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Abstract— This paper investigates the potential of using strong BCH
codes to improve multilevel data-storage NAND Flash memory capacity.
Current multilevel Flash memories store 2 bits in each cell. Further
storage capacity may be achieved by increasing the number of storage
levels per cell, which nevertheless will largely degrade the raw storage
reliability. Based on a Gaussian-like memory cell threshold voltage dis-
tribution model and ASIC BCH decoder design results, we demonstrate
that strong BCH codes can effectively enable the use of a larger number
of storage levels per cell and hence improve the overall NAND Flash
memory storage capacity up to 59.1% while maintaining the same cell
programming time. Furthermore, we propose a scheme to leverage strong
BCH codes to improve memory defect tolerance at the cost of increased
cell programming time.

I. INTRODUCTION

Driven by the ever increasing demand for on-chip/board non-
volatile data storage, Flash memory has become one of the fastest
growing segments in the global semiconductor industry. With its
well demonstrated effectiveness for increasing Flash memory storage
capacity, the multilevel technique, i.e., to store more than 1 bit in
each cell (or floating-gate MOS transistor), has been widely used
in practice [1]–[4]. Multilevel storage is realized by programming
the cell threshold voltage into one of l > 2 voltage windows. Due to
the inherently reduced operational margin, multilevel Flash memories
generally employ error correction codes (ECC) to ensure the storage
reliability [5]. Currently, most multilevel Flash memories store 2 bits
(or 4 levels) in each cell, for which a weak ECC code that can only
correct few (e.g., 1 or 2) errors is typically used [6].

Higher storage capacity may be realized by further increasing
l, which will make it increasingly more difficult to ensure storage
reliability. In this regard, solutions may be pursued along two direc-
tions, including: (i) improve the programming scheme to accordingly
tighten each threshold voltage window, and (ii) use much stronger
ECC. Along the first direction, researchers have developed high-
accuracy programming techniques to realize 3bits/cell and even
4bits/cell storage capacity [7], [8], which complicates the design
of the peripheral programming mixed signal circuits and largely
degrades the programming throughput. To the best of our knowledge,
the potential of using much stronger ECC to improve storage capacity
has not been addressed in the open literature.

This work attempts to fill this gap by investigating the use of strong
BCH (Bose-Chaudhuri-Hocquenghem) codes to enable a relatively
large l (6, 8, and 12 in this work). With the advantages of simplifying
the programming circuits and maintaining or even increasing the
programming throughput, the use of strong ECC is subject to two
main drawbacks: (i) strong ECC requires a higher coding redundancy
that will inevitably degrade the storage capacity improvement gained
by a larger l, (ii) the ECC decoder may incur non-negligible silicon
area overhead and increase read latency. In general, to realize the
same error correction performance (or achieve the same coding gain),
the longer the ECC code length is, the less the relative coding
redundancy (or higher code rate) will be. Therefore, strong ECC
should be used for Flash memories that can accommodate relatively

long ECC code length and tolerate longer read latency. Among
the two types of Flash memories (i.e., NOR Flash and NAND
Flash), NAND Flash memories are used for data storage, where
very long code lengths (e.g., 8192 or 16384 user bits per codeword)
are typically used and read latency is generally much less critical
compared with read throughput.

Therefore, in this work, we only consider the use of strong BCH
codes for NAND Flash memories. Using 2bits/cell NAND Flash
memories that employ single-error-correcting Hamming codes and
have Gaussian-like cell threshold voltage distribution as a benchmark,
we investigated the effectiveness of using strong BCH codes to ensure
storage reliability when increasing the value of l to 6, 8, and 12,
respectively. With the same programming scheme, and hence the
same threshold voltage distribution characteristics as the 2bits/cell
benchmark, the larger value of l will result in a worse raw storage
reliability and demands a stronger BCH code. For each value of l,
targeting the codeword error rate lower than 10−14, we constructed
BCH codes with 8192 and 16384 user bits per codeword, respectively.
It shows that, given the same number of memory cells, up to
60% more user bits can be stored compared with the 2bits/cell
benchmark. To evaluate decoder silicon area and achievable decoding
throughput/latency, we designed BCH decoders using 0.13µm CMOS
standard cell and SRAM libraries and Synopsys tools for the entire
design hierarchy down to place and route. Post-layout results verify
that the decoders occupy (much) less than 2.5mm2 silicon area
and achieves (much) less than 41µs decoding latency and 1.6Gbps
decoding throughput. Based on the published results for NAND
Flash effective cell area [9] and a simple scaling rule, we estimate
that, under 70-nm CMOS technology and 100mm2 core area, up
to 59.1% effective storage capacity improvement can be realized
compared with 2bits/cell benchmark. Finally, we show that the strong
ECC in multilevel Flash memories can also be leveraged to provide
certain extent of defect tolerance at the cost of degraded programming
throughput.

II. PRELIMINARIES

A. Multilevel Flash Memories

This section briefly presents some basics of multilevel Flash
memory programming/read and the benchmark 2bits/cell threshold
voltage distribution. Interested readers are referred to [2] for a
comprehensive discussion on multilevel Flash memories. Multilevel
Flash memory programming is realized by combining a program-and-
verify technique with a staircase Vpp ramp as illustrated in Fig. 1.
The tightness of each programming threshold voltage window is
proportional to Vpp, while the cell programming time is roughly
proportional to 1/Vpp. The read circuit in l levels/cell NAND Flash
memories usually has a serial sensing structure that takes l−1 cycles
to finish the read operation. Higher read speed can be realized by
increasing the sensing parallelism at the cost of silicon area, which
is typically preferred in latency-critical NOR Flash memories.
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Fig. 1. Schematic of program-and-verify cell programming.

In this work, we use 2bits/cell Flash memories as a benchmark.
Based on the results published in [10], the cell threshold voltage
approximately follows a Gaussian distribution as illustrated in Fig. 2:
the vertical axis represents the probability density; the two inner
distributions have the same standard deviation, denoted as σ; the
standard deviations of the two outer distributions are 4σ and 2σ,
respectively. The locations of the means of the two inner distribu-
tions are determined to minimize the raw bit error rate. Let Vmax

denote the voltage difference between the means of the two outer
distributions.
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Fig. 2. The approximate cell threshold voltage distribution model in 2bits/cell
memory.

In this work, we set Vmax as 6.5V [4], and σ is selected as 1
which results in a raw bit error rate of about 8 × 10−12. Under
the target codeword error rate of lower than 10−14, single-error-
correcting Hamming codes will be sufficient to ensure the storage
reliability for protecting 8192 and 16384 user bits per codeword.

B. Binary BCH Codes

Binary BCH code construction and encoding/decoding are based
on binary Galois Fields. A binary Galois Field with degree of m
is represented as GF(2m). For any m ≥ 3 and t < 2m−1, there
exists a primitive binary BCH code over GF(2m), which has the
code length n = 2m − 1 and information bit length k ≥ 2m −m · t
and can correct up to (or slightly more than) t errors. A primitive
t-error-correcting (n, k, t) BCH code can be shortened (i.e., eliminate
a certain number, say s, of information bits) to construct a t-error-
correcting (n− s, k− s, t) BCH code with less information bits and
code length but the same redundancy. Given the raw bit error rate
praw, an (n, k, t) binary BCH code can achieve a codeword error
rate of

Pe =

nX
i=t+1

„
n
i

«
pi

raw(1− praw)n−i. (1)

Binary BCH encoding can be realized efficiently using linear shift
registers, while binary BCH decoding is much more complex. Various
BCH decoding algorithms have been proposed [11]. In Section III-B,
we will elaborate on the binary BCH decoding algorithm and decoder
architecture used in this work.

III. STRONG BCH CODES FOR MULTILEVEL NAND FLASH

MEMORIES

A. BCH Codes Construction

We first investigate the potential storage capacity improvement by
increasing l to 6, 8, and 12, respectively. Assuming the same pro-
gramming scheme (i.e., the same step-up voltage Vpp and hence same
cell programming time) as the above 2bits/cell benchmark, we have
the cell threshold voltage distributions for l = 6, 8, 12 as illustrated
in Fig. 3 and described as follows: the l− 2 inner distributions have
the same standard deviation σ; the standard deviations of the two
outer distributions are 4σ and 2σ, respectively. The locations of the
means of the l−2 inner distributions are determined to minimize the
raw bit error rate. We keep Vmax, the voltage difference between the
means of the two outer distributions, as 6.5V and σ as 1. For l of
6, 8, and 12, we store 5 bits per 2 cells, 3 bits per cell, and 7 bits
per 2 cells, respectively. Because the cell programming time remains
the same as the 2bits/cell benchmark, the programming throughput
may approximately increase by 25%, 50%, and 75%, respectively.
Accordingly, the raw bit error rates are about 5 × 10−7 (l = 6),
5× 10−5 (l = 8), and 2× 10−3 (l = 12).

To protect 8192 and 16384 user bits per codeword with a target
codeword error rate of lower than 10−14, binary BCH codes are
constructed by shortening primitive binary BCH codes under GF(214)
and GF(215), respectively. Table I lists the BCH codes parameters
and the corresponding codeword error rates. Table I also shows
the percentages of the user bits storage gain over the 2bits/cell
benchmark, given the same number of memory cells.

TABLE I
BCH CODES PARAMETERS AND PERFORMANCE.

l (n, k, t) BCH Codes Codeword Error User Bits
Rate Storage Gain

6 (8262, 8192, 5) 1.1× 10−17 24.0%
8 (8360, 8192, 12) 3.1× 10−15 47.0%

12 (9130, 8192, 67) 2.8× 10−15 57.0%
6 (16459, 16384, 5) 7.0× 10−16 24.5%
8 (16609, 16384, 15) 3.2× 10−15 48.0%
12 (17914, 16384, 102) 7.2× 10−15 60.1%

B. BCH Code Decoder Architecture and ASIC Design

To evaluate decoder silicon implementation metrics for the above
BCH codes, we carried out ASIC (application-specific integrated
circuit) design using 0.13µm CMOS standard cell and SRAM li-
braries. In the following, we first briefly describe the BCH decoder
architecture and then present the silicon implementation results. A
syndrome-based binary BCH code decoder consists of three blocks,
as shown in Fig. 4. For an (n, k, t) binary BCH code constructed
under a Galois Field with the primitive element α, the overall decoder
architecture is described as follow.

1) Syndrome Computation: Given the received bit vector r, it

computes 2t syndromes as Si =

n−1X
j=0

rjα
ij for i = 0, 1, · · · 2t−1. As

pointed out in [12], for binary BCH codes, we have S2j = S2
j , so only

t parallel syndrome generators are required to explicitly calculate the
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Fig. 3. The approximate Flash memory cell threshold voltage distribution model of (a) l = 6, (b) l = 8, and (c) l = 12.
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Fig. 4. Binary BCH code decoder structure.

odd-indexed syndromes, followed by much simpler square circuits.
For a decoder with parallelism of p (i.e., the syndrome computation
block receives p input bits in each clock cycle), each syndrome
generator has the structure as shown in Fig. 5.
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Fig. 5. Structure of one syndrome generator with parallelism factor of p.

2) Error Locator Calculation: Based on the 2t syndromes, we
calculate the error locator polynomial Λ(x) = 1 + Λ1x + Λ2x

2 +
· · ·+Λtx

t using the inversion-free Berlekamp-Massey algorithm [13].
To minimize the silicon area cost, a fully serial architecture is used,
which takes t(t+3)/2 clock cycles to finish the calculation. It mainly
contains three Galois Field multipliers and two FIFO (first-input first-
output) buffers with lengths of t and t + 1, respectively.

3) Chien Search: Upon receiving the error locator polynomial
Λ(x), it exhaustively examines whether αi is the root of Λ(x) for

i = 0, 1, · · · , n − 1; i.e., check whether Λ(αi) =

tX
j=1

Λjα
ij + 1 is

zero or not. It outputs an error vector e in such a way that, if αi is a
root, then en−i = 1, otherwise en−i = 0. The overall decoder output
is obtained by r + e as illustrated in Fig. 4. Fig. 6 shows the Chien
search architecture with the parallelism factor of p that generates a

p-bit output each clock cycle.
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Fig. 6. Structure of Chien search with the parallelism factor of p.

4) Decoder ASIC Design: For the BCH codes listed in Table I, we
designed decoders with the following configurations: the syndrome
computation and Chien search blocks have a parallelism factor of 4;
the error locator calculation block is fully serial and takes t(t+3)/2
clock cycles. Therefore, the syndrome computation and Chien search
blocks always have the same latency (in terms of the number of clock
cycles), while the latency of error locator calculation block depends
on the value of t. To improve the decoding throughput and minimize
the decoding latency, these BCH decoders support pipelined operation
summarized as follows:
• For l = 6, 8: The BCH codes have relatively small values of

t, so the corresponding error locator calculation blocks have
much less latency than the other two blocks. Therefore, we use
a 1-stage pipelined decoder structure in which the syndrome
computation and error locator calculation blocks operate on one
codeword while the Chien search block operates on the other
codeword in parallel.

• For l = 12: The BCH codes have relatively large values of t, so
the corresponding error locator calculation blocks have similar or
even slightly longer latency than the other two blocks. Therefore,
we use a 2-stage pipelined decoder structure in which these three
blocks operate in parallel on three consecutive codewords.

Furthermore, the decoder FIFO as shown in Fig. 4 is realized by
SRAMs to minimize the silicon area cost. These BCH decoders are



designed with Chartered 0.13µm CMOS standard cell and SRAM
libraries, where Synopsys tools are used throughout the design
hierarchy down to place and route. We set the number of metal
layers as 4 in the place and route. Post-layout results verify that the
decoders can operate at 400MHz with the power supply of 1.08V
and hence support about 1.6Gbps decoding throughput because of
the decoder parallelism factor of 4. This throughput is sufficient in
real applications [14]. The silicon area and decoding latency are listed
in Table II.

TABLE II
BCH DECODER ASIC DESIGN POST-LAYOUT RESULTS.

l (n, k, t) BCH Codes Area (mm2) Latency (µs)
6 (8262, 8192, 5) 0.21 10.4
8 (8360, 8192, 12) 0.32 10.9
12 (9130, 8192, 67) 1.43 17.6
6 (16459, 16384, 5) 0.25 20.7
8 (16609, 16384, 15) 0.38 21.4
12 (17914, 16384, 102) 2.14 40.2

To demonstrate the overall Flash memory storage capacity im-
provement potential, we carried out the following estimation for 70-
nm CMOS technology: The effective NAND Flash memory cell size
is 0.024µm2 at 70-nm CMOS technology [9]. We scale the BCH
decoder silicon area by (130/70)2 = 3.4 to estimate the decoder
silicon area at 70-nm CMOS technology. Accordingly, Table III
shows the estimated total numbers of user bits that can be stored in
a NAND Flash memory core of 100mm2 while considering the BCH
decoder silicon area cost. The effective storage capacity improvement
is obtained by comparing against the 2bits/cell benchmark.

TABLE III
THE ESTIMATED STORAGE CAPACITY FOR A 100MM2 NAND FLASH

MEMORY CORE.

l (n, k, t) BCH Codes Stored User Effective Storage
Bits (Gbits) Capacity Improvement

4 8.33 −
6 (8262, 8192, 5) 10.32 23.9%
8 (8360, 8192, 12) 12.24 46.9%
12 (9130, 8192, 67) 13.03 56.4%
6 (16459, 16384, 5) 10.36 24.4%
8 (16609, 16384, 15) 12.32 47.9%
12 (17914, 16384, 102) 13.25 59.1%

C. Integration with Defect Tolerance

In the above, we assumed that the cell programming time (and
hence threshold voltage distribution) remains the same for various l
and BCH codes are solely used for compensating threshold voltage
distribution induced (TVDI) errors. It is intuitive that, if we improve
the programming accuracy by reducing the step-up programming
voltage Vpp at the cost of increased programming time, the TVDI
error rates will correspondingly reduce. This will leave a certain
degree of BCH code error correction capability available for compen-
sating memory defects. This can be considered as a trade-off between
programming time and defect tolerance.

Following this intuition, we investigate such a trade-off in NAND
Flash memories with l of 6, 8, and 12, respectively. Based on the cell
threshold voltage distribution model as presented above, if we reduce
the step-up programming voltage Vpp to improve the programming
accuracy, the standard deviation of the threshold voltage distribution
will accordingly reduce. In this work, we simply assume that the

standard deviation σ is reversely proportional to the cell programming
time. If a t-error-correcting binary BCH code needs to compensate
up to ddef defective memory cells, it will only be able to correct up
to tTV DI < t TVDI errors incurred by threshold voltage distribution.
To accommodate such TVDI error correction capability loss, we
have to accordingly reduce the TVDI error rates by improving the
programming accuracy and hence reducing the standard deviation
parameter σ. For the BCH codes listed in Table I, we have the
following table to show the trade-offs between σ and ddef .

TABLE IV
TRADING TVDI ERROR CORRECTION CAPABILITY FOR DEFECT

TOLERANCE.

l (n, k, t) BCH Codes σ ddef tTV DI

6 (8262, 8192, 5) 0.833 1 2

8 (8360, 8192, 12) 0.930 1 9
0.719 3 3

12 (9130, 8192, 67)

0.950 4 53
0.900 7 42
0.800 12 24
0.571 17 6

6 (16459, 16384, 5) 0.800 1 2

8 (16609, 16384, 15) 0.950 1 12
0.700 4 3

12 (17914, 16384, 102)

0.950 6 81
0.900 12 60
0.800 20 32
0.571 27 6

Based on the above discussion, we further propose a modified
multilevel Flash memory defect tolerance strategy by combining
the conventional spare rows/columns repair and BCH codes. As
illustrated in Fig. 7, we first check whether the available spare
rows/columns can repair all the defects in one memory block, if
not, then we carry out a certain repair algorithm to use the spare
rows/columns to repair as many defects as possible so that the number
of residual defective cells can be minimized. Then we calculate how
to adjust the threshold voltage distribution deviation parameter σ
in order to compensate the TVDI error correction capability loss.
Finally, we check whether the target σ is feasible, subject to some
practical constraints such as circuit precision and minimum allowable
cell programming time.
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Fig. 7. Flow diagram of using BCH codes for defect tolerance.

IV. CONCLUSIONS

In this paper, we demonstrated the promise of using strong BCH
codes to further improve multilevel data-storage NAND Flash mem-
ory capacity without degrading memory programming time. Based
on Gaussian-like Flash memory cell threshold voltage distribution



model, it shows that strong BCH codes can enable a relatively
large increase of the number of storage levels per cell and hence a
potentially significant memory storage capacity improvement. Taking
into account of the BCH decoder silicon area cost based on ASIC
design at 0.13µm CMOS technology node, we estimated that the
effective multilevel NAND Flash memory storage capacity can be
improved up to 59.1% by increasing the number of storage levels
per cell to 12, under 70-nm CMOS technology and 100mm2 memory
core. Furthermore, we propose a scheme to leverage strong BCH
codes to improve memory defect tolerance by trading off the memory
cell programming time.
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