
MULTILEVEL FLASH MEMORY ON-CHIP ERROR CORRECTION BASED ON TRELLIS
CODED MODULATION

Fei Sun, Siddharth Devarajan, Ken Rose, and Tong Zhang

ECSE Department, Rensselaer Polytechnic Institute, USA

ABSTRACT

This paper presents a multilevel (ML) Flash memory on-
chip error correction system design based on the concept of
trellis coded modulation (TCM). This is motivated by the
non-trivial modulation process in ML memory storage and
the effectiveness of TCM on integrating coding with mod-
ulation to provide better performance. Using code storage
2bits/cell Flash memory as a test vehicle, the effectiveness
of TCM-based systems, in terms of error-correcting perfor-
mance, coding redundancy, silicon cost, and operation la-
tency, has been successfully demonstrated.

1. INTRODUCTION

As the mainstream non-volatile memory, Flash memory is
being used for both code storage (NOR-type Flash) and data
storage (NOR- and NAND-type Flash). The multilevel (ML)
concept, i.e., to store more than 1 bit in one memory cell,
has been used in practice to increase the storage capacity
of NOR- and NAND-type Flash memory [1]. Due to the
inherently reduced operational margin and continuous tech-
nology scaling, ML Flash memories are increasingly rely-
ing upon on-chip error correction to ensure reliability [2].
The on-chip error correction system design for code storage
ML Flash memory tends to be challenging for two main rea-
sons: (a) The data block length in code storage is typically
small, e.g., 16 and 64 bits. This will lead to relatively high
ECC coding redundancy overhead. (b) Code storage typi-
cally demands very small read latency, which sets a strict
latency constraint on ECC decoding.

This work is interested in on-chip error correction sys-
tem design for code storage ML Flash memory. Instead
of following the conventional practice [2–4], where linear
block error-correcting codes (ECC) such as Hamming or
BCH codes are used and ECC is separate from modula-
tion (i.e., mapping the ECC codeword onto the ML mem-
ory cells), we apply the idea of trellis coded modulation
(TCM) [5] in this context. The motivation is two-fold: (1)
The more-than-two-levels-per-cellstorage capacity of ML
memory makes the modulation process non-trivial and an

The authors acknowledge the support of this work by Intel Corporation

integral part of the on-chip error correction system. (2)
TCM can effectively integrate ECC with modulation and
achieve significant gain over the conventional design prac-
tice that considers ECC and modulation separately. This
paper, for the first time, demonstrates the great promise of
TCM-based on-chip error correction for code storage ML
Flash memory. Using 2bits/cell Flash memory as a test
vehicle, we designed TCM-based systems for three scenar-
ios where the protected user data are 16-bit, 32-bit and 64-
bit, respectively. Compared with the systems using 2-error-
correcting BCH codes, the TCM-based systems can achieve
∼1 order of magnitude better bit error rate while saving
15.3% (16-bit), 13.0% (32-bit) and 2.6% (64-bit) memory
cells, respectively. Cadence and Synopsys tools with 0.18µm
CMOS technology were used to implement the read datap-
ath including sensing circuits and TCM demodulation and
decoding circuits. The latency and silicon area are 12.3ns
and 0.118mm2 (16-bit), 30.3ns and 0.156 mm2 (32-bit), and
66.3ns and 0.196mm2 (64-bit), respectively.

2. TCM SYSTEM STRUCTURE

The basic idea of TCM is to jointly design trellis codes
(i.e., convolutional codes) and signal-mapping (i.e., mod-
ulation) processes to maximize the free Euclidean distance1

between coded signal sequences. As illustrated in Fig. 1,
given anl-level/cell memory core, anm-dimensional TCM
encoder receives a sequence of n-bit input data and gener-
ates a sequence of (n+r)-bit data, where each (n+r)-bit data
are stored inm memory cells and2n+r ≤ lm. The encod-
ing process can be outlined as follows: (1) A convolutional
encoder convolves the input k bits sequence with r linear
algebraic functions and generates k+r coded bits. (2) Each
k+r coded bits select one of the2k+r subsets of an m-D sig-
nal constellation, where each subset contains2n−k signal
points. (3) The additional n-k uncoded bits select an indi-
vidual m-D signal point from the selected subset.

Let s denote the memory order of the convolutional code

1Similar to the Hamming distance of linear block codes, free Euclidean
distance determines the error correction capability of convolutional codes,
i.e., a convolutional code with free Euclidean distance ofdfree can correct
at leastb(dfree − 1)/2c code symbol errors.



Convolutional
code encoder

m-D
modulator

k bits k+r bits

n-k bits

n bits
l-level/cell

Flash
memory

core

m m m-D
demodulator

Viterbi
decoder

2k+r n bits

Encoder Decoder

Fig. 1. Block diagram of TCM-based on-chip error correction system.

encoder. To protect an N-bit data block, the TCM encoder
totally receives N+s bits including s zero bits for convolu-
tional code termination. If N+s is not divisible by n, the
last input to the encoder will contain less than n bits, for
which the m-D modulation may be simplified to a modu-
lation with a lower dimension. As illustrated in Fig. 1, the
TCM decoder contains an m-D demodulator that provides
2k+r branch metrics and branch symbol decisions to the
Viterbi decoder for trellis decoding.

3. EFFECTIVENESS OF TCM-BASED ON-CHIP
ERROR CORRECTION

In this section, we demonstrate the effectiveness of TCM-
based on-chip error correction using 2bits/cell Flash mem-
ory as a test vehicle. In this work, we use a Flash mem-
ory cell threshold voltage distribution model, illustrated in
Fig. 2, approximated from the results published in [6]. The
two inner distributions have the same variance, denoted as
σ. The variances of the two outer distributions are4σ and
2σ, respectively. LetVmax denote the voltage difference
between the means of the two outer distributions. The loca-
tions of the means of the two inner distributions are deter-
mined to minimize the raw cell error probability.

−10 −5 0 5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Vmax 

Fig. 2. The approximate Flash memory cell threshold volt-
age distribution model.

3.1. System Design and Performance Evaluation

We designed three TCM-based systems that protect 16-bit,
32-bit and 64-bit user data in one codeword, respectively.
These three systems share the same system design parame-
ters (referred to Fig. 1): n=7, k=2, r=1, m=4, and the mem-
ory order of the convolutional code v=3. The signal read
from each memory cell is quantized by 12 levels. To real-
ize 4-D modulation, we use the scheme proposed by Wei
[7] that hierarchically partitions the 4-D rectangular lattice
formed by four memory cells into eight 4-D sub-lattices.
Each coded 3-bit word from the convolutional code encoder
selects one out of the eight sub-lattices.

To protect 16-bit user data, the TCM encoder receives
19 bits (including 3 zero bits for termination) and finishes
encoding in three steps: during each of the first two steps,
it receives 7 bits and maps the coded 8 bits onto 4 memory
cells through 4-D modulation; in the last step, it receives 5
bits and maps the coded 6 bits onto 3 memory cells through
3-D modulation that is obtained by collapsing one 2-D con-
stellation in the original 4-D modulation into a 1-D constel-
lation. Therefore, this system is denoted as (11,8) TCM,
i.e., one codeword occupies 11 memory cells and protects
2×8=16-bit user data (notice that each memory cell stores
2 bits). For the purpose of comparison, we considered two
other ECC schemes using linear block codes: (i) a (11,8,1)
4-ary shortened Hamming code; (ii) a (13,8,2) 4-ary short-
ened 2-error-correcting BCH code.

Fig. 3(a) shows the performance comparison of these
three schemes. Although the performance curves of the two
linear block codes can be analytically derived, we have to
rely on extensive computer simulation to obtain the perfor-
mance curve of the (11,8) TCM system, for which the solid
part is obtained by computer simulation and the dashed part
is estimated following the trend of the simulation results.
With the same coding redundancy, (11,8) TCM can achieve
about five orders of magnitude better performance than (11,8,1)
Hamming code. Compared with (13,8,2) BCH code, (11,8)
TCM can achieve almost the same performance while real-
izing a saving of 2/13 (15.4%) memory cells.

To protect 32-bit user data, the TCM encoder receives
35 bits and finishes encoding in 5 steps, each step maps 8
bits onto 4 memory cells through 4-D modulation. Hence,



15 20 25 30 35 40 45
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

B
E

R

V
max

/σ

Uncoded
(11,8,1) Hamming
(13,8,2) BCH
(11,8) TCM

15 20 25 30 35 40 45
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

B
E

R
V

max
/σ

Uncoded
(19,16,1) Hamming
(23,16,2) BCH
(20,16) TCM

15 20 25 30 35 40 45
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

B
E

R

V
max

/σ

Uncoded
(36,32,1) Hamming
(39,32,2) BCH
(38,32) TCM

Fig. 3. BER performance when protecting 16-bit, 32-bit and 64-bit user data (In TCM schemes, the signal read from each
memory cell is quantized by 12 levels).

this is denoted as (20,16) TCM, i.e., one codeword occu-
pies 20 memory cells and protects 32-bit user data. The
(20.16) TCM is compared with two linear block codes: (i) a
(19,16,1) 4-ary shortened Hamming code; (ii) a (23,16,2) 4-
ary shortened BCH code. Fig. 3(b) shows their performance
comparison.

To protect 64-bit user data, the TCM encoder receives
67 bits and finishes encoding in 10 steps: during each of
the first 9 steps, it receives 7 bits and maps the coded 8 bits
onto 4 memory cells through 4-D modulation; in the last
step, it receives 4 bits that bypass the convolutional code
encoder and directly map onto 2 memory cells through 2-D
modulation that is a constituent of the original 4-D modula-
tion. Hence, this is denoted as (38,32) TCM. We compared
it with two linear block codes: (i) a (36,32,1) 4-ary short-
ened Hamming code; (ii) a (39,32,2) 4-ary shortened BCH
code. Fig. 3(c) shows their performance comparison. Ta-
ble 1 summarizes the comparison between the TCM and the
other ECC schemes discussed above in terms of coding re-
dundancy and error-correcting performance.

Table 1. Comparison between TCM and the other ECC
schemes based on linear block code.

TCM Competing ECC
Savings Performance
of cells gain

(11,8)
(11,8,1) Hamming 0 ∼ 105

(13,8,2) BCH 15.4% ∼ 1

(20,16)
(19,16,1) Hamming -5.3% ∼ 105

(23,16,2) BCH 13% ∼ 10

(38,32)
(36,32,1) Hamming -5.6% > 105

(39,32,2) BCH 2.6% > 10

3.2. Silicon Implementation

The above shows the effectiveness of TCM-based on-chip
error correction in terms of coding redundancy and error-
correcting performance. However, to be a promising can-
didate for ML Flash memory, it should be able to achieve
small latency and negligible silicon area compared with the
overall memory die size. In the following, we present proof-
of-concept implementation results for the above three TCM-
based systems for protecting 16-bit, 32-bit, and 64-bit user
data. Clearly, TCM encoders are very simple and can eas-
ily achieve very small latency with negligible silicon cost.
Hence we will only focus on TCM decoders.

The TCM decoding datapath contains higher precision
sensing circuits, 4-D demodulator, and Viterbi decoder. The
sensing circuit realizes 12-level quantization, instead of 4-
level quantization as in the conventional linear block code
based ECC scheme. Using Cadence tool with IBM 0.18µm
7WL technology, we designed a current-mode 12-level par-
allel sensing circuit following the structure proposed in [8].
Fig. 4 shows the general structure of a 12-level current-
mode parallel sensing circuit that mainly contains eleven
current comparators. 12-level quantization is realized by
comparing the current from the selected memory cell with
the reference currents from the eleven reference cells which
are appropriately programmed. The silicon area of one 12-
level current-mode parallel sensing circuit is estimated as
0.006mm2. The simulation results show that the worst-case
sensing latency (i.e., the input current is equal to one of the
reference currents) is about 300ps.

Upon receiving the data from four 12-level sensing cir-
cuits, the 4-D demodulator finds the most likely point in
each 4-D signal subset and calculates the corresponding log-
likelihood metric as the branch metrics sent to the Viterbi
decoder. Leveraging the hierarchical structure inherent in
the 4-D modulation, the 4-D demodulator has a data flow



-  +

Dummy replicasCurrent amplication & replicas

COMP1COMP2COMP11

Selected Cell Reference Cells

IcIcIc
-  + -  +

Fig. 4. Structure of a 12-level parallel sensing circuit.

structure as shown in Fig. 5. The output branch metrics are
represented with 6 bits.

Find cloest point in each
1-D subset and its metric

Find cloest point in each
1-D subset and its metric

Find cloest point in each
2-D subset and its metric

Find cloest point in each
4-D subset and its metric

Find cloest point in each
1-D subset and its metric

Find cloest point in each
1-D subset and its metric

Find cloest point in each
2-D subset and its metric

Fr
om

 fo
ur

 1
2-

le
ve

l s
en

si
ng

 c
irc

ui
ts

Find cloest point in
each 2-D subset

and its metricFind cloest point in
each 1-D subset

and its metric

Find cloest point in
each 1-D subset

and its metric

Find cloest point in
each 2-D subset

and its metricFind cloest point in
each 1-D subset

and its metric

Find cloest point in
each 1-D subset

and its metric

Find cloest point in
each 4-D subset

and its metric

Fr
om

 fo
ur

 1
2-

le
ve

l s
en

si
ng

 c
irc

ui
ts

Fig. 5. Data flow of the 4-D demodulator.

The last block on the decoding datapath is a Viterbi
decoder. To minimize the decoding latency, we use state-
parallel register-exchange Viterbi decoder architecture. Since
Viterbi decoder implementation has been extensively ad-
dressed in the open literature, we will not elaborate on the
decoder implementation details. Interested readers are re-
ferred to [9]. Here we note that, for the scenario of pro-
tecting 16-bit user data, since the Viterbi decoder finishes
the decoding in only 3 steps, we directly unrolled the recur-
sive datapath of the original Viterbi decoder and fully opti-
mize the circuit’s structure, which reduces both silicon area
and decoding latency. Table 2 summarizes the read datap-
ath implementation metrics of the three TCM systems. We
note that the TCM systems protecting 32-bit and 64-bit user
data contain four sensing circuits and one 4-D demodulator,
while the TCM system protecting 16-bit user data contains
11 sensing circuits and two 4-D and one 3-D demodulators
in order to match the parallelism of the unrolled Viterbi de-
coder.

4. CONCLUSIONS

Leveraging the non-trivial modulation process of ML mem-
ory, this paper, for the first time, applies the TCM concept to

Table 2. Summary of implementation metrics.

Area (mm2) Latency2 (ns)
(11,8) TCM 0.118 12.3
(20,16) TCM 0.156 30.3
(38,32) TCM 0.196 66.3

2Includes latency of sensing circuits and TCM decoding.

design an on-chip error correction system for code storage
ML Flash memory. Compared with conventional practice
using linear block codes, the TCM-based design solution
can provide better coding redundancy vs. error-correcting
performance trade-offs. To evaluate the silicon cost of us-
ing TCM-based on-chip error correction, we implemented
the read datapath consisting of high-precision sensing cir-
cuits and TCM decoder with 0.18µm CMOS technology.
The results suggest that TCM-based systems can achieve
small operational latency and occupy small silicon area.

5. REFERENCES

[1] B. Ricco et al., “Nonvolatile multilevel memories for digital
applications,” Proceedings of the IEEE, vol. 86, pp. 2399–
2423, Dec. 1998.

[2] S. Gregori, A. Cabrini, O. Khouri, and G. Torelli, “On-chip
error correcting techniques for new-generation Flash memo-
ries,” Proceedings of the IEEE, vol. 91, pp. 602–616, April
2003.

[3] A. Silvagni, G. Fusillo, R. Ravasio, M. Picca, and S. Zanardi,
“An overview of logic architectures inside Flash memory de-
vices,” Proceedings of the IEEE, vol. 91, pp. 569–580, April
2003.

[4] D. Rossi, C. Metra, and B. Ricco, “Fast and compact error
correcting scheme for reliable multilevel Flash memories,” in
Proc. of the Eighth IEEE International On-Line Testing Work-
shop, July 2002, pp. 221–225.

[5] G. Ungerboeck, “Trellis-coded modulation with redundant
signal sets Part I, II,”IEEE Communications Magazine, vol.
25, pp. 5–21, Feb. 1987.

[6] G. Atwood, A. Fazio, D. Mills, and B. Reaves, “Intel
strataflashTM memory technology overview,”Intel Technol-
ogy Journal, pp. 1–8, 4th Quarter 1997.

[7] L. F. Wei, “Trellis-coded modulation with multidimensional
constellations,” IEEE Transactions on Information Theory,
vol. 33, pp. 483–501, July 1987.

[8] C. Calligaro, R. Gastaldi, A. Manstretta, and G. Torelli,
“A high-speed parallel sensing scheme for multi-level non-
volatile memories,” inProc. of International Workshop on
Memory Technology, Design and Testing, Aug. 1997, pp. 96–
101.

[9] G. Fettweis and H. Meyr, “High-speed parallel Viterbi de-
coding: algorithm and VLSI-architecture,”IEEE Communi-
cations Magazine, vol. 29, pp. 46–55, May 1991.


