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AbstractÐThis paper considers the design of bit-parallel dedicated finite field multipliers using standard basis. An explicit algorithm is

proposed for efficient construction of Mastrovito product matrix, based on which we present a systematic design of Mastrovito multiplier

applicable to GF �2m� generated by an arbitrary irreducible polynomial. This design effectively exploits the spatial correlation of

elements in Mastrovito product matrix to reduce the complexity. Using a similar methodology, we propose a systematic design of

modified Mastrovito multiplier, which is suitable for GF �2m� generated by high-Hamming weight irreducible polynomials. For both

original and modified Mastrovito multipliers, the developed multiplier architectures are highly modular, which is desirable for VLSI

hardware implementation. Applying the proposed algorithm and design approach, we study the Mastrovito multipliers for several

special irreducible polynomials, such as trinomial and equally-spaced-polynomial, and the obtained complexity results match the best

known results. Moreover, we have discovered several new special irreducible polynomials which also lead to low-complexity

Mastrovito multipliers.

Index TermsÐFinite (or Galois) field, standard basis, multiplication, irreducible polynomials, complexity, VLSI architecture, Toeplitz

matrix.
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1 INTRODUCTION

EFFICIENT hardware implementations of finite (or Galois)
field GF �2m� arithmetic units are highly desirable for

many applications in error-correcting coding and crypto-
graphy [1], [2], [3], [4]. Among the GF �2m� arithmetic
operations, multiplication is the most basic and important
building block in many applications. A number of efficient
GF �2m� multiplication approaches and architectures have
been proposed in which different basis representations of
field elements are used, such as standard basis, dual basis, and
normal basis. Standard basis is more promising in the sense
that it gives designers more freedom on irreducible
polynomial selection and hardware optimization. For
detailed discussions of these three basis representations,
readers are referred to [3], [5]. In this paper, we are
interested in the design of bit-parallel GF �2m� multipliers
using standard basis.

The standard basis multiplication involves two steps:

polynomial multiplication and modulo reduction. Let f�x� be

the irreducible polynomial generating GF �2m�, c�x� be the

product of a�x� and b�x�, where a�x�, b�x�, c�x� 2 GF �2m�.
The finite field multiplication is performed as

c�x� � �a�x� � b�x��mod f�x�. An efficient dedicated bit-

parallel multiplier was proposed by Mastrovito [6] in

which a product matrix M is introduced to combine the

above two steps together. Thus, the multiplication is carried

out by c �M � b, where c and b represent the coefficient

vectors of c�x� and b�x�, respectively. Given irreducible
polynomial f�x�, each entry in matrix M is obtained by
Xoring certain coefficients of a�x�. Many entries in matrix M
can be computed efficiently by sharing some common
items, e.g., two entries M�i1; j1� � a0 � a2 � a3 and
M�i2; j2� � a0 � a2 � a4 can be computed using three XOR
gates by sharing the common item a0 � a2. This method is
called subexpression sharing [7]. Mastrovito multipliers using
two special irreducible polynomials, trinomial and equally-
spaced-polynomial (ESP), have been studied by many
researchers for their low-complexity implementations [8],
[9], [10], [11], [12], [13], [14]. The essence of all these works is
to find an architecture to exploit subexpression sharing
efficiently based on the specific irreducible polynomials. It
has been shown in [8] that Mastrovito multiplier using
irreducible trinomial xm � xn � 1 only requires �m2 ÿ 1�
XOR gates and m2 AND gates. By generalizing the
approach of [8], Halbutogullari and KocË [14] discovered
that the space complexity of Mastrovito multiplier using
irreducible ESP xm � xtr � � � � � xr � 1, where �t� 1�r � m,
can be reduced to �m2 ÿ r� XOR gates and m2 AND gates.
Furthermore, [14] presents a new formulation of the
Mastrovito product matrix for an arbitrary irreducible
polynomial xm � xnk � � � � � xn1 � 1, where the space com-
plexity is given as m2 AND gates and �mÿ 1��m� kÿ 1� �P

j2N �mÿ 1ÿ j� XOR gates, N � f0; 1; � � � ;mÿ 2g. How-
ever, [14] fails to find a method to explicitly compute the set
N , which makes its result less practicable in general.

In general cases, the complexity of computing product
matrix is proportional to the Hamming weight of the
irreducible polynomial f�x� (denoted as pwt). So, the
Mastrovito multiplier is good only when low-Hamming
weight irreducible polynomials are used. A modified
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Mastrovito multiplier was proposed by Song and Parhi [15],
which has a complexity proportional to �mÿ 1ÿ pwt�. Its
basic idea is to use the complementary irreducible poly-
nomial for the computation of matrix M with appropriate
compensation. Such a multiplication scheme is efficient
when GF �2m� is generated by high-Hamming weight
irreducible polynomial.

Generally, for large m, efficient design for both original
and modified Mastrovito multipliers becomes rather diffi-
cult and a systematic design approach is highly desirable. In
this paper, we generalize the approach of [8] in a different
way compared with [14]. We propose a theorem and an
algorithm (which can explicitly compute set N in [14]) for
the construction of product matrix in the original Mastro-
vito multiplier, based on which we develop an efficient
systematic design of the original Mastrovito multiplier. This
design effectively exploits subexpression sharing in the
computation of product matrix to reduce the complexity.
Using a similar methodology, we also develop a systematic
design of modified Mastrovito multiplier. For both original
and modified Mastrovito multipliers, explicit algorithms
and architectures are presented and the complexities are
given in detail. Applying our proposed design approach,
we study the irreducible trinomial and ESP and the
complexity results match the results in [8] and [14].
Meanwhile, another computation approach for trinomial
case is proposed to make a trade-off between space
complexity and delay. Moreover, with the aid of the
proposed algorithm, we discover several new irreducible
polynomials leading to low-complexity original Mastrovito
multipliers, which is especially desirable when neither an
irreducible trinomial nor an irreducible ESP exists.

This paper is organized as follows: We introduce the
notation of this paper and the fundamentals of finite field
and Mastrovito multiplier in Section 2. In Section 3, we
propose a theorem and an algorithm for the construction of
product matrix, based on which a systematic design
approach for original Mastrovito multiplier is developed.
In Section 4, using a similar design methodology, we
present a systematic design approach for modified Mas-
trovito multiplier. Efficient computation approaches for
several special irreducible polynomials are discussed in
Section 5. This paper is an extended version of [16].

2 NOTATION AND PRELIMINARIES

Since several arithmetic operations pertaining to matrices
and vectors will be extensively used throughout this paper,
we first introduce the following notation: Column vectors
and matrices are represented by small and capital boldfaced
characters, respectively. Matlab matrix notations are used,
e.g., Z�i; :�, Z�:; j�, and Z�i; j� represent the ith row vector,
jth column vector, and the entry with position �i; j� in
matrix Z, respectively. The operations of shift by feeding
zero are represented by corresponding arrows, e.g., v�# 2�,
U�! 1�, and U�# 1� represent down shift of vector v by two
positions, right shift of matrix U by one column, and down
shift of matrix U by one row, respectively, which are
explicitly given as:

v�# 2� � �0; 0; v0; � � � ; vnÿ2�T
U�! 1� � �o;U�:; 1�; � � � ;U�:;mÿ 1��
U�# 1� � �o;U�1; :�T ; � � � ;U�mÿ 1; :�T �T ;

where o represents the zero column vector. Furthermore,
we note that the AND and XOR gates considered in this
paper are all 2-input gates, whose delays are denoted as TA
and TX, respectively.

Finite field GF �2m� contains 2m elements and can be
viewed as an m-dimensional vector space over GF �2�,
which only has two elements, 0 and 1. With the standard
basis f1; x; x2; � � � ; xmÿ1g, the elements of the finite field
GF �2m� can be represented as polynomials of degree mÿ 1

as follows:

GF �2m� � fa�x�ja�x�
� amÿ1x

mÿ1 � amÿ2x
mÿ2 � � � � � a1x� a0; ai 2 GF �2�g:

Such polynomial representation is generally used for finite
field arithmetic operations, where addition is carried out by
polynomial addition over GF �2m� using bit-independent
XOR operations.

Finite field multiplication using standard basis is carried
out by polynomial multiplication and modulo operation.
Let f�x� � xm � fmÿ1x

mÿ1 � � � � � f1x� 1 be the irreducible
polynomial generating GF �2m�, and c�x� be the product of
a�x� and b�x�, where a�x�; b�x�; c�x� 2 GF �2m�. The poly-
nomial multiplication, d�x� � a�x� � b�x�, can performed as

d � A � b;
where b � �b0; b1; � � � ; bmÿ1�T and d � �d0; d1; � � � ; d2mÿ2�T are
the coefficient vectors of b�x� and d�x�, respectively, and
matrix A is given as

A �

a0 0 � � � 0 0
a1 a0 � � � 0 0

..

. ..
. . .

. ..
. ..

.

amÿ2 amÿ3 � � � a0 0
amÿ1 amÿ2 � � � a1 a0

0 amÿ1 � � � a2 a1

..

. ..
. . .

. ..
. ..

.

0 0 � � � amÿ1 amÿ2

0 0 � � � 0 amÿ1

2666666666666664

3777777777777775
: �1�

Next, we perform the modulo reduction

c�x� � d�x�mod f�x�;
which can be expressed as

c�x� �
X2mÿ2

k�0

dkx
k mod f�x�

�
Xmÿ1

k�0

dkx
k �

X2mÿ2

k�m
dk

�
xk mod f�x�

�
:

�2�

For m � k � 2mÿ 2, if we denote xk mod f�x� as u�l��x�,
where l � kÿm� 1, we have

u�l��x� � xm mod f�x�; l � 1;
u�lÿ1��x� � xmod f�x�; l � 2; 3; � � � ;mÿ 1:

�
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Since the irreducible polynomial is

f�x� � xm � fmÿ1x
mÿ1 � � � � � f1x� f0;

where f0 � 1, we get

u
�1�
j � fj; 0 � j � mÿ 1;

u
�l�
j �

u
�lÿ1�
jÿ1 � u�lÿ1�

mÿ1 fj; 1 � j � mÿ 1

u
�lÿ1�
mÿ1 ; j � 0;

( �3�

where u
�lÿ1�
j and u

�l�
j are the coefficients of u�lÿ1��x� and

u�l��x�, respectively. Let u�l� denote the coefficient vector of
u�l��x�, then, using vector notation, (3) can be rewritten as

u�l� � f ; l � 1

u�lÿ1��# 1� � u�lÿ1�
mÿ1 � f ; 2 � l � mÿ 1;

�
�4�

where f � �1; f1; � � � ; fmÿ1�T . Let s denote vector

�d0; d1; � � � ; dmÿ1�T ;
which consists of the first m entries of d, we can rewrite (2)
in matrix notation as follows:

c � Im�m � s�
Xmÿ1

l�1

dl�mÿ1 � u�l�

� �Im�m;U� � d � �Im�m;U� �A � b;
where Im�m represent m�m identity matrix and matrix
U � �u�1�;u�2�; � � � ;u�mÿ1��. Note that all successive columns
in matrix U have the recursive relation as in (4). Define

M � �Im�m;U� �A: �5�
Thus, the GF �2m� multiplication can be carried out by
c �M � b, which is the well-known Mastrovito multi-
plication scheme, and the matrix M is called product
matrix.

3 MASTROVITO MULTIPLIER

In this section, we first introduce a theorem and an
algorithm pertaining to the construction of product
matrix M. Then, we develop an approach to compute M

by adding a series of Toeplitz matrices, through which
subexpression sharing could be extensively exploited to
reduce the XOR complexity. Accordingly, a highly modular
multiplier architecture is presented.

3.1 Proposed Theorem and Algorithm

In Section 2, we have shown that product matrix M can be
expressed as the product of two independent matrices,
�Im�m;U� and A, and there exists a recursive relation
between successive columns in matrix U, as described in
(4). Through the following theorem and algorithm, we will
see that matrix U also can be constructed by adding a series
of Toeplitz matrices.

Theorem 3.1. For the computation of matrix U in (5), we can
always construct a set N � f0; 1; � � � ;mÿ 2g and

U �
X
n2N

F�! n�; �6�

where the Toeplitz matrix F � �f ; f �# 1�; � � � ; f �# mÿ 2��.

Let the irreducible polynomial be

f�x� � xm � xks � � � � � xk1 � 1;

where m > ks > � � � > k1 > 1, the set N in Theorem 3.1 can

be explicitly constructed with the aid of a weighted tree

generated based on f�x�. The complete construction

approach is described by the following algorithm:

Algorithm 3.1.

Input: The parameters of irreducible polynomial: m,

k1; � � � ; ks;
Output: set N � f0; 1; � � � ;mÿ 2g.
Procedure:

1. Generate a weighted tree D according to the
following properties:

. Each node dj in D has at most s child
nodes and each edge has the weight
w 2 f�mÿ ki�; 1 � i � sg;

. Let d1 denote the root and h�d1; dj� denote the
weight of path from d1 to dj, where
h�d1; d1� � 0, we have 8 dj, if 9 r 2 f�mÿ
ki�; 1 � i � sg and �h�d1; dj� � r� < mÿ 1, then
dj always has one child node dl and the weight
of edge between dj and dl is r;

. 8dj 2 D, h�d1; dj� < mÿ 1.
2. Construct multiset H � fh�d1; dj�; 8dj 2 Dg and set
N � ;;

3. For 0 � j � mÿ 2, do

a. create multiset Sj � ;;
b. 8 h 2 H, if h � j, then insert h into Sj;
c. if �jSjj mod 2� � 1, then insert j into the set N .

Here, we note that a multiset is like a set, except that

repeated elements are allowed, and jSjj represents the order

of Sj. A proof of Theorem 3.1 is given in Appendix A, in

which Algorithm 3.1 is developed. From the above

algorithm, we know that the least two elements in N are

always 0 and (mÿ ks) and we have jN j � ks.
Example 3.1. Consider the multiplication of a�x� � x4 � x2

and b�x� � x3 � x2 � 1 over GF �25� with the underlying

irreducible polynomial f�x� � x5 � x4 � x3 � x2 � 1. We

have f�mÿ ki�; 1 � i � sg � f1; 2; 3g. Applying Algo-

rithm 3.1, we generate the tree D. as shown in Fig. 1,

and get the multiset H � f0; 1; 2; 2; 3; 3; 3; 3g. Thus, we

have

S0 � f0g ) jS0j � 1; S1 � f1g ) jS1j � 1;
S2 � f2; 2g ) jS2j � 2; S3 � f3; 3; 3; 3g ) jS3j � 4:

Since jS2jmod 2 � jS3jmod 2 � 0, we get N � f0; 1g.
Therefore, we perform the multiplication as
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c �M � b �
�h

I5�5;
X
n2N

F�! n�
i
�A
�
� b �

1 0 0 0 0 1 1 0 0

0 1 0 0 0 0 1 1 0

0 0 1 0 0 1 1 1 1

0 0 0 1 0 1 0 1 1

0 0 0 0 1 1 0 0 1

26666664

37777775 �

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0

0 1 0 0 0

1 0 1 0 0

0 1 0 1 0

0 0 1 0 1

0 0 0 1 0

0 0 0 0 1

266666666666666664

377777777777777775
�

1

0

1

1

0

26666664

37777775

�

0 1 1 1 1

0 0 1 1 1

1 1 1 0 0

0 0 0 0 1

1 1 1 1 1

26666664

37777775 �
1

0

1

1

0

26666664

37777775 �
0

0

0

0

1

26666664

37777775;

where

F �
h
f ; f �# 1�; � � � ; f �# mÿ 2�

i
�

1 0 0 0
0 1 0 0
1 0 1 0
1 1 0 1
1 1 1 0

266664
377775:

Thus, we have c�x� � �a�x�b�x�� mod f�x� � x4.

3.2 Multiplier Architecture

Applying Theorem 3.1 and Algorithm 3.1, in this section,

we develop an efficient computation approach for the

product matrix M and present the corresponding low-

complexity Mastrovito multiplier architecture. In the

following, we frequently use two special matrices: the

Toeplitz matrix and the upper-triangular Toeplitz matrix. It is

well-known that the sum of two upper-triangular Toeplitz

matrices (or one Toeplitz matrix and one upper-triangular

Toeplitz matrix) can be obtained by only computing the

sum of two row vectors. This property will be used to

exploit the subexpression sharing in the construction of

product matrix M to reduce the entire XOR complexity.
Given a genera l i r reduc ib le polynomia l

f�x� � xm � xks � � � � � xk1 � 1, we express its coefficient

vector as f � e1 � ek1�1 � � � � � eks�1, where ei is the

m-dimensional ith canonical unit vector:

ei � � 0; � � � ; 0|����{z����}
iÿ1

; 1; 0; � � � ; 0|����{z����}
mÿi

�T :

Define

Ej �
h
ej; ej�# 1�; � � � ; ej�# mÿ 2�

i
: �7�

We can write the Toeplitz matrix F in Theorem 3.1 asPs
i�0 Eki�1, where k0 � 0, and have

U �
X
n2N

F�! n� �
Xs
i�0

X
n2N

Eki�1�! n�: �8�

Moreover, according to (1), we write A in block matrix form

as

A � �AT
s ;A

T
t �T ; �9�

where As is an m�m lower-triangular Toeplitz matrix and

At is an �mÿ 1� �m upper-triangular Toeplitz matrix:

As �

a0 0 � � � 0

a1 a0 � � � 0

..

. ..
. . .

. ..
.

amÿ1 amÿ2 � � � a0

266664
377775;

At �

0 amÿ1 � � � a2 a1

0 0 � � � a3 a2

..

. ..
. . .

. ..
. ..

.

0 0 � � � 0 amÿ1

266664
377775:

�10�

Substituting (6), (8), and (9) into (5), we get

M � As �
Xs
i�0

X
n2N

�
Eki�1�! n� �At

�
: �11�

Based on the special structure of Ej as defined in (7), it can

be easily proven that

Ej�! n� �At �
�

~At�! n�
�
�# �jÿ 1��; �12�

where ~At � �AT
t ;o�T and o is an m-dimensional zero

column vector. Thus, if we denote
P

n2N � ~At�! n�� as S,

(11) can be rewritten as

M � As �
Xs
i�0

�X
n2N

~At�! n�
�
�# ki�

� As � S�
Xs
i�1

�
S�# ki�

�
:

�13�

Because each ~At�! n� is an upper-triangular Toeplitz

matrix, we easily know that matrix S is also an upper-

triangular Toeplitz matrix with the following form:

S �
0 smÿ1 � � � s1

..

. ..
. . .

. ..
.

0 0 � � � smÿ1

0 0 � � � 0

26664
37775 �14�

and computing

S�1; :� �
X
n2N

�
~At�1; :��! n�

�
�
X
n2N

�
At�1; :��! n�

�
�15�
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is sufficient to completely construct matrix S. Since the first
entry of At�1; :� is zero, the first n� 1 entries of At�1; :��! n�
are also zeroes. Recalling that n � 0 is the least element in
N , we get the XOR complexity for computing S�1; :� based
on (15) isX
�n2N�&�n6�0�

�mÿ nÿ 1� �
X
n2N
�mÿ nÿ 1� ÿ �mÿ 1� �16�

and if binary tree structure is used, the delay will be
dlog2 jN jeTX .

After having obtained S, we use (13) to compute the
product matrix M. From (10) and (14), we know that the
addition of As and S does not need any XOR gates and the
matrix As � S, denoted by T, is a Toeplitz matrix. There-
fore, (13) can be rewritten as

M � T� S�# k1� � � � � � S�# ks�: �17�
In order to compute (17) efficiently, we introduce the

following observation:

Observation 3.1. Given an m�m upper-triangular Toeplitz
matrix S and m�m matrix P whose last �mÿ l� rows
form a Toeplitz submatrix. If m > j � l, then computing
the sum of vector P�j� 1; :� and S�1; :� is sufficient to
construct the sum of P and S�# j� and the last
�mÿ j� rows of the sum matrix still form a Toeplitz
submatrix.

Applying Observation 3.1, we compute M based on (17)
with linear tree structure as follows:

Algorithm 3.2.

1. Initially, set Q0 � T;
2. For 1 � i � s, construct Qi � Qiÿ1 � S�# ki� by com-

puting Qi�ki � 1; :� � Qiÿ1�ki � 1; :� � S�1; :�;
3. Finally, set M � Qs.

In the above algorithm, for each i, Qiÿ1�ki � 1; :� � S�1; :�
requires �mÿ 1� XOR gates, so we need s�mÿ 1� XOR gates
to compute M with the delay of sTX. In order to obtain the
result c�x� via c �M � b, we also need m2 AND gates and
m�mÿ 1� XOR gates to complete this matrix-vector multi-
plication. Its delay will be TA � dlog2 meTX if binary tree
structure is used.

Based on the above computation approach, we

develop the dedicated Mastrovito multiplier architecture

as shown in Fig. 2. Given irreducible polynomial

f�x� � xm � xks � � � � � xk1 � 1, set N is constructed using

Algorithm 3.1. Product Matrix Module computes matrix M

and consists of two blocks: M1 and M2. Block M1 generates

the vector S�1; :� by computing
P

n2N �At�1; :��! n��. Sup-

plied with S�1; :�, block M2 computes the product matrix M

using Algorithm 3.2. M2 contains (mÿ 1) Pj blocks, each

one generates one row vector of M. If j 2 fki; 1 � i � sg,
then Pj is identical to block B2; otherwise, it is identical to

block B1. The Matrix-Vector Multiplication Module com-

putes M � b and consists ofm identical V blocks. The block V

computes the inner-product of two vectors of length m. The

total complexity of the proposed original Mastrovito multi-

plier for general irreducible polynomial is given by

. XOR Complexity:

�m� sÿ 1��mÿ 1� �
X
n2N
�mÿ nÿ 1�;

. AND Complexity: m2,

. Delay: TA � �s� dlog2 jN je � dlog2 me�TX.

It needs to be pointed out that, for a given irreducible
polynomial, there likely exist some common items in the
computation of (15) and (17). By sharing these common
items, we may further optimize the hardware architecture
of product matrix module to some extent. Thus, the
multiplier architecture shown in Fig. 2 may need some
corresponding modifications and the above XOR complex-
ity value is actually an upper bound for general cases.

4 MODIFIED MASTROVITO MULTIPLIER

Using a similar design methodology as in Section 3, in this
section, we develop a systematic design approach for the
modified Mastrovito multiplier [15], which is preferable if
high-Hamming weight irreducible polynomial is used.

4.1 Proposed Theorem and Algorithm

For a polynomial f�x� � fmxm � fmÿ1x
mÿ1 � � � � � f1x� f0,

we define its complementary polynomial as

p�x� � �1� fm�xm � �1� fmÿ1�xmÿ1 � � � � �
�1� f1�x� �1� f0�:
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According to [15], we have the following theorem to

construct matrix U in (5) using the complementary

irreducible polynomial:

Theorem 4.1. Given an irreducible polynomial

f�x� � xm � xks � � � � � xk1 � 1;

its complementary polynomial can be written as

p�x� � xtmÿsÿ1 � � � � � xt1 ;
where m > tmÿsÿ1 > � � � > t1 > 0. Let p represent the

coefficient vector of p�x�, then we can obtain the matrix U

in (5) by adding two matrices V and Q, where V is

constructed recursively as

V�:; i� �
p; i � 1

p�# 1� �
�
V�m; 1� � 1

�
� p� e1; i � 2

V�:; iÿ 1��# 1� �V�m; iÿ 2� � e1

�
�
V�m; iÿ 2� �V�m; iÿ 1�

�
� p; 3 � i � mÿ 1;

8>>>>><>>>>>:
where e1 is the first canonical unit vector and

Q � w �
�
eT1 �V�m; :��! 1�

�
;

where

w � � 1; � � � ; 1|����{z����}
m

�T :

In the following, we propose a theorem and an algorithm to

construct matrix V in Theorem 4.1 by adding a series of

Toeplitz matrices together.

Theorem 4.2. For the computation of matrix V in Theorem 4.1,

we can always find two sets L � f0; 1; � � � ;mÿ 2g and

J � f1; � � � ;mÿ 2g, and

V �
X
l2L

P�! l� �
X
j2J

E1�! j�;

where E1 is defined in (7) and

P �
h
p;p�# 1�; � � � ;p�# mÿ 2�

i
:

The sets L and J in Theorem 4.2 are constructed by the

following algorithm:

Algorithm 4.1.

Input: The parameters of complementary polynomial: m,

t1; � � � ; tmÿsÿ1;

Output: set L � f0; 1; � � � ;mÿ 2g and J � f1; � � � ;mÿ 2g
Procedure:

1. Generate a weighted tree D according to the
following properties:

. The root d1 always has one child node d2

connected by an edge with weight w � 1.
Besides d2, root d1 has at most 2�mÿ sÿ 1�

other child nodes, where the weight of edge
w 2 f�mÿ ti�; �mÿ ti � 1�; 1 � i � �mÿ sÿ 1�g;

. 8 dj 6� d1, it has at most 2�mÿ sÿ 1� child
nodes , where the weight of edge
w 2 f�mÿ ti�; �mÿ ti � 1�; 1 � i � �mÿ sÿ 1�g;

. Let h�d1; dj� denote the weight of path from d1 to
dj, where h�d1; d1� � 0, we have 8 dj, if 9 r 2
f�mÿ ti�; �mÿ ti � 1�; 1 � i � �mÿ sÿ 1�g and
�h�d1; dj� � r� < mÿ 1, then dj always has a
child node dl and the weight of edge between
dj and dl is r;

. 8dj 2 D, h�d1; dj� < mÿ 1.
2. Construct a subset, denoted as ~D, of all nodes in D

such that it contains each node which is connected
with its parent node by an edge with the weight
z 2 f�mÿ ti � 1�; 1 � i � �mÿ sÿ 1�g;

3. Construct multisets H � fh�d1; dj�; 8dj 2 Dg and
G � f1; h�d1; di�; 8 di 2 ~Dg and sets L � J � ;;

4. For 0 � j � mÿ 2, do

a. create Sj � T j � ;;
b. 8 h 2 H, if h � j, then insert h into Sj; 8 g 2 G, if

g � j, then insert g into T j;
c. if �jSjj mod 2� � 1, then insert j into the set L; if
�jT jj mod 2� � 1, then insert j into the set J .

A proof of Theorem 4.1 is given in Appendix B in which

Algorithm 4.1 is developed.

Example 4.1. Consider the construction of matrix U when

the high Hamming weight irreducible polynomial

f�x� � x7 � x6 � x5 � x3 � x2 � x� 1 is being used. Its

complementary polynomial is p�x� � x4. We have

f�mÿ ti�; �mÿ ti � 1�; 1 � i � �mÿ sÿ 1�g � f3; 4g. Ap-

plying Algorithm 4.1, we generate the tree D as shown in

Fig. 3. From this tree, we get H � f0; 1; 3; 4; 4; 5g and

G � f1; 4; 5g. Thus, we obtain L � f0; 1; 3; 5g and

J � f1; 4; 5g. So, matrix V is computed as

V �
X
l2L

P�! l� �
X
j2J

E1�! j�

�

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 1 0 1 0 1

0 1 1 0 1 0

0 0 1 1 0 1

2666666666664

3777777777775
�

0 1 0 0 1 1

0 0 1 0 0 1

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0

2666666666664

3777777777775

�

0 1 0 0 1 1

0 0 1 0 0 1

0 0 0 1 0 0

0 0 0 0 1 0

1 1 0 1 0 0

0 1 1 0 1 0

0 0 1 1 0 1

2666666666664

3777777777775
:

Since V�7; :� � �0 0 1 1 0 1�, we have V�7; :��! 1� �
�0 0 0 1 1 0� and
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Q � w �
�
eT1 �V�7; :��! 1�

�
� w � �1 0 0 1 1 0�:

Finally, we have

U � V�Q �
0 1 0 0 1 1

0 0 1 0 0 1

0 0 0 1 0 0

0 0 0 0 1 0

1 1 0 1 0 0

0 1 1 0 1 0

0 0 1 1 0 1

2666666666664

3777777777775
�

1 0 0 1 1 0

1 0 0 1 1 0

1 0 0 1 1 0

1 0 0 1 1 0

1 0 0 1 1 0

1 0 0 1 1 0

1 0 0 1 1 0

2666666666664

3777777777775

�

1 1 0 1 0 1

1 0 1 1 1 1

1 0 0 0 1 0

1 0 0 1 0 0

0 1 0 0 1 0

1 1 1 1 0 0

1 0 1 0 1 1

2666666666664

3777777777775
:

4.2 Multiplier Architecture

In this section, based on the above theorem and algorithm,

we develop an efficient computation approach and corre-

sponding multiplier architecture for the modified Mastro-

vito multiplication scheme.
According to (5), (9), and Theorem 4.1, we have

M � �Im�m;U� �A � As �U �At

� As �V �At|���������{z���������}
M1

�Q �At|���{z���}
M2

; �18�

and the modified Mastrovito multiplication is carried out as

c �M � b �M1 � b�M2 � b:
In the following, we develop efficient approaches for

computing M1 and M2, respectively. Let's begin with M1.

Recal l that the complementary polynomial is

p�x� � xtmÿsÿ1 � � � � � xt1 , thus the matrix P in Theorem 4.2

can be written as

P �
Xmÿsÿ1

i�1

Eti�1; �19�

where Ei is defined in (7). Applying (12) and (19), we have

V �At �
�X

l2L
P�! l� �

X
j2J

E1�! j�
�
�At

�
Xmÿsÿ1

i�1

�X
l2L

~At�! l�
�
�# ti� �

X
j2J

~At�! j�;

where ~At � �AT
t ;o�T and o is an m-dimensional zero

column vector. Denote
P

j2J ~At�! j� and
P

l2L ~At�! l� as
~S1 and ~S2, respectively, we have

M1 � As � ~S1 �
Xmÿsÿ1

i�1

~S2�# ti�: �20�

Since each ~At�! n� is an upper-triangular Toeplitz matrix,

we know that both ~S1 and ~S2 are also upper-triangular

Toeplitz matrices, and computing

~S1�:; 1� �
X
j2J

�
At�1; :��! j�

�
~S2�:; 1� �

X
l2L

�
At�1; :��! l�

� �21�

is sufficient to construct ~S1 and ~S2. Since the least element in

L is always 0, similar to (16), we obtain the XOR complex-

ities of computing ~S1 and ~S2 asX
j2J
�mÿ jÿ 1� ÿ �mÿmin�J � ÿ 1� andX

l2L
�mÿ lÿ 1� ÿ �mÿ 1�

with the delay of dlog2 jJ jeTX and dlog2 jLjeTX, respectively.

Similarly to Algorithm 3.2, for the computation of M1 using

(20), we have the following algorithm:

Algorithm 4.2.

1. Initially, set Q0 � As � ~S1;
2. For 1 � i � �mÿ sÿ 1�, construct Qi � Qiÿ1 �

~S2�# ti� by computing

Qi�ti � 1; :� � Qiÿ1�ti � 1; :� � ~S2�1; :�;

3. Finally, set M1 � Qmÿsÿ1.

In the above algorithm, the construction of Toeplitz matrix

Q0 doesn't need any gates. For 1 � i � �mÿ sÿ 1�, each

step needs �mÿ 1� XOR gates, so the XOR complexity and

delay of the above algorithm is �mÿ sÿ 1��mÿ 1� and

�mÿ sÿ 1�TX, respectively.
Based on the above discussion, we conclude that the

matrix M1 can be computed with the following procedure:

Procedure 4.1.

1. Given a high-Hamming weight irreducible polyno-

mial f�x� � xm � xks � � � � � xk1 � 1, get its comple-

mentary polynomial p�x� � xtmÿsÿ1 � � � � � xt1 and

construct two sets L and J using Algorithm 4.1;
2. Construct ~S1 and ~S2 using (21), if we combine L and
J together to form a new multiset L�, then the
complexity of this step is
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. XOR complexity:X
l2L�
�mÿ lÿ 1� ÿ 2�mÿ 1� �min�J �;

. Delay: dlog2 DeTX, where D � max�jLj; jJ j�;
3. Then, use Algorithm 4.2 to compute matrix M1. For

this step, we have

. XOR complexity: �mÿ sÿ 1��mÿ 1�;

. Delay: �mÿ sÿ 1�TX .

Next, let's consider the computation of M2. Denote the

vector eT1 �V�m; :��! 1� as qT . From Theorem 4.1, we know

that all row vectors in Q are equal to qT . Thus, each row

vector in M2 is equal to qT �At. Without loss of generality,

suppose qT has d nonzero entries whose positions are

rd; � � � ; r1, respectively, where rd > � � � > r1, then we have

qT �At �
Xd
i�1

At�ri; :�: �22�

Since At is an upper-triangular Toeplitz matrix, we have

At�ri; :� � At�1; :��! �ri ÿ 1��, thus (22) can be rewritten as

qT �At �
Xd
i�1

At�1; :��! �ri ÿ 1��: �23�

Therefore, the computation of M2 only needs
Pd

i�2�mÿ ri�
XOR gates with the delay of dlog2 deTX.

In the above, we have developed the approaches for

computing M1 and M2. In order to complete the GF �2m�
multiplication, we only need to compute

c �M � b �M1 � b�M2 � b:
The matrix-vector multiplication M1 � b requires m�mÿ
1� XOR and m2 AND gates with the delay of

TA � dlog2 meTX . Since all row vectors in M2 are

identical and the first r1 elements in each row are zeros,

the matrix-vector multiplication M2 � b only requires �mÿ
r1 ÿ 1� XOR and �mÿ r1� AND gates with the delay of
TA � dlog2 �mÿ r1�eTX. The addition of M1 � b and M2 � b
needs m XOR gates with the delay of TX .

Based on the above computation approach, we develop
the modified Mastrovito multiplier architecture as shown in
Fig. 4. The set L and J are constructed using Algorithm 4.1.
Product Matrix Module computes the two matrices M1 and
M2 and consists of four blocks: PM1, PM2, PM3, and PM4.
Blocks PM1 and PM2 generate the vector ~S2�1; :� and
~S1�1; :�, respectively. Block PM3 computes the matrix M1

using Algorithm 4.2. PM3 contains (mÿ 1) Pj blocks, each
o n e g e n e r a t e s o n e r o w v e c t o r o f M. I f
j 2 fti; 1 � i � mÿ sÿ 1g, then Pj is identical to block B2;
otherwise, it is identical to block B1. Block PM4 computes
the vector qT �At, the row vector of matrix M2, where
r1; � � � ; rd represent the position of the nonzero elements in
qT . The Matrix-Vector Multiplication & Addition Module
computes M1 � b�M2 � b. In this architecture, the opera-
tion of M1 � b and M2 � b can be performed in parallel. If
their delays are denoted by TA �m1TX and TA �m2TX, the
total delay of the modified Mastrovito multiplier will be
TA � �1�max�m1;m2��TX. Therefore, the total complexity
of modified Mastrovito multiplier is

. XOR complexity:

�2mÿ sÿ 2��mÿ 1� �
X
l2L�
�mÿ lÿ 1�

�
Xd
i�1

�mÿ ri� �min�J �;

. AND complexity: m2 �mÿ r1,

. Delay: TA � �1�max�m1;m2��TX ,

where multiset L� is the combination of L and J , d is the
Hamming weight of qT , and ri represents the index of
nonzero element of qT , and
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m1 � mÿ sÿ 1� dlog2 max��jLj; jJ j�e � dlog2 me;
m2 � dlog2 de � dlog2 �mÿ r1�e:

We note that, for given high Hamming weight irredu-
cible polynomial, further hardware optimization is possible
by sharing common items during computation of M1 and
M2. So, the above XOR complexity result is also an upper
bound for general cases.

5 SPECIAL IRREDUCIBLE POLYNOMIALS

In Section 3, we presented an efficient computation
approach of original Mastrovito multiplication for general
cases and pointed out that further simplification can be
achieved for specific irreducible polynomials by further
exploiting subexpression sharing. In this section, we show
that by applying our proposed explicit algorithm for the
construction of set N , we can easily obtain efficient
multiplication schemes with further reduced complexity
for several special irreducible polynomials.

5.1 m
2 � ks

In the following, we show that, for irreducible polynomial
f�x� � xm � xks � � � � � xk1 � 1, where m

2 � ks, we can re-
duce the XOR complexity of the Mastrovito multiplier by
computing S�1; :� in (15) using linear tree structure instead of
binary tree. Since m

2 � ks, we easily have

N � f0;mÿ ks;mÿ ksÿ1; � � � ;mÿ k1g
and jN j � s� 1. Thus, (15) can be simplified as

S�1; :� � At�1; :� �
Xs
i�1

�
At�1; :��! �mÿ ki��

�
: �24�

Using linear tree structure, we compute S�1; :�, according to
(24), as follows:

Algorithm 5.1.

1. Initially, set vT0 � At�1; :�;
2. For 1 � i � s, compute

vTi � vTiÿ1 �At�1; :��! �mÿ ki��;

3. Finally, set S�1; :� � vTs .

The XOR complexity of the above algorithm is

X
n2N
�mÿ nÿ 1� ÿ �mÿ 1� �

Xs
i�1

�ki ÿ 1�; �25�

with the delay of sTX . Compared with using binary tree, the
XOR complexity doesn't change, but delay increases from
dlog2 �s� 1�eTX to sTX. Next, we will prove that, as
compensation for the increased delay, the XOR complexity
of computing M using Algorithm 3.2 can be reduced from
s�mÿ 1� to

Ps
i�1�mÿ ki� by sharing the intermediate

results obtained in Algorithm 5.1.

Proof. In Algorithm 3.2, based on Observation 3.1, we
construct each matrix Qi by only computing

Qi�ki � 1; :� � Qiÿ1�ki � 1; :� � S�1; :�: �26�

Moreover, since the last mÿ ki rows of each matrix Qi

form a Toeplitz submatrix, we have

Qiÿ1�ki � 1; :� � Qiÿ1�kiÿ1 � 1; :��! �ki ÿ kiÿ1��: �27�
Therefore, based on (26), (27), and the fact that

Q0 � T � S�As, by induction we have

Qi�ki � 1; :� �
Xi
j�1

�
S�1; :��! �ki ÿ kj��

�
� S�1; :��! ki� �As�ki � 1; :�:

�28�

From (10), we have

As�ki � 1; :� � � aki ; akiÿ1
; � � � ; a1|������������{z������������}
ki

; a0; 0; � � � ; 0�;

At�1; :� � � 0; amÿ1; � � � ; aki�1|��������������{z��������������}
mÿki

; aki ; � � � ; a1�:

Thus,

As�ki � 1; :� � At�1; :�� �mÿ ki�� � eTki�1a0; �29�
where eki�1 is the �ki � 1�th canonical unit vector.

Therefore, (28) becomes

Qi�ki � 1; :� �
Xi
j�1

�
S�1; :��! �ki ÿ kj��

�
� S�1; :��! ki�

�At�1; :�� �mÿ ki�� � eTki�1a0:

�30�
Since each Qi�ki � 1; :� is an m-dimensional row vector,

the first ki entries of Qi�ki � 1; :� are identical to the last

ki entries of Qi�ki � 1; :��! �mÿ ki��. From (14), we also

know that 8 q � �mÿ 1�, S�1; :��! q� is a zero row vector.

Therefore, according to (30), the last ki entries of Qi�ki �
1; :��! �mÿ ki�� are identical to the last ki entries of ~qTi ,

where ~qTi is defined as

~qTi �
Xi
j�1

S�1; :��! �mÿ kj�� �At�1; :�: �31�

Substituting (24) into (31), we have

~qTi �
Xi
j�1

At�1; :��! �mÿ kj��

�
Xs
i�1

Xi
j�1

At�1; :��! ��mÿ kj� � �mÿ ki��� �At�1; :�:

�32�
Since m

2 � ks, we have 8 i; j � s, �mÿ ki� � �mÿ kj� � m
and At�1; :��! ��mÿ kj� � �mÿ ki��� is actually a zero

row vector. So, we can rewrite (32) as

~qTi �
Xi
j�1

At�1; :��! �mÿ kj�� �At�1; :�: �33�

We note that ~qTi is identical to vTi , which we have

obtained in Algorithm 5.1. So, the first ki entries of

Qi�ki � 1; :� are equal to the last ki entries of the
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intermediate result vTi in Algorithm 5.1. Thus, in

Algorithm 3.2, for each 1 � i � s, we only need to
compute the last (mÿ ki) entries of Qi�ki � 1; :�, which

requires �mÿ ki� XOR gates, and the total XOR

complexity of Algorithm 3.2 is
Ps

i�1�mÿ ki� with the

delay of sTX . tu
Therefore, the entire XOR complexity of computing

product matrix M is

Xs
i�1

�ki ÿ 1� �
Xs
i�1

�mÿ ki� � s�mÿ 1�

with the delay of 2sTX. Moreover, the matrix-vector

multiplication M � b requires m�mÿ 1� XOR and m2 AND

gates with the delay of TA � dlog2 meTX. Thus, for an

irreducible polynomial in which m
2 � ks, if the linear tree

structure is used to compute S�1; :�, the entire complexity of

Mastrovito multiplier is

. XOR complexity: �m� s��mÿ 1�,

. AND complexity: m2,

. Delay: TA � �2s� dlog2 me�TX.

5.2 Trinomial

If GF �2m� is generated by irreducible trinomial

f�x� � xm � xn � 1, we have

N � l�mÿ n�; 0 � l � mÿ 2

mÿ n
� �� �

:

Therefore, we get k � bmÿ2
mnÿc, (15) and (13) can be simplified

as

S�1; :� �
Xk
i�0

�
At�1; :��! i�mÿ n��

�
; �34�

M � As � S� S�# n�: �35�
Obviously, computing

M�n� 1; :� � As�n� 1; :� � S�n� 1; :� � S�1; :� �36�
is sufficient to construct M in (35). According to the

complexity results presented in Section 3, we know that

the XOR complexities of computing (34) and (36) arePk
i�1�mÿ i�mÿ n� ÿ 1� and �mÿ 1�, respectively. In the

following, we will see that the above complexity values can
be further reduced. First, we show that �mÿ n�, instead of

�mÿ 1�, XOR gates are sufficient to complete the computa-

tion in (36). From (29), we have

As�n� 1; :� � At�1; :�� �mÿ n�� � eTn�1a0

and, since S is an upper-triangular Toeplitz matrix, its

�n� 1�th row can be written as

S�n� 1; :� � S�1; :��! n�

�
�Xk

i�0

ÿ
At�1; :��! i�mÿ n�����! n�

� At�1; :��! n�:
So, (36) can be rewritten as

M�n� 1; :� � At�1; :�� �mÿ n�� � eTn�1a0

�At�1; :��! n� � S�1; :�: �37�

Let's consider the addition of At�1; :�� �mÿ n�� and
S�1; :� in (37). Because the last �mÿ n� entries of At�1; :�� 
�mÿ n�� are zeros, we only need to compute the first n
entries of At�1; :�� �mÿ n�� � S�1; :�. Obviously, the first
n entries of At�1; :�� �mÿ n�� � S�1; :� are equal to the last
n entries of At�1; :� � S�1; :��! �mÿ n�� and we have

At�1; :� � S�1; :��! �mÿ n��

� At�1; :� �
�Xk

i�0

At�1; :��! i�mÿ n��
�
�! �mÿ n��

�
Xk
i�0

�
At�1; :��! i�mÿ n��

�
�At�1; :��! �k� 1��mÿ n��

� S�1; :� �At�1; :��! �k� 1��mÿ n��:
Since k � bmÿ2

mÿnc, we have �k� 1��mÿ n� � �mÿ 1�.
Thus, the item At�1; :��! �k� 1��mÿ n�� is actually a zero

vector and the first n entries of At�1; :�� �mÿ n�� � S�1; :�
are identical to the last n entries of S�1; :�. Therefore, the

addition of At�1; :�� �mÿ n�� and S�1; :� does not need any

XOR gates. Furthermore, in (37), the sum of the other two

items,

eTn�1a0 �At�1; :��! n� � � 0; � � � ; 0|����{z����}
n

; a0; amÿ1; � � � ; an�1|��������������{z��������������}
mÿn

�;

has �mÿ n� nonzero entries. Thus, we conclude that the
computation of (37) only needs �mÿ n� XOR gates.

The XOR complexity of computing (34) can be reduced
by using either the linear tree or hybrid tree method, which
will lead to different trade-off between XOR complexity and
delay.

5.2.1 Linear Tree

If (34) is computed using linear tree structure asP0
i�k At�1; :��! i�mÿ n��, we achieve the lowest XOR

complexity with the delay increasing linearly with k. This
approach has been thoroughly studied in [8], in which it
was proven that �nÿ 1� XOR gates are sufficient to compute
(34) with the delay of kTX. We have known that the
computation of (35) needs �mÿ n� XOR gates with delay of
1TX . Thus, the total complexity of the Mastrovito multiplier
in [8] was obtained as:

. XOR complexity: m2 ÿ 1,

. AND complexity: m2,

. Delay: TA � �k� 1� dlog2 me�TX, k � bmÿ2
mÿnc .

Especially, it's pointed out in [8] that if n � m
2 , then the XOR

complexity can be further reduced from (m2 ÿ 1) to
(m2 ÿ m

2 ), with the delay reduced by 1TX.

5.2.2 Hybrid Tree

We have known that using linear tree structure to compute
(34) will lead to a very low XOR complexity with the delay
increasing linearly with k. However, when k is very large,
the delay may be intolerable for applications requiring high
speed. In the following, we present another approach for
computing (34), where the XOR complexity also can be
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reduced by exploiting subexpression sharing and the delay
increases linearly with blog2�k� 1�c.

Let the Hamming weight of k� 1 be h and
blog2�k� 1�c � th, then k� 1 can always be written as
k� 1 � 2th � 2thÿ1 � � � � � 2t1 , where th > thÿ1 > � � � > t1. If
we denote At�1; :��! i�mÿ n�� as At�1; :��i�, (34) can be
rewritten as

Xk
i�0

�
At�1; :��i�

�
�
Xwhÿ1

i�0

�
At�1; :��i�

�
�
Xwhÿ1ÿ1

i�wh

�
At�1; :��i�

�
� � � � �

Xw1ÿ1

i�w2

�
At�1; :��i�

�
� gTh � gThÿ1 � � � � � gT1 ;

�38�
where

wj �
Xh
i�j

2ti ; 1 � j � h: �39�

We compute the vector gTh using a binary tree B with the
height of th as shown in Fig. 5, where each node represents
a m-dimensional vector. At each depth j , there are 2thÿj

nodes with the following values:

X2jÿ1

i�0

At�1; :��i�;
X2�j�1�ÿ1

i�2j

At�1; :��i�; � � � ;
X2thÿ1

i�2thÿ2j

At�1; :��i�: �40�

In (40), all other items can be directly obtained by right
shifting the first item

P2jÿ1
i�0 At�1; :��i� by l � 2j columns,

where 1 � l � 2thÿj ÿ 1. So, only computing the first node at
each depth is sufficient to construct the whole binary tree.
The first node at depth j is computed by adding the first
two nodes at depth jÿ 1, where �mÿ 2jÿ1�mÿ n� ÿ 1� XOR
gates are required. Thus, the XOR complexity of computing
gTh is

Xth
j�1

�
mÿ 2jÿ1�mÿ n� ÿ 1

�
� �mÿ 1�th ÿ �2th ÿ 1��mÿ n�:

�41�

Moreover, each vector gTi in (38), where 1 � i � hÿ 1,
can be obtained by right shifting the first node at depth ti in
the binary tree B. Thus, we compute

P1
i�h gTi using linear

tree L and obtain a hybrid tree to compute (38) as shown in
Fig. 5. From (38), we know that there are only �mÿ 1ÿ
wi�1�mÿ n�� nonzero entries in vector gTi . Therefore, it
requires

Xhÿ1

i�1

�
mÿ 1ÿ wi�1�mÿ n�

�
� �hÿ 1��mÿ 1� �

Xh
i�2

wi�mÿ n�
�42�

XOR gates to compute the linear tree L. Combining (41) and
(42) gives the total XOR complexity for the computation of
(38) as

�th � hÿ 1��mÿ 1� �
Xh
i�2

wi ÿ 2th � 1

 !
�mÿ n�

and the delay is �th � 1�TX. We have known that computing
(35) requires �mÿ n� XOR gates with the delay of 1TX.
Therefore, in trinomial cases, if the above hybrid tree
structure is employed to compute (34), the total computa-
tion complexity of Mastrovito multiplier will be

. XOR complexity:

�m� th � hÿ 1��mÿ 1� � �
Xh
i�2

wi ÿ 2th � 2��mÿ n�;

. AND complexity: m2,

. Delay: TA � �th � 2� dlog2 me�TX ,

where th � blog2�k� 1�c, h is the Hamming weight of
�k� 1�, and wi is defined in (39).

5.3 Pentanomial

A polynomial f�x� � xm � xks � � � � � xk1 � 1 is called
pentanomial if s � 3. For general irreducible pentanomials,
it's impossible to write the set N in a simple form, e.g., as in
the trinomial case, and we have to use the general approach
presented in Section 3 to design the product matrix module
and perform the possible hardware optimization for the
dedicated irreducible pentanomial.

In the following, we present two special irreducible
pentanomials for which the set N has a simple form and the
complexity of corresponding Mastrovito multipliers can be
easily obtained.

5.3.1 Special Case 1

For irreducible pentanomials where m
2 � k3, it follows from

the analysis in Section 5.1 that if linear tree structure is used
to compute S�1; :�, the total complexity of the Mastrovito
multiplier is

. XOR complexity: �m� 3��mÿ 1�,

. AND complexity: m2,

. Delay: TA � �6� dlog2 me�TX.

5.3.2 Special Case 2

For such irreducible pentanomials that

mÿ k3 � k3 ÿ k2 � k2 ÿ k1 � r;
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applying Algorithm 3.1, we have

N � n � 4l � r; n � �4l� 1� � r; 0 � l � d

4

� �� �
; �43�

where d � bmÿ2
r c. So, (15) can be simplified as

S�1; :� �
Xbd4c
l�0

�
gT �! 4l � r�

�
; �44�

where

gT � At�1; :� �At�1; :��! r�: �45�
The vector gT is computed using �mÿ rÿ 1� XOR gates

with the delay of 1TX. If we use linear tree to compute (44)

as
P0

l�bd4c g
T �! 4l � r�, then, applying the results in [8], it only

requires �mÿ 4rÿ 1� XOR gates with the delay of bd4cTX.

Therefore, the total XOR complexity of computing S�1; :� is

�2mÿ 5rÿ 2� with the delay of �bd4c � 1�TX. Furthermore,

using Algorithm 3.2, we need 3�mÿ 1� XOR gates to

compute M with the delay of 3TX . Thus, in this case, the

total complexity of the Mastrovito multiplier is given by

. XOR complexity: �m� 3��mÿ 1� � �2mÿ 5rÿ 2�,

. AND complexity: m2,

. Delay: TA � �bd4c � 4� dlog2 me�TX.

5.4 ESP

A polynomial f�x� � 1� xr � x2r � � � � � xtr � xm, where

�t� 1�r � m, is called an ESP (equally-spaced-polynomial).

An ESP with r � 1 is usually referred as an AOP (all-one-

polynomial). For irreducible ESP, applying Algorithm 3.1,

we have N � f0; rg, based on which it can be shown that

matrix U in (5) always has the following form:

U � L�E1�! r�;
where E1 is defined in (7) and

L �
Ir�r j

..

. j Om�mÿ1ÿr
Ir�r j

264
375;

where Oi�j and Ii�i represent i� j zero matrix and i� i
identity matrix, respectively. Therefore, the product

matrix M can be computed as

M � As �U �At

� As � L �At �E1�! r� �At:

Let Q1 denote L �At, we have

Q1 � L �At �
�
PT ;PT ; � � � ;PT

�T
; �46�

where r�m matrix P � At�1 : r; :�. Let Q2 denote

As �E1�! r� �At, we have

Q2 � As �E1�! r� �At � As � ~At�! r�; �47�
where ~At � �AT

t ; o�T . Obviously, Q1 and Q2 are obtained

without any computation. We perform the GF �2m� multi-

plication as

c �M � b � Q1 � b�Q2 � b:
According to (46), we know that only computing P � b is
sufficient to obtain the result of Q1 � b. Since P � At�1 : r; :�,
we have

P�i; :� � At�i; :� � At�1; :��! �iÿ 1��;
which shows that the first i entries in P�i; :� are zeros.
Therefore we get the complexity of computing Q1 � b as

#ofAND �
Xr
i�1

�mÿ i� � mrÿ r
2 � r

2
;

#ofXOR �
Xr
i�1

�mÿ iÿ 1� � mrÿ r
2 � 3r

2
;

and the delay is TA � dlog2 �mÿ 1�eTX.
From the definition of As and At in (10), we know that

each row vector in Q2�1 : mÿ r; :� contains r zero entries
and each row vector Q2�mÿ r� i; :� contains �rÿ i� zeros,
where 1 � i � r. Therefore, in the computation of Q2 � b, the
numbers of AND and XOR gates are

#ofAND � �mÿ r��mÿ r� �
Xr
i�1

�mÿ r� i�

� m2 ÿmr� r
2 � r

2

#ofXOR � �mÿ rÿ 1��mÿ r� �
Xr
i�1

�mÿ r� iÿ 1�

� m2 ÿmr� r
2 � r

2
ÿm;

and its delay is TA � dlog2 meTX . Obviously, Q1 � b and
Q2 � b can be computed in parallel. At last, we also need m
XOR gates to add Q1 � b and Q2 � b together to get the final
result c. Therefore, we get the total complexity as follows:

. XOR complexity: m2 ÿ r,

. AND complexity: m2,

. Delay: TA � �1� dlog2 me�TX.

Here, we note that the above XOR complexity result is
identical to that obtained in [14].

6 CONCLUSIONS

In this paper, we have presented a systematic design
approach for Mastrovito multipliers. The complexity results
are m2 AND gates and at most

P
n2N �mÿ nÿ 1� ÿ �mÿ 1�

XOR gates. We note that, although the complexity results
appear the same as those presented in [14], we propose an
explicit algorithm to compute the set N , which makes our
design really practical. We have extended this design
approach to the modified Mastrovito multiplication
scheme, which is suitable for high-Hamming weight
irreducible polynomials. For both original and modified
Mastrovito multipliers with general irreducible polyno-
mials, the developed computation approach effectively
exploits subexpression sharing and the complexity analyses
are given in detail. The corresponding hardware architec-
tures for both cases are highly modular. Meanwhile, in this
paper, we have studied several special irreducible poly-
nomials. For trinomials and ESPs, the complexity results
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match the best known results achieved in [8] and [14]. We

also present another computation approach for trinomials

to provide a trade-off between XOR complexity and delay.

Moreover, several other special irreducible polynomials,

which also lead to low-complexity implementation, have

been discovered and corresponding complexities are given.

Finally, we note that, with the explicit algorithms and

design procedures, all the proposed efficient design

schemes can be easily employed by VLSI automation

design tools for dedicated bit-parallel GF �2m� multiplier

design.

APPENDIX A

PROOF oF THEOREM 3.1

In the following, we prove Theorem 3.1 in two steps,

through which Algorithm 3.1 is developed: 1) First, we will

show that the matrix U is equal to the sum of a series of

matrices constructed by the following procedure:

Procedure A-1.

1. Initially, set i � n � 1 and create a matrix multiset
W � fU1g. We define

U1 � � f ;o; � � � ;o|������{z������}
mÿ1

�;

where o is the m-dimensional zero column vector;
2. 8 Ul 2 W, shift down its ith column by one position

to serve as its �i� 1�th column:

Ul�:; i� 1� � Ul�:; i��# 1�:

3. 8 Ul 2 W, if the last entry of Ul's ith column vector,
Ul�m; i�, is 1, then {Increase n by 1, create Ul's child
matrix Un as

Un � � o; � � � ;o|����{z����}
i

; f ;o; � � � ;o|����{z����}
mÿiÿ2

�

and insert Un into W (Ul is called the parent matrix

of Un)};
4. Increase i by 1, if i � mÿ 1, procedure terminates,

else return to Step 2.

Using the above procedure, we obtain a multiset W
containing N matrices U1; � � � ;UN , where N � jWj is the

order of W. Each element matrix is m by �mÿ 1� and has

the form:

Ui �
h

o; � � � ;o|����{z����}
ri

; f ; f �# 1�; � � � ; f �# mÿ 2ÿ ri�|������������������������{z������������������������}
mÿ1ÿri

i
:

In the following, we prove by induction that the sum of all

Uis in W is identical to the matrix U:

U�:; l� �
XN
i�1

Ui�:; l�; 1 � l � mÿ 1:

When i � 1, from Procedure A-1, we have U1�:; 1� � f and

Ui�:; 1� � o, 8 i > 1. From (4), we also have U�:; 1� � f . So,

we get

U�:; 1� �
XN
i�1

Ui�:; 1�:

Assume, for l � 1, we have

U�:; l� �
XN
i�1

Ui�:; l�: �A:1�

Applying the recursive relation between the successive
columns of U as shown in (4), we compute U�:; l� 1� as

follows:

U�:; l� 1� � U�:; l��# 1� �U�m; l� � f

�
�XN

i�1

Ui�:; l�
�
�# 1� �

�XN
i�1

Ui�m; l�
�
� f

�
XN
i�1

�
Ui�:; l��# 1�

�
�
XN
i�1

�
Ui�m; l� � f

�
:

�A:2�

According to Procedure A-1, we know that there always

exist two integers 1 � r � t � N and

. if i � r, then matrix Ui is created before the lth
iteration in the procedure and

Ui�:; l��# 1� � Ui�:; l� 1�;

. if r < i < t, then Ui is created at the lth iteration,
Ui�:; l��# 1� is zero vector, and Ui�:; l� 1� � f ;

. if t � i, then Ui is created after the lth iteration, both
Ui�:; l��# 1� and Ui�:; l� 1� are zero vectors.

We also know that each Ui�m; l� � 1 corresponds to a

matrix created at the lth iteration. Thus, we have

XN
i�1

�
Ui�:; l��# 1�

�
�
Xr
i�1

Ui�:; l� 1� �
XN
i�t

Ui�:; l� 1�;

XN
i�1

�
Ui�m; l� � f

�
�
Xtÿ1

i�r�1

Ui�:; l� 1�:

Substituting the above two equations into (A.2), we get

U�:; l� 1� �
�Xr

i�1

Ui�:; l� 1� �
XN
i�t

Ui�:; l� 1�
�

�
Xtÿ1

i�s�1

Ui�:; l� 1�

�
XN
i�1

Ui�:; l� 1�:

�A:3�

Thus, we have derived (A.3) from the assumption (A.1).
Therefore, we can conclude that the sum of all matrices in

W is equal to matrix U.
2) Next, we introduce another method to construct

multiset W with the aid of a weighted tree. Without loss of

generality, let the irreducible polynomial be

f�x� � xm � xks � � � � � xk1 � 1;

where m > ks > � � � > k1 > 1. Thus, for 0 < j < m, only
when j 2 f�mÿ ki�; 1 � i � sg, the last entry of f �# �jÿ 1��
is 1. From Procedure A-1, we have
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U1 �
h
f ; f �# 1�; � � � ; f �# mÿ 2�

i
and, except U1, each other matrix Ui in W can be

constructed by shifting right its parent matrix by

w columns, where w 2 f�mÿ ki�; 1 � i � sg. Thus, we

can construct a weighted tree D in which each node di
represents the matrix Ui in W and the weight of each

edge represents the number of columns by which the

parent matrix right shifts to generate its child matrix.

According to Procedure A-1, it can be shown that this tree

is uniquely determined by the following property:

Property A-1.

1. Each node dj in D has at most s child nodes and each
edge has the weight w 2 f�mÿ ki�; 1 � i � sg.

2. Let d1 denote the root and h�d1; dj� denote the
weight of path from d1 to dj, where h�d1; d1� � 0,
we have 8 dj, if 9 r 2 f�mÿ ki�; 1 � i � sg and
�h�d1; dj� � r� < mÿ 1, then dj always has a child
node dl and the weight of edge between dj and dl is r.

3. 8dj 2 D, h�d1; dj� < mÿ 1.

Since U1 is identical to the matrix F in Theorem 3.1, we can

construct W as

W � fF�! h�; 8h 2 Hg;
where H � fh�d1; di�; 8 di 2 Dg. Obviously, the multiset H
may contain some repeated elements, which meansW may

contain some identical matrices. Because here the addition

is logic XOR, the sum of two identical matrices is actually a

zero matrix. So, we can remove those repeated elements in

pairs from multiset H using the following algorithm:

Algorithm A-1.

1. Initially, set N � ;.
2. For 0 � j � mÿ 2, do

. create Sj � ;,

. 8 h 2 H, if h � j, then insert h into Sj.
3. If �jSjjmod 2� � 1, then insert j into the set N .

Using the above algorithm, we construct a new set N �
f0; 1; � � � ;mÿ 2g andX

n2N
F�! n� �

X
h2H

F�! h� � U:

We note that combining Property A-1 and Algorithm A-1

just produces Algorithm 3.1 in Section 3.1. tu

APPENDIX B

PROOF OF THEOREM 4.2

Similarly to the proof of Theorem 3.1, we prove Theorem 4.2

in two steps, through which Algorithm 4.1 is developed: 1)

First, we use the following procedure to construct two

matrix multisetW and Z, where the sum of all the matrices

in these two multisets is equal to matrix V.

Procedure B-1.

1. Initially, set i � 2, n1 � 2, and n2 � 1. Create two
multisets W � fW1;W2g and Z � fZ1g:

W1 � � p;p�# 1�;o; � � � ;o|��������������{z��������������}
mÿ1

�;

W2 � � o;p;o; � � � ;o|���������{z���������}
mÿ1

�;

Z1 � � o; e1;o; � � � ;o|����������{z����������}
mÿ1

�;

where p represents the coefficient vector of com-
plementary irreducible polynomial p�x� and e1 is the
first canonical unit vector.

2. If W1�m; 1� � 1, then {Increase n1 by 1, create W1's
child matrix Wn1

�W2 and insert Wn1
into W};

3. 8Wl 2 W and 8 Zl 2 Z, do

Wl�:; i� 1� �Wl�:; i��# 1�;Zl�:; i� 1� � Zl�:; i��# 1�:

4. 8Wl 2 W, if Wl�m; iÿ 1� � 1, then {Increase both
n1 and n2 by 1, create Wl's child matrix Wn1

and
Zn2

as

Wn1
� �o; � � � ;o|����{z����}

i

;p;o; � � � ;o|����{z����}
mÿiÿ2

�;

Zn2
� �o; � � � ;o|����{z����}

i

; e1;o; � � � ;o|����{z����}
mÿiÿ2

�

and insert Wn1
and Zn2

into W and Z, respectively};
5. 8Wl 2 W, if Wl�m; i� � 1, then {Increase n1 by 1,

create Wl's child matrix Wn1
as

Wn1
� �o; � � � ;o|����{z����}

i

;p;o; � � � ;o|����{z����}
mÿiÿ2

�

and insert Wn1
into W};

6. Increase i by 1, if i � mÿ 1, procedure terminates,
else return to Step 3.

Using the above procedure, we get two multisets W and
Z. Similarly to the proof of Theorem 3.1, based on the
recursive relation of successive column vectors in matrix V
as shown in Theorem 4.1, it can be proven by induction that
matrix V is identical to the sum of all matrices in W and Z:

V �
XjWj
i�1

Wi �
XjZj
j�1

Zj: �B:1�

2) Next, we introduce another method to construct
multisetW and Z with the aid of a weighted tree. Since the
complementary polynomial is p�x� � xtmÿsÿ1 � � � � � xt1 , the
last entry of p�# �jÿ 1�� or p�# �jÿ 2�� is 1 only when
j 2 f�mÿ ti�; �mÿ ti � 1�; 1 � i � �mÿ sÿ 1�g. According
to Procedure B-1, each child matrix in multiset W can be
obtained by right shifting its parent matrix by w 2
f�mÿ ti�; �mÿ ti � 1�; 1 � i � �mÿ sÿ 1�g columns and
the whole construction process begins from two matrices:
W1 and W2 �W1�! 1�. Therefore, we can construct a
weighted tree D in which every node di represents the matrix
Wi in W and the weight of each edge represents the
number of columns by which the parent matrix right shifts
to generate its child matrix. According to Procedure B-1, it
can be shown that the tree D is uniquely determined by the
following property:

ZHANG AND PARHI: SYSTEMATIC DESIGN OF ORIGINAL AND MODIFIED MASTROVITO MULTIPLIERS FOR GENERAL IRREDUCIBLE... 747



Property B-1.

1. The root d1, representing matrix W1, always has one
child node d2 (representing W2) connected by an edge
with weight w � 1. Besides d2, root d1 has at most
2�mÿ sÿ 1� other child nodes, where the weight of
edge

w 2 f�mÿ ti�; �mÿ ti � 1�; 1 � i � �mÿ sÿ 1�g:

2. 8 dj 6� d1, it has at most 2�mÿ sÿ 1� child nodes,
where the weight of edge

w 2 f�mÿ ti�; �mÿ ti � 1�; 1 � i � �mÿ sÿ 1�g:

3. Let h�d1; dj� denote the weight of path from d1

to dj, where h�d1; d1� � 0, we have 8 dj, if
9 r 2 f�mÿ ti�; �mÿ ti � 1�; 1 � i � �mÿ sÿ 1�g
and �h�d1; dj� � r� < mÿ 1, then dj always has a
child node dl and the weight of edge between dj and dl
is r.

4. 8dj 2 D, h�d1; dj� < mÿ 1.

Since W1 is identical to the matrix P in Theorem 4.2, we can
construct the multiset W as follows:

W � fP�! h�; 8h 2 Hg;
where H � fh�d1; di�; 8 di 2 Dg. Moreover, the above
weighted tree D also can be used to represent all the
element matrices in multiset Z. Let root d1 represent matrix
Z0 � E1, each other node di represents a matrix generated
through shifting Z0 right by h�d1; di� columns. According to
Procedure B-1, if we introduce such a subset of all nodes in
D, denoted as ~D, that it contains each node which is
connected with its parent node by an edge with the weight
z 2 f�mÿ ti � 1�; 1 � i � �mÿ sÿ 1�g, we have

Z � fE1�! g�; 8g 2 Gg;
where G � f1; h�d1; di�; 8 di 2 ~Dg. Therefore, (B.1) can be
rewritten as

V �
X
i2H

Wi �
X
j2G

Zj:

Similarly to the discussion in Appendix A, using
Algorithm A-1, we can remove those repeated elements in
pairs from multiset H and G and obtain L � f0; 1; � � � ;mÿ
2g and J � f1; � � � ;mÿ 2g, respectively, and

V �
X
l2L

P�! l� �
X
j2J

E1�! j�:

Summarizing the above approach of constructing L and J ,
we get Algorithm 4.1 in Section 4.1. tu
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