorable, especially
considering the inevitable significant process variability and
nonnegligible defect densities of these emerging memory tech-
nologies. Moreover, we note that recent research [8] demon-
strated that such centralized design style can also effectively
enable run-time dynamic reconfigurability.

Beyond simply replacing embedded Flash memory block
in the centralized design style, we propose a new design to
replace the SRAM cells with dynamic random-access memory
(DRAM) cells to reduce the area and use embedded MRAM
to refresh DRAM cells. We elaborate on the analysis of cost
induced by periodic on-chip DRAM refresh. We further use
the versatile place and route (VPR) tool set to quantitatively
evaluate the involved tradeoffs and potential speed perfor-
mance benefits. Through detailed SPICE simulations and VPR
modeling, we show that, for a 45-nm FPGA consisting of
80 × 30 tiles, such a DRAM-based FPGA design strategy can
reduce the FPGA die footprint by up to 8.4%, while its DRAM
refresh power consumption is only up to 54.7 mW.

II. DISTRIBUTED VERSUS CENTRALIZED DESIGN STYLE

The island-style FPGA logic fabric architecture, being used
in latest Xilinx Virtex FPGAs, contains a mesh of reconfig-
urable logic blocks (LBs) connected through reconfigurable
switch boxes (SBs) and connections boxes (CBs). FPGA fabric
is conventionally partitioned into an array of tiles, and each
tile contains one LB, one SB, two CBs, and associated routing
channel [9]. In Virtex devices, each LB contains four slices,
and each slice mainly contains two four-input look up tables
and two flip-flops. In current design practice, on-chip configu-
ration data storage is realized using either SRAM or embedded
Flash memory. SRAM-based FPGAs need at least five or six
transistors to store each configuration bit, hence SRAM-based
on-chip configuration data storage tends to occupy a significant
percentage of the total FPGA die area. Interconnects spanning
one, two, four, and six tiles are referred to as single, double,

MRAM
SRAM

Logic
Interconnect

(a)

MRAM
SRAM

Logic
Interconnect

(b)

Fig. 1. Illustration of (a) SRAM-based FPGA with fully distributed MRAM
and (b) SRAM-based FPGA with fully centralized MRAM.

HEX-4, and HEX-6 interconnects, respectively, and we assume
the ratio among these four different types of interconnects is
14%:20%:18%:48%. We assume each LB has 16 input and
eight output signals, and set the routing channel width as 72
and the connection box connectivity as 36. Using the VPR tool
set and setting one SRAM cell size as 9.15 minimum-width
transistors, we estimate that SRAM cells for configuration data
storage occupy about 33% of the total area.

We present a comprehensive comparison between the fully
distributed design style and the fully centralized design style
as shown in Fig. 1. Since the fully distributed design strategy
presented in [6] is seriously subject to insufficient operational
margin for resistance-to-voltage conversion as we push the
technology scaling to the limit, we focus on the fully distrib-
uted design strategy presented in [5].

A. Distributed Design Style

It is well known that the switching time and write current
threshold of a given MTJ are variable and correlated, i.e., as
MTJ switching time reduces, the write current threshold will
increase. Meantime, to sustain a larger write current threshold,
the associated nMOS transistor must have a bigger size. In
this brief, the MRAM write latency (i.e., MTJ switching
time) is apparently not as important as the MRAM cell size.
Therefore, we should use relatively small MRAM cell size at
the cost of long MTJ switching time. Based on [10], we very
optimistically assume that we can set the MTJ write current
threshold as low as 80 μA at the 45-nm node without incurring
write failures. Based on PTM transistor model [11] at the 45-
nm node, we carried out SPICE simulations, and the results
show that the width of the nMOS transistor should be 90 nm
(i.e., W/L = 2) in order to deliver the 80-μA write current.

Therefore, we can optimistically assume that each
configuration bit storage cell as in [5], including one SRAM
cell and two differential MTJs with associated two nMOS
transistors, has a size as small as (9.15 + 4) = 13.15 minimum
transistor size. Hence, compared with conventional SRAM-
based FPGAs, each configuration bit storage occupies at least
44% more silicon area. In conventional SRAM-based FPGAs,
all the SRAM cells for configuration data storage occupy
about 33% of the total FPGA die area. Hence, using the fully
distributed design style as presented in [5], the FPGA die
area will increase at least by 14%. Since all the configuration
storage cells uniformly distribute over the entire FPGA die,

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 21, NO. 4, APRIL 2013 773

1 2ay
Channel Width=72 Channel Width=76 Channel Width=84

0.9

0.95

1

1.05

1.1

1.15

1.2

co
rd

ic

cf
_f

ir

de
s_

pe
r

f
di

ff
eq

_s
ys

te
m

C fir iir
1

m
ac

1

m
ac

2

cp
u

fr
am

eb
uf

ra
yg

en

rs
_d

ec
o

de
r_

1
sv

_c
hi

p
0

sv
_c

hi
p

1

N
or

m
al

iz
ed

 C
ri

tic
al

 P
at

h
D

el

Fig. 2. Normalized critical path delay of FPGA with fully distributed MRAM
cells over its counterpart with a fully centralized MRAM block.

such area overhead directly results in larger interconnect
length, leading to longer critical path delay.

B. Centralized Design Style

When using the fully centralized design style, we add a sin-
gle MRAM block on one side of the FPGA die to persistently
store all the configuration data and initialize all the distributed
SRAM cells during power-up. We modified CACTI [12] to
estimate the area, access power, and read latency of embedded
MRAM block. In particular, the modification is based on
the CACTI DRAM modeling functions because of the cell
and sub-array circuits similarity between MRAM and DRAM,
i.e., both DRAM and MRAM cells simply contain one data
storage element and one nMOS transistor for access control
and hence have a three-terminal cell interface. Speed and area
performance modeling in CACTI are decomposed into several
parts. Clearly, we can keep the modeling of H-tree routing
intact. Furthermore, we keep the same modeling of sub-array
peripheral decoders and word-lines. In the context of bit-lines
and sense amplifiers, we carried out SPICE simulations to
estimate their latency using the STT RAM sensing scheme
proposed in [13] and predictive technology model (PTM)
transistor model [11] at 45-nm node. Since the MTJ tunnel
magnetoresistance affects the memory sensing latency, we
set the high and low resistance of MTJ as 2 and 1 K�,
respectively, at 45-nm node according to [14].

In this brief, we set the MTJ write current threshold
as 80μA and the nMOS transistor width as 90 nm (i.e.,
W/L = 2), which is the same as the study on fully distributed
design style discussed above. In addition, we assume that
the embedded MRAM block employs a (71, 64) Hamming
code to realize tolerance to possible defective memory cells
and random write failures. We assume the FPGA die at the
45-nm node contains an array of 80×30 tiles, which occupies
a total 10.45 mm2 and requires 386-kB configuration data.
Using the developed CACTI-based MRAM modeling tool, we
estimate that the centralized embedded MRAM block occupies
0.83 mm2, which increases the FPGA die area by 7.9%. In
comparison, as discussed above, the fully distributed design
style results in 14% of area increase. More importantly, since
the centralized MRAM block locates at the edge of FPGA die,
the centralized design style will not increase the interconnect
length. In comparison, when using the fully distributed design
style, the interconnect length will accordingly increase. As
a result, this leads to different speed performance between
the fully distributed design style and fully centralized design

Fig. 3. Illustration of on-chip planar DRAM cell structure based on parasitic
capacitance.

style. Using the VPR tool set with the benchmarks from Open
Cores [15] and internal University of Toronto projects [16], we
estimate and compare the critical path delay under different
FPGA channel width and the results are shown in Fig. 2. The
above results clearly suggest that the fully centralized design
style may be a more viable option for using future nonvolatile
memory technologies in FPGAs.

III. DRAM-BASED FPGA ENABLED BY EMBEDDED

NONVOLATILE MEMORY

SRAM-based FPGA configuration data storage tends to
incur a large silicon area overhead. Although, a DRAM cell
can be much smaller than an SRAM cell, DRAM cells are
not used to realize on-chip FPGA configuration data storage
in current design practice due to its destructive self-refresh
operation. When an MRAM memory block is embedded to
persistently store the configuration data on-chip, intuitively we
can use it to periodically refresh distributed DRAM cells in
DRAM-based FPGAs. Since we no longer need to explicitly
read the on-chip DRAM cells, such DRAM external-refresh
will not interrupt the normal FPGA operations. Compared with
SRAM-based FPGAs, this DRAM-based FPGA design strat-
egy can reduce the logic element and interconnect silicon area,
leading to speed improvement. On the other hand, this design
strategy is subject to certain implementation overheads. In
particular, the periodic on-chip DRAM cells refresh may incur
nonnegligible extra energy consumption. Hence, the refresh
circuits and energy cost must be carefully designed and ana-
lyzed. These overheads heavily depend on the retention time
of on-chip DRAM cells, which further depends on the imple-
mentation of DRAM cells. In this brief, we consider the planar
DRAM cell implementation strategy as illustrated in Fig. 3.

Because the nMOS pass transistor controlled by each
DRAM cell may induce a nonnegligible amount of gate
tunneling leakage, we should use an inverter between the
storage node and the nMOS pass transistor. The DRAM
refresh power consumption is mainly dominated by the power
consumed by bit-lines/word-lines, and the planar DRAM
structure tends to have low retention time and hence high
refresh frequency. Therefore, we may need to use a partially
centralized style, in which the FPGA array is partitioned into
several regions and each region has its own centralized MRAM
block. This can readily accommodate the low retention time
and meanwhile reduce refresh power consumption because
of relatively shorter bit-lines/word-lines. In this specific case
study, we set the nMOS transistor with minimum size, the
pMOS transistor with 1.3 × minimum size, and the pMOS

774 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 21, NO. 4, APRIL 2013

pass transistor with 4 × minimum size. Hence, according to
the area estimation method used in VPR, each DRAM cell has
4.65 minimum-width transistor size. By carrying out further
SPICE simulations based on the above configurations, we set
the DRAM cell retention time as 100 μs in this case study.

A. On-Chip DRAM Refresh Cost Analysis Methodology

In the following, we first discuss how to estimate the period
of each DRAM refresh operation. In this brief, we assume the
DRAM cells within each FPGA tile are distributed along the
two perpendicular middle lines and four sides of the FPGA
tile. Each DRAM cell controls one pass transistor, and all the
DRAM cells are connected by bit-lines and word-lines through
which the configuration data are written into the DRAM cells.

We model DRAM word-lines and bit-lines as distributed
resistor-capacitor networks following the approach used in
CACTI modeling tool [12] and estimate τwl and τbl, which
denote the worst-case delay of word-lines and bit-lines in the
absence of buffers.

Let Nw
buff and Nb

buff denote the number of buffers inserted
along each word-line and bit-line, respectively. Let τdec denote
the extra delay induced by word-line decoders, and τbuff denote
the delay of each buffer. Let τread denote the access time to
read the data from the centralized MRAM. We can estimate
the total time required for one refresh cycle as

Tcycle = τwl

(Nw
buff + 1)

+ τbl

(Nb
buff + 1)

+ (Nw
buff + Nb

buff)

·τbuff + τdec + τread. (1)

As pointed out earlier, in order to meet the DRAM cell
retention time constraint and meanwhile reduce the power
consumed on bit-lines/word-lines, we could further partition
all the DRAM cells on the FPGA die into a certain number of
banks, and all the banks are refreshed in parallel. Let Nbank
denote the number of DRAM banks. Recall that each word-
line and bit-line connect with Nw and Nb DRAM cells, hence
each bank has Nb word-lines and Nw bit-lines. During each
cycle, within each bank all the DRAM cells on one word-line
are refreshed and all the banks are refreshed simultaneously,
hence the time for refreshing all the DRAM cells once can be
estimated as T = Nb · Tcycle.

Using the power consumption estimation method in CACTI
modeling tool [12], we estimate the word-line energy con-
sumption within each DRAM bank Ew and the bit-line energy
consumption during each refresh cycle in each DRAM bank
Eb. The inverters within DRAM cells also consume a nonneg-
ligible amount of leakage energy, denoted as Eleak, because the
inverter input voltage may degrade due to the charge leakage
at the storage node. Finally, we should also take into account
of the energy consumed when we read the configuration data
from the embedded MRAM blocks, which is denoted as Eread.
Therefore, the overall energy cost can be estimated as

Ecost = Ew + Eb + Eleak + Eread. (2)

We use a 45-nm FPGA consisting of 80 × 30 tiles as a test
vehicle for the purpose of demonstration. The FPGA works at
a supply voltage of 1.0 V, and the DRAM word-line/bit-line

0.8

1

1.2

Pa
th

 D
el

ay

SRAM-based FPGA with fully distributed MRAM cells
Conventional SRAM-based FPGA without MRAM
Proposed DRAM-based FPGA with centralized MRAM blocks

0

0.2

0.4

0.6

0.8

1

1.2

co
rd

ic

cf
_f

ir

de
s_

pe
r

f
di

ffe
q_

sy
st

e… fir iir
1

m
ac

1

m
ac

2

cp
u

fr
am

eb
uf

ra
yg

en

rs
_d

ec
o

de
r_

1
sv

_c
hi

p
0

sv
_c

hi
p

1N
or

m
al

iz
ed

 C
ri

tic
al

 P
at

h
D

el
ay

SRAM-based FPGA with fully distributed MRAM cells
Conventional SRAM-based FPGA without MRAM
Proposed DRAM-based FPGA with centralized MRAM blocks

Fig. 4. Normalized critical path delay comparison among different FPGA
design strategies.

supply voltage is also 1.0 V. To reduce the DRAM cell leakage
current, we use low-power transistors with a high threshold
voltage to implement the DRAM cells. The pass nMOS
transistor controlled by each DRAM cell (as shown in Fig. 3)
is a high-performance transistor with a low threshold voltage in
order to minimize the FPGA routing latency overhead. In this
brief, we use the low power and BISM4 45-nm PTM transistor
models [11], i.e., low-power nMOS and pMOS transistors
have threshold voltages of 0.62 V and −0.58 V, respectively,
and high-performance nMOS transistors use metal-gate/high-K
and have threshold voltage of 0.34 V.

B. DRAM Refresh Power Consumption

Simulations using the VPR tool set show that each FPGA
tile contains 1176 DRAM cells, and each FPGA tile has the
size of 66 μm × 66 μm. We put two buffers on each word-
line and bit-line. We partition the entire FPGA die into two
parts, and each part has its own embedded MRAM. Using
the modified CACTI tool, we estimate that the MRAM read
access latency and read energy consumption are 1.86 ns and
0.016 nJ per bit and refreshing each word-line takes Tcycle =
16.5 ns, leading to a total 45.4 μs for refreshing all the
DRAM cells once. This can well satisfy the 100-μs DRAM
cell retention time as estimated above. Assuming P0 and P1
are both 0.5, we estimate that a total 4.37 μJ (including energy
consumed by word-lines/bit-lines and MRAM memory read)
will be dissipated for refreshing all the DRAM cells once.
Hence, assuming a DRAM refresh period of 80 μs, the overall
DRAM refresh power consumption is 0.0547 W. Regarding the
leakage energy consumed by the inverters within DRAM cells,
as pointed out above, the static leakage current reaches 36 nA
(denoted as Ileak1) and 450 pA (denoted as Ileak0) if its input
voltage increases from 0 to 0.4 V or reduces from 1 to 0.81 V.
From our SPICE simulations, the inverter static leakage current
increases approximately linearly as its input voltage changes.
Hence, the static power consumption for each inverter is upper
bounded by

Pinv = NDRAM(P0 Ileak0 + P1 Ileak1)
Vdd

2
where NDRAM denotes the total number of inverters in the
FPGA. Hence, based upon the above parameters, we have
that the static power consumed by all the inverters within
DRAM cells is upper bounded by 0.0514 W. This leads to
a total 0.106-W power consumption cost induced by the use
of DRAM-based FPGA.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 21, NO. 4, APRIL 2013 775

Area reduction

120

140 u

12%

14%

Average critical path delay reduction

Retention time

80 u

100 u

120 u

8%

10%

12%

m
e

/u
s

ta
ge

40 u

60 u

4%

6%

Ti
m

Pe
rc

en
t

0 u

20 u

0%

2%

3.65 4.15 4.65 5.15

DRAM cell size / (Minimum Width Transistor)

Fig. 5. Estimated FPGA die area and critical path delay reduction versus
different DRAM cell sizes.

C. Delay Reduction

Our estimation results show that DRAM-based FPGA
enabled by embedded MRAM can reduce the FPGA die area
by 23.4, 16.33, and 8.4% compared with the FPGA using the
fully distributed design style, SRAM-based FPGA with fully
centralized MRAM, and conventional SRAM-based FPGA
without MRAM, respectively. Such FPGA footprint reduction
can directly translate to interconnect length reduction. Because
interconnects play a very important role in determining FPGA
speed and power consumption performance, it is reasonable
to expect that DRAM-based FPGAs could achieve noticeable
gains in terms of FPGA speed and dynamic power consump-
tion compared with their SRAM-based counterparts.

We use the VPR tool set to estimate the critical path delay
of DRAM-based FPGA using the benchmarks from Open
Cores [15] and internal University of Toronto projects [16].
We use the BISM4 45-nm model and SPICE simulations to
estimate the delay characteristics of all these types of devices.
Fig. 4 shows the normalized critical path delay compared to
the conventional SRAM-based FPGA without MRAM and
FPGA, using the fully distributed design style with channel
width equal to 76. The results show that the conventional
SRAM-based FPGA without MRAM on average has 6% less
critical path delay compared with the FPGA using the fully
distributed design style. The DRAM-based FPGA can achieve
the best critical path delay, which is on average 10 and 4%
less than the FPGA, using the fully distributed design style
and conventional SRAM-based FPGA, respectively.

The size of transistors within DRAM cells directly deter-
mines the tradeoff between FPGA die area reduction and
DRAM refresh cost. In the above case study, we choose the
DRAM cell size of 4.65 minimum-width transistor size. We
further quantitatively investigate how different DRAM cell size
may impact this tradeoff. In particular, we adjust the transistor
size to obtain three other DRAM cell sizes, including 3.65,
4.15, and 5.15 minimum-width transistor size. We estimate the
overall energy cost is 0.132, 0.106, 0.085, and 0.07 W when
DRAM cell has a 3.65, 4.15, 4.65, and 5.15 minimum-width
transistor size, respectively. Fig. 5 shows the estimated critical
path delay reduction and FPGA die area reduction when using
different DRAM cell sizes.

IV. CONCLUSION

Using MRAM as a test vehicle, this brief aimed to carry
out a more comprehensive study on exploring the use of
emerging resistance-based nonvolatile memory technologies
in future FPGAs. First, we evaluated the area and speed
performance of FPGAs with either fully distributed MRAM
memory cells or a fully centralized MRAM block. The results
suggest that the fully centralized design style is a more viable
option. Beyond simply replacing embedded Flash memory in
the centralized design style, embedded nonvolatile memory
could potentially make it more feasible to replace distributed
SRAM cells with distributed DRAM cells. We discussed such
a DRAM-based FPGA design strategy in detail and analyzed
the involved design issues and tradeoffs. Simulation results
show that such DRAM-based FPGAs can achieve noticeable
silicon area reduction and speed performance improvement at
relatively small DRAM refresh cost.

REFERENCES

[1] K. Kim and G. Jeong, “Memory technologies for sub-40nm node,” in
Proc. IEEE Int. Electron Devices Meet., Dec. 2007, pp. 27–30.

[2] Actel FPGA Devices [Online]. Available: http://www.actel.com/
products/devices.aspx

[3] Lattice Nonvolatile FPGA Devices [Online]. Available: http://www.
latticesemi.com/products/fpga/index.cfm

[4] S. Natarajan, S. Chung, L. Paris, and A. Keshavarzi, “Searching for the
dream embedded memory,” IEEE Solid-State Circuits Mag., vol. 1, no.
3, pp. 34–44, Aug. 2009.

[5] Y. Guillemenet, L. Torres, and G. Sassatelli, “Non-volatile run-time
field-programmable gate arrays structures using thermally assisted
switching magnetic random access memories,” IET Comput. Digital
Technol., vol. 4, no. 3, pp. 211–226, 2010.

[6] S. Paul, S. Mukhopadhyay, and S. Bhunia, “Circuit and architec-
ture co-design approach for hybrid CMOS-STTRAM non-volatile
FPGA,” IEEE Trans. Nanotechnol., vol. 10, no. 3, pp. 385–394, May
2011.

[7] J. Luu, I. Kuon, P. Jamieson, T. Campbell, A. Ye, W. Fang, and J. Rose,
“VPR 5.0: FPGA CAD and architecture exploration tools with single-
driver routing, heterogeneity and process scaling,” in Proc. ACM/SIGDA
Int. Symp. Field Program. Gate Arrays, 2009, pp. 133–142.

[8] W. Zhang, N. K. Jha, and L. Shang, “A hybrid Nano/CMOS dynamically
reconfigurable system I, design optimization flow,” J. Emerg. Technol.
Comput. Syst., vol. 5, no. 3, pp. 13:1–13:31, Aug. 2009.

[9] V. Betz, J. Rose, and A. Marquardt, Architecture and CAD for Deep-
Submicron FPGAs. Norwell, MA: Kluwer, 1999.

[10] T. Min, Q. Chen, R. Beach, G. Jan, C. Horng, W. Kula, T. Torng,
R. Tong, T. Zhong, D. Tang, P. Wang, M.-M. Chen, J. Z. Sun, J. K.
Debrosse, D. C. Worledge, T. M. Maffitt, and W. J. Gallagher, “A study
of write margin of spin torque transfer magnetic random access memory
technology,” IEEE Trans. Mag., vol. 46, no. 6, pp. 2322–2327, Jun.
2010.

[11] Predictive Technology Model [Online]. Available: http://www.eas.asu.
edu/ptm

[12] CACTI: An Integrated Cache and Memory Access Time, Cycle Time,
Area, Leakage, and Dynamic Power Model. (2009) [Online]. Available:
http://www.hpl.hp.com/research/cacti/

[13] W. Xu, T. Zhang, and Y. Chen, “Design of spin-torque transfer mag-
netoresistive ram and cam/tcam with high sensing and search speed,”
IEEE Trans. Very Large Scale Integr. Syst., vol. 18, no. 1, pp. 66–74,
Jan. 2010.

[14] X. Wang, Y. Chen, H. Li, D. Dimitrov, and H. Liu, “Spin torque random
access memory down to 22nm technology,” IEEE Trans. Mag., vol. 44,
no. 11, pp. 2479–2482, Nov. 2008.

[15] Open Cores [Online]. Available: http://www.opencores.org
[16] Internal University Toronto Projects. (2002) [Online]. Available:

http://www.eecg.utoronto.ca/∼jayar/benchmarks/bench.html

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

