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Abstract—This paper considers the design of bit-parallel dedicated finite field multipliers using standard basis. An explicit algorithm is
proposed for efficient construction of Mastrovito product matrix, based on which we present a systematic design of Mastrovito multiplier
applicable to GF(2™) generated by an arbitrary irreducible polynomial. This design effectively exploits the spatial correlation of
elements in Mastrovito product matrix to reduce the complexity. Using a similar methodology, we propose a systematic design of
modified Mastrovito multiplier, which is suitable for GF(2™) generated by high-Hamming weight irreducible polynomials. For both
original and modified Mastrovito multipliers, the developed multiplier architectures are highly modular, which is desirable for VLSI
hardware implementation. Applying the proposed algorithm and design approach, we study the Mastrovito multipliers for several
special irreducible polynomials, such as trinomial and equally-spaced-polynomial, and the obtained complexity results match the best
known results. Moreover, we have discovered several new special irreducible polynomials which also lead to low-complexity

Index Terms—Finite (or Galois) field, standard basis, multiplication, irreducible polynomials, complexity, VLSI architecture, Toeplitz
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1 INTRODUCTION

FFICIENT hardware implementations of finite (or Galois)

field GF(2™) arithmetic units are highly desirable for
many applications in error-correcting coding and crypto-
graphy [1], [2], [3], [4]. Among the GF(2™) arithmetic
operations, multiplication is the most basic and important
building block in many applications. A number of efficient
GF(2™) multiplication approaches and architectures have
been proposed in which different basis representations of
field elements are used, such as standard basis, dual basis, and
normal basis. Standard basis is more promising in the sense
that it gives designers more freedom on irreducible
polynomial selection and hardware optimization. For
detailed discussions of these three basis representations,
readers are referred to [3], [5]. In this paper, we are
interested in the design of bit-parallel GF(2™) multipliers
using standard basis.

The standard basis multiplication involves two steps:
polynomial multiplication and modulo reduction. Let f(x) be
the irreducible polynomial generating GF(2™), ¢(x) be the
product of a(z) and b(z), where a(z), b(z), ¢(z) € GF(2™).
The finite field multiplication is performed as
c(x) = (a(x) - b(x)) mod f(x). An efficient dedicated bit-
parallel multiplier was proposed by Mastrovito [6] in
which a product matrix M is introduced to combine the
above two steps together. Thus, the multiplication is carried
out by ¢ =M b, where ¢ and b represent the coefficient
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vectors of c(x) and b(z), respectively. Given irreducible
polynomial f(z), each entry in matrix M is obtained by
Xoring certain coefficients of a(x). Many entries in matrix M
can be computed efficiently by sharing some common
items, e.g., two entries M(i1,j1) = ap + a2 + a3 and
M(is, j2) = ap + as + a4 can be computed using three XOR
gates by sharing the common item ay + as. This method is
called subexpression sharing [7]. Mastrovito multipliers using
two special irreducible polynomials, trinomial and equally-
spaced-polynomial (ESP), have been studied by many
researchers for their low-complexity implementations [8],
[9], [10], [11], [12], [13], [14]. The essence of all these works is
to find an architecture to exploit subexpression sharing
efficiently based on the specific irreducible polynomials. It
has been shown in [8] that Mastrovito multiplier using
irreducible trinomial 2™+ 2" + 1 only requires (m?—1)
XOR gates and m? AND gates. By generalizing the
approach of [8], Halbutogullari and Kog [14] discovered
that the space complexity of Mastrovito multiplier using
irreducible ESP 2™ + z'" + -+ + 2" + 1, where (t + 1)r = m,
can be reduced to (m? —r) XOR gates and m?> AND gates.
Furthermore, [14] presents a new formulation of the
Mastrovito product matrix for an arbitrary irreducible
polynomial 2™ 4 z™ + --- + 2™ 4 1, where the space com-
plexity is given as m? AND gates and (m — 1)(m +k—1) +
> jen(m —1—j) XOR gates, N'C {0,1,---,m — 2}. How-
ever, [14] fails to find a method to explicitly compute the set
N, which makes its result less practicable in general.

In general cases, the complexity of computing product
matrix is proportional to the Hamming weight of the
irreducible polynomial f(z) (denoted as pwt). So, the
Mastrovito multiplier is good only when low-Hamming
weight irreducible polynomials are used. A modified
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Mastrovito multiplier was proposed by Song and Parhi [15],
which has a complexity proportional to (m — 1 — pwt). Its
basic idea is to use the complementary irreducible poly-
nomial for the computation of matrix M with appropriate
compensation. Such a multiplication scheme is efficient
when GF(2") is generated by high-Hamming weight
irreducible polynomial.

Generally, for large m, efficient design for both original
and modified Mastrovito multipliers becomes rather diffi-
cult and a systematic design approach is highly desirable. In
this paper, we generalize the approach of [8] in a different
way compared with [14]. We propose a theorem and an
algorithm (which can explicitly compute set N in [14]) for
the construction of product matrix in the original Mastro-
vito multiplier, based on which we develop an efficient
systematic design of the original Mastrovito multiplier. This
design effectively exploits subexpression sharing in the
computation of product matrix to reduce the complexity.
Using a similar methodology, we also develop a systematic
design of modified Mastrovito multiplier. For both original
and modified Mastrovito multipliers, explicit algorithms
and architectures are presented and the complexities are
given in detail. Applying our proposed design approach,
we study the irreducible trinomial and ESP and the
complexity results match the results in [8] and [14].
Meanwhile, another computation approach for trinomial
case is proposed to make a trade-off between space
complexity and delay. Moreover, with the aid of the
proposed algorithm, we discover several new irreducible
polynomials leading to low-complexity original Mastrovito
multipliers, which is especially desirable when neither an
irreducible trinomial nor an irreducible ESP exists.

This paper is organized as follows: We introduce the
notation of this paper and the fundamentals of finite field
and Mastrovito multiplier in Section 2. In Section 3, we
propose a theorem and an algorithm for the construction of
product matrix, based on which a systematic design
approach for original Mastrovito multiplier is developed.
In Section 4, using a similar design methodology, we
present a systematic design approach for modified Mas-
trovito multiplier. Efficient computation approaches for
several special irreducible polynomials are discussed in
Section 5. This paper is an extended version of [16].

2 NOTATION AND PRELIMINARIES

Since several arithmetic operations pertaining to matrices
and vectors will be extensively used throughout this paper,
we first introduce the following notation: Column vectors
and matrices are represented by small and capital boldfaced
characters, respectively. Matlab matrix notations are used,
e.g., Z(i,:), Z(:,7), and Z(i, j) represent the ith row vector,
jth column vector, and the entry with position (z,7) in
matrix Z, respectively. The operations of shift by feeding
zero are represented by corresponding arrows, e.g., v[| 2],
U[— 1], and U[] 1] represent down shift of vector v by two
positions, right shift of matrix U by one column, and down
shift of matrix U by one row, respectively, which are
explicitly given as:

V[l 2] = [0,0,vq, - - -, vn_s]"
U[— 1] = [0,U(;,1),---,U(:;m — 1)]
Ul 1] =0, U1, )", -, Um —1,)"",

where o represents the zero column vector. Furthermore,
we note that the AND and XOR gates considered in this
paper are all 2-input gates, whose delays are denoted as T4
and T, respectively.

Finite field GF(2™) contains 2™ elements and can be
viewed as an m-dimensional vector space over GF(2),
which only has two elements, 0 and 1. With the standard
basis {1,z,2%---,2™ '}, the elements of the finite field
GF(2™) can be represented as polynomials of degree m — 1
as follows:

GF(2") = {a(z)la(z)

_ m—1 m—2
= Qm—1T + ap—2x

+--+az+a, a; € GF(2)}.
Such polynomial representation is generally used for finite
field arithmetic operations, where addition is carried out by
polynomial addition over GF(2") using bit-independent
XOR operations.

Finite field multiplication using standard basis is carried
out by polynomial multiplication and modulo operation.
Let f(x) = 2™ + f,_12™ ' +--- + fiz + 1 be the irreducible
polynomial generating GF(2™), and c¢(z) be the product of
a(z) and b(z), where a(z),b(x),c(z) € GF(2™). The poly-
nomial multiplication, d(z) = a(z) - b(z), can performed as

d=A b,

where b = [by, by, -+, bp_1]” and d = [d,dy, - -, dop_s]" are
the coefficient vectors of b(z) and d(z), respectively, and
matrix A is given as

ap 0 e 0 0
ay an cee 0 0
am—2  Gp-3 - ag 0
A= Apm—1  Qmpm-2 " ay agp . (1)
0 ama1 - a2 a
0 0 Qp—-1  Am—2
L0 0 - 0 an

Next, we perform the modulo reduction
¢(z) = d(z) mod f(z),
which can be expressed as

2m—2

c(x) = Z dpz® mod f(x)
k=0
m—1 2m—2 (2)

= Z dra® + Z dy, (mk mod f(x))
k=0 k=m

For m < k < 2m — 2, if we denote z" mod f(z) as u'(z),
where [ = k — m + 1, we have

[ 2™ mod f(x), =
ul(z) = { u™(z) - zmod f(z), 1=
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Since the irreducible polynomial is

f@)=a™ + fuaa™ '+ + fiz + fo,

where f) =1, we get
W =f, 0<j<m-1,

©) {U;lf) + uglill)fj, 1<j<m-1 (3)
u =
j
u

(i-1)

m—17

=0,

where ug-lfl) and ug-l) are the coefficients of u("Y(z) and

ul)(z), respectively. Let u’) denote the coefficient vector of
ul)(z), then, using vector notation, (3) can be rewritten as

=1

f
w_{F
u {u(l_l)[l 1]+ ui,l:l) £, 2<1i<m—1, )

where f = [1, f1,-- -, fm,l}T. Let s denote vector

[d07d]7' o 7dmfl]T7

which consists of the first m entries of d, we can rewrite (2)
in matrix notation as follows:

m—1

l
c= Im><m -s+ Z dH—m—l : u()
=1

= [Imxma U} -d = [Iqun, U] A b7

where I,,x,, represent m x m identity matrix and matrix
U = [u,u® ... ulV]. Note that all successive columns
in matrix U have the recursive relation as in (4). Define

M = [Lxm, U] - A. (5)

Thus, the GF(2™) multiplication can be carried out by
c=M"-b, which is the well-known Mastrovito multi-
plication scheme, and the matrix M is called product
matrix.

3 MASTROVITO MULTIPLIER

In this section, we first introduce a theorem and an
algorithm pertaining to the construction of product
matrix M. Then, we develop an approach to compute M
by adding a series of Toeplitz matrices, through which
subexpression sharing could be extensively exploited to
reduce the XOR complexity. Accordingly, a highly modular
multiplier architecture is presented.

3.1 Proposed Theorem and Algorithm

In Section 2, we have shown that product matrix M can be
expressed as the product of two independent matrices,
[Lnxm, U] and A, and there exists a recursive relation
between successive columns in matrix U, as described in
(4). Through the following theorem and algorithm, we will
see that matrix U also can be constructed by adding a series
of Toeplitz matrices.

Theorem 3.1. For the computation of matrix U in (5), we can
always construct a set N C {0,1,---,m — 2} and

U= ZF[_) n}v (6)

neN
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where the Toeplitz matrix F = [f,£[] 1],---,£f[| m — 2]].

Let the irreducible polynomial be

flx) =am +zk + . 42k 41,
where m >k, > --- > k; > 1, the set A in Theorem 3.1 can
be explicitly constructed with the aid of a weighted tree
generated based on f(z). The complete construction

approach is described by the following algorithm:

Algorithm 3.1.

Input: The parameters of irreducible polynomial: m,
ki, - ks

Output: set N' C {0,1,---

Procedure:

,m— 2}

1. Generate a weighted tree D according to the
following properties:

e Each node d; in D has at most s child
nodes and each edge has the weight
we{(m-—Fk),1<i<s};

e Let d; denote the root and h(d;,d;) denote the
weight of path from d; to d;, where
h(di,d;) =0, we have Vd;, if Ire{(m—
ki), 1 <i<s} and (h(di,dj) +7r) <m—1, then
d; always has one child node d; and the weight
of edge between d; and d; is r;

° Vd] eD, h(dl,dj) <m-—1.

2. Construct multiset H = {h(d1,d;), Vd; € D} and set

N =0;

3. For0<j<m-—2,do

a. create multiset S; = 0);
b. VheH,if h=j then insert h into Sj;
c. if (|§;] mod 2) = 1, then insert j into the set V.

Here, we note that a multiset is like a set, except that
repeated elements are allowed, and |S;| represents the order
of S;. A proof of Theorem 3.1 is given in Appendix A, in
which Algorithm 3.1 is developed. From the above
algorithm, we know that the least two elements in N are
always 0 and (m — k) and we have |N| < k.

Example 3.1. Consider the multiplication of a(z) = z* + 22
and b(z) = 2° + 22 + 1 over GF(2°) with the underlying
irreducible polynomial f(z) = 2° + 2* + 2% + 2% + 1. We
have {(m —Fk;),1 <i<s}={1,2,3}. Applying Algo-
rithm 3.1, we generate the tree D. as shown in Fig. 1,
and get the multiset H = {0,1,2,2,3,3,3,3}. Thus, we
have

So={0} =[S|=1 Si={l}=>[S[=1
So={2,2} =S| =2; S3=1{3,3,3,3} = |S3| =4.
Since |S;|mod 2 = |S;]mod2 =10, we get N ={0,1}.

Therefore, we perform the multiplication as
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root

Fig. 1. Tree structure.

c=M.b= ([sts,ZF[ﬁn]} -A) b=
neN
00 0 0 0
00000
100001 100] |10000]| 1
01000071 10| (01000 |0
00100111 1|-[1o10o0] |1
000101011 [0o1010] |1
000011001 (0010 1| |0
000710
0000 1
0111 1] [1 0
0011 1| |0 0
=1 1100 |1|=]0],
0000 1] |1 0
1111 1| |o 1
where
1000
010 0
F:[f,f[u],.--,f[lm—z]}:1010
110 1
1110

W

Thus, we have ¢(z) = (a(z)b(z)) mod f(z) = z*.

3.2 Multiplier Architecture
Applying Theorem 3.1 and Algorithm 3.1, in this section,
we develop an efficient computation approach for the
product matrix M and present the corresponding low-
complexity Mastrovito multiplier architecture. In the
following, we frequently use two special matrices: the
Toeplitz matrix and the upper-triangular Toeplitz matrix. It is
well-known that the sum of two upper-triangular Toeplitz
matrices (or one Toeplitz matrix and one upper-triangular
Toeplitz matrix) can be obtained by only computing the
sum of two row vectors. This property will be used to
exploit the subexpression sharing in the construction of
product matrix M to reduce the entire XOR complexity.
Given a general irreducible polynomial
f(x) =am+ak 4+ 42" +1, we express its coefficient
vector as f=e; +e,41+ - +e,1, where e; is the
m-dimensional ith canonical unit vector:

ei:[oa"'7071a07"'
—— N
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Define

E; = [eell 1)+ el m—2]]. (™)

We can write the Toeplitz matrix F in Theorem 3.1 as
> o Eg+1, where kg = 0, and have

U=)> F[-n] :ES:ZE,{,HP n). (8)
neN i=0 neN

Moreover, according to (1), we write A in block matrix form
as

A= [szAz]Tv 9)

where A, is an m x m lower-triangular Toeplitz matrix and
A, is an (m — 1) x m upper-triangular Toeplitz matrix:

T ap 0 e 0
ay ag e O
As = )
Lam—1 Gm-2 - QG
10
[0 ap-1 -+ a2 aq ( )
0 0 e ag ag
A=
_0 0 e 0 Q-1
Substituting (6), (8), and (9) into (5), we get
M=A+> 3 (Buul-nl-A). (11)

=0 neN
Based on the special structure of E; as defined in (7), it can

be easily proven that

Byl n]- A= (Ad=n])[L G- 1), (12)

where A, =[A” o]" and o is an m-dimensional zero
column vector. Thus, if we denote }_ . N(Af,[—> n]) as S,
(11) can be rewritten as

M= A+ (3 Ao nl) L k)

i=0 " neN
:AS+S+; (S[L k])

Because each A,[—n] is an upper-triangular Toeplitz

(13)

matrix, we easily know that matrix S is also an upper-
triangular Toeplitz matrix with the following form:

0 sp1 - S1

S = . . . (14)
0 0 Sm—1
0 0 0

and computing

S =Y (AL )l=nl) = Y (AdLol=nl)  (15)

neN neN
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righ shift by n Matrix—Vector Multiplication Module Multiplication

Fig. 2. General Mastrovito Multiplier architecture.

is sufficient to completely construct matrix S. Since the first
entry of A;(1,:) is zero, the first n + 1 entries of A;(1,:)[— n|
are also zeroes. Recalling that n = 0 is the least element in
N, we get the XOR complexity for computing S(1,:) based
on (15) is

>

(neN)&(n#0)

Z(m—n—l)—(m—l) (16)

neN

(m—n-1)=

and if binary tree structure is used, the delay will be
Mog, IV Tk

After having obtained S, we use (13) to compute the
product matrix M. From (10) and (14), we know that the
addition of A, and S does not need any XOR gates and the
matrix A, + S, denoted by T, is a Toeplitz matrix. There-

fore, (13) can be rewritten as
M =T+ S[| k] +---+ S[| k.

In order to compute (17) efficiently, we introduce the
following observation:

(17)

Observation 3.1. Given an m x m upper-triangular Toeplitz
matrix S and m x m matrix P whose last (m —[) rows
form a Toeplitz submatrix. If m > j > [, then computing
the sum of vector P(j+ 1,:) and S(1,:) is sufficient to
construct the sum of P and S[|j] and the last
(m —j) rows of the sum matrix still form a Toeplitz
submatrix.

Applying Observation 3.1, we compute M based on (17)
with linear tree structure as follows:

Algorithm 3.2.

1. Initially, set Q, =T
2. For1l<i<s, construct Q; = Q,_; + S[| ki] by com-
puting Q; (ki +1,:) = Q1 (k; + 1,:) + S(1,:);

3. Finally, set M = Q,.

In the above algorithm, for each i, Q,_; (k; + 1,:) + S(1,:)
requires (m — 1) XOR gates, so we need s(m — 1) XOR gates
to compute M with the delay of sTx. In order to obtain the
result c(z) via ¢ = M - b, we also need m*> AND gates and
m(m — 1) XOR gates to complete this matrix-vector multi-
plication. Its delay will be T4 + [log, m|Tx if binary tree
structure is used.

Based on the above computation approach, we
develop the dedicated Mastrovito multiplier architecture

as shown in Fig. 2. Given irreducible polynomial
f(z)=am +zf + .- +2F + 1, set N is constructed using
Algorithm 3.1. Product Matrix Module computes matrix M
and consists of two blocks: M1 and M2. Block M1 generates
the vector S(1,:) by computing ", _\-(A(1,:)[— n]). Sup-
plied with S(1,:), block M2 computes the product matrix M
using Algorithm 3.2. M2 contains (m — 1) P; blocks, each
one generates one row vector of M. If j e {k;,1 <i <s},
then P;j is identical to block B2; otherwise, it is identical to
block Bl. The Matrix-Vector Multiplication Module com-
putes M - b and consists of m identical V blocks. The block V
computes the inner-product of two vectors of length m. The
total complexity of the proposed original Mastrovito multi-
plier for general irreducible polynomial is given by

e XOR Complexity:

(m+s—1)( —n—1),

m—1)+> (m

neN

e AND Complexity: m?,
o Delay: T4 + (s + [logy [N + [logy m])Tx.

It needs to be pointed out that, for a given irreducible
polynomial, there likely exist some common items in the
computation of (15) and (17). By sharing these common
items, we may further optimize the hardware architecture
of product matrix module to some extent. Thus, the
multiplier architecture shown in Fig. 2 may need some
corresponding modifications and the above XOR complex-
ity value is actually an upper bound for general cases.

4 MobDIFIED MASTROVITO MULTIPLIER

Using a similar design methodology as in Section 3, in this
section, we develop a systematic design approach for the
modified Mastrovito multiplier [15], which is preferable if
high-Hamming weight irreducible polynomial is used.

4.1 Proposed Theorem and Algorithm

FOr a p01yn0mia1 f(x) = f’mxm + fnL—lxmyi1 + -+ flfL‘ —+ f(J/
we define its complementary polynomial as
p(@) =1+ fr)2™ + A+ fro)z™ 4+

1+ fi)z+ (1+ fo).
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According to [15], we have the following theorem to
construct matrix U in (5) using the complementary
irreducible polynomial:

Theorem 4.1. Given an irreducible polynomial

f(x) :1‘m+$k"+--~+xkl +1,
its complementary polynomial can be written as

pla) =a 4 2",

where m >t,_ 41 >--->t >0. Let p represent the
coefficient vector of p(x), then we can obtain the matrix U
in (5) by adding two matrices V and Q, where V is
constructed recursively as

P, 1=1
p[ll]Jr(V(m,l)Jrl)-pqLeh i=2
V(ii=D 1]+ V(m,i—2) e
+(V(m,i—2)+V(m,i—1))-p, 3<i<m-—1,

where e, is the first canonical unit vector and

Q=w- (el +V(m,)[- 1)),

where

In the following, we propose a theorem and an algorithm to
construct matrix V in Theorem 4.1 by adding a series of
Toeplitz matrices together.

Theorem 4.2. For the computation of matrix V in Theorem 4.1,
we can always find two sets £ C {0,1,---,m —2} and
Jc{l,---,m—2}, and

V=) Pl=l+) B,
lel JjeTJ

where B, is defined in (7) and
P=[ppll 1, pllm 2]

The sets £ and J in Theorem 4.2 are constructed by the

following algorithm:

Algorithm 4.1.

Input: The parameters of complementary polynomial: m,
by tmes—1;

Output: set £ C {0,1,---

Procedure:

ym—2}and J C {1,---,m — 2}

1. Generate a weighted tree D according to the
following properties:

e The root d; always has one child node d
connected by an edge with weight w=1.
Besides ds, root d; has at most 2(m —s—1)

other child nodes, where the weight of edge
we{lm-—t),(m—t;+1),1<i<(m-s—-1}

e Vdj#d, it has at most 2(m —s—1) child
nodes, where the weight of edge
we{(m—t),(m—t;+1),1<i<(m-s—1)};

e Leth(dy,d;) denote the weight of path from d; to
d;, where h(dy,d,) =0, we have Vd; if 3re
{(m—t),(m—t;+1),1<i<(m—-s—1)} and
(h(di,d;) +7) <m—1, then d; always has a
child node d; and the weight of edge between
d; and d; is 7;

° Vd] eD, h(dl,dj) <m-—1.

2. Construct a subset, denoted as D, of all nodes in D
such that it contains each node which is connected
with its parent node by an edge with the weight
ze{m—-t;+1),1<i<(m—-s—-1)}

3. Construct multisets H = {h(di,d;), Yd; € D} and
G ={1,h(dy,d;),¥ d; € D} and sets L =T = {;

4. For0<j<m-—2,do

a. create S; =7, =10;
b. VheH,if h=j theninsert hinto S;; V g € G, if
g = j, then insert g into 7 j;
c. if (|S;| mod 2) = 1, then insert j into the set £; if
(I7,] mod 2) = 1, then insert j into the set 7.
A proof of Theorem 4.1 is given in Appendix B in which

Algorithm 4.1 is developed.

Example 4.1. Consider the construction of matrix U when
the high Hamming weight irreducible polynomial
f()=a2"+2°+2°+2°+ 22+ + 1 is being used. Its
complementary polynomial is p(z) =z'. We have
{(m—t),(m—¢t;+1),1<i<(m—s—1)} ={3,4}. Ap-
plying Algorithm 4.1, we generate the tree D as shown in
Fig. 3. From this tree, we get H ={0,1,3,4,4,5} and
G=1{1,4,5}. Thus, we obtain £=1{0,1,3,5} and
J ={1,4,5}. So, matrix V is computed as

V=Y Pl=+) Ef=]

leL JjeT

[0 0 0 0 0 0] [0 1 0 0 1 17

00 0 00O 001 001

00 0 0 0O 00 01 00
=0 0 00O O|+[0 O0O0O0OT1TPO0

1 101 01 00 00 01

01 1 0 10 00 0 0 0O

10 01 1 0 1] 100 0 0 0 0}

[0 1 0 0 1 17

0010 01

0001 00
=10 0 0 0 1 O

1 101 00

01 1 0 10

10 01 1 0 1]

Since V(7,:)=1[001101], we have V(7,:)[—1] =
[000110] and
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Fig. 3. Tree structure.
Q=w- (elTJrV(?,:)[H 1]) —w-[100110]

Finally, we have

U=V+Q=
0100 1 1] [1 0011 0]
001001 1001 10
000100 1001 10
00001O0[+|1 007110
110100 100 1 10
011010 1001 10
001101 |1 0011 0]
11 0 1 0 1]
101111

1000 10

=100 100
010010
111100
101 0 1 1]

4.2 Multiplier Architecture
In this section, based on the above theorem and algorithm,

we develop an efficient computation approach and corre-
sponding multiplier architecture for the modified Mastro-

vito multiplication scheme.
According to (5), (9), and Theorem 4.1, we have
M=[L,xm, U -A=A;+U-A,;
:A9+VA1+QA7‘7
—_————— ——

My M,

(18)

and the modified Mastrovito multiplication is carried out as
c=M-b=M,;-b+M,-b.

In the following, we develop efficient approaches for

computing M; and My, respectively. Let’s begin with M.

Recall that the complementary polynomial is

p(x) = =1 4 -+ + 2", thus the matrix P in Theorem 4.2

can be written as
m—s—1
P= > E., (19)
i=1

where E; is defined in (7). Applying (12) and (19), we have
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VA= (Y P+ Y Eil- ) A

leL jeJ

m—s—1

= > (A DL+ Y Al
i=1 leL jeJ
where A; =[AT o]" and o is an m-dimensional zero
column vector. Denote 3, ; A~ 4] and Y, . Ay[— 1] as
S; and S., respectively, we have

m—s—1

M1 = A., + gl + Z SQ“, tl]

i=1

(20)

Since each A;[— n] is an upper-triangular Toeplitz matrix,
we know that both S; and S, are also upper-triangular
Toeplitz matrices, and computing

$16:1) = 3 (A1 1)

$.1) = 3 (A1)~ 1))

leL

(21)

is sufficient to construct él and ég. Since the least element in
L is always 0, similar to (16), we obtain the XOR complex-
ities of computing S; and S, as

Z(mfjf 1) = (m —min(J) — 1) and

T

Z(m—l—l)—(m—l)

IeL
with the delay of [log, |7|]Tx and [log, |£|]T, respectively.
Similarly to Algorithm 3.2, for the computation of M; using
(20), we have the following algorithm:

Algorithm 4.2.
1. Initially, set Q, = A, + S;

2. For 1<i< (m—-s-1),
Ss[l t;] by computing

Q=Q_+

construct

Qi(ti +1,:) = Q1 (ti +1,:) + Sa(1,:);

3. Finally, set M; = Q,,_,_;.

In the above algorithm, the construction of Toeplitz matrix
Q, doesn’t need any gates. For 1 <i < (m —s—1), each
step needs (m — 1) XOR gates, so the XOR complexity and
delay of the above algorithm is (m —s—1)(m —1) and
(m — s — 1)Ty, respectively.

Based on the above discussion, we conclude that the
matrix M; can be computed with the following procedure:

Procedure 4.1.

1. Given a high-Hamming weight irreducible polyno-
mial f(z) =a™ +a™ 4.+ 2" +1, get its comple-
mentary polynomial p(z) = zl»s1+4 ...+ 2% and
construct two sets £ and J using Algorithm 4.1;

2. Construct S; and S, using (21), if we combine £ and
J together to form a new multiset £*, then the
complexity of this step is
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Fig. 4. General Modified Mastrovito Multiplier architecture.

e XOR complexity:

Z(m —1-1)—2(m—1) + min(J);
lec’

e Delay: [log, DT, where D = maz(|L|,|T|);
3. Then, use Algorithm 4.2 to compute matrix M,. For
this step, we have

e  XOR complexity: (m —s—1)(m —1);
e Delay: (m —s—1)Tx.

Next, let’s consider the computation of M,. Denote the
vector el + V(m,:)[— 1] as q”. From Theorem 4.1, we know
that all row vectors in Q are equal to q’. Thus, each row
vector in M is equal to q” - A;. Without loss of generality,
suppose q’ has d nonzero entries whose positions are
T4, -+ ,T1, respectively, where r4 > - -- > ry, then we have

d
q" A =D A(ri). (22)
i=1

Since A; is an upper-triangular Toeplitz matrix, we have
Ay (ry,:) = Ay(1,:)[— (r; — 1)], thus (22) can be rewritten as

d

S AL (- 1))

=1

qT'At

(23)

Therefore, the computation of M, only needs 37, (m — ;)

XOR gates with the delay of [log, d|T.

In the above, we have developed the approaches for
computing M; and M. In order to complete the GF(2™)
multiplication, we only need to compute

c=M-b=M; -b+M,-b.

The matrix-vector multiplication M, - b requires m(m —
1) XOR and m? AND gates with the delay of
T4 + [logom|Tx. Since all row vectors in M, are
identical and the first r; elements in each row are zeros,

the matrix-vector multiplication M - b only requires (m —
1 —1) XOR and (m —r;) AND gates with the delay of
Ty + [logy (m —11)]Tx. The addition of M; -b and M; - b
needs m XOR gates with the delay of T.

Based on the above computation approach, we develop
the modified Mastrovito multiplier architecture as shown in
Fig. 4. The set £ and J are constructed using Algorithm 4.1.
Product Matrix Module computes the two matrices M; and
M, and consists of four blocks: PM1, PM2, PM3, and PM4.
Blocks PM1 and PM2 generate the vector S,(1,:) and
Si(1,:), respectively. Block PM3 computes the matrix M,
using Algorithm 4.2. PM3 contains (m — 1) P; blocks, each
one generates one row vector of M. If
je{t,1 <i<m—s—1}, then P; is identical to block B2;
otherwise, it is identical to block B1. Block PM4 computes
the vector q” - A;, the row vector of matrix M,, where
r1,--,Tq represent the position of the nonzero elements in
q’. The Matrix-Vector Multiplication & Addition Module
computes M; - b+ M, - b. In this architecture, the opera-
tion of M; -b and M - b can be performed in parallel. If
their delays are denoted by Ty + m;Tx and T4 + myT, the
total delay of the modified Mastrovito multiplier will be
T4 + (1 + max(my, ms))Tx. Therefore, the total complexity
of modified Mastrovito multiplier is

e XOR complexity:
@m—s-2)(m—-1)+> (m—1-1)

leL”

+ (m —r;) + min(J),

g

e AND complexity: m* +m —ry,

e Delay: T4 + (1 + max(my,ms))Tx,
where multiset £* is the combination of £ and J, d is the
Hamming weight of q’, and r; represents the index of
nonzero element of q7, and
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my =m —s— 1+ [logymax((|£], |T|)] + [logy m],
my = [log, d] + [logy (m —r1)].

We note that, for given high Hamming weight irredu-
cible polynomial, further hardware optimization is possible
by sharing common items during computation of M; and
M,. So, the above XOR complexity result is also an upper
bound for general cases.

5 SPECIAL IRREDUCIBLE POLYNOMIALS

In Section 3, we presented an efficient computation
approach of original Mastrovito multiplication for general
cases and pointed out that further simplification can be
achieved for specific irreducible polynomials by further
exploiting subexpression sharing. In this section, we show
that by applying our proposed explicit algorithm for the
construction of set A, we can easily obtain efficient
multiplication schemes with further reduced complexity
for several special irreducible polynomials.

51 T >k
In the following, we show that, for irreducible polynomial
fl@)=am™+ak + ...+ 2M +1, where 2> k,, we can re-
duce the XOR complexity of the Mastrovito multiplier by
computing S(1, :) in (15) using linear tree structure instead of
binary tree. Since % > k,, we easily have

N: {O,m—ks,m— ks,l,---,m—kl}

and |[NV| = s+ 1. Thus, (15) can be simplified as

s(1, +z (A= (m—k)). (24

Using linear tree structure, we compute S(1
(24), as follows:

Algorithm 5.1.

,1), according to

1. Initially, set v(j; = A(1,:);
2. For 1 <i¢<s, compute

Vi = Vi AL (m— k)
3. Finally, set S(1,:) = vI.
The XOR complexity of the above algorithm is

Som-n-1-m-)=3(k-1.  (2)

neN i=1

with the delay of sTx. Compared with using binary tree, the
XOR complexity doesn’t change, but delay increases from
[log, (s +1)]Tx to sTx. Next, we will prove that, as
compensation for the increased delay, the XOR complexity
of computing M using Algorithm 3.2 can be reduced from
s(m—1) to >.7 ;(m —k;) by sharing the intermediate
results obtained in Algorithm 5.1.

Proof. In Algorithm 3.2, based on Observation 3.1, we

construct each matrix Q; by only computing

Qi(ki+1,:) =Q;_1(ki+1,:) + S(1,:). (26)
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Moreover, since the last m — k; rows of each matrix Q;
form a Toeplitz submatrix, we have

Qi i(ki+1,)=Qu (ki1 +1,:)[— (ki —ki-y)].  (27)

Therefore, based on (26), (27), and the fact that
Q) =T =S+ A,, by induction we have

i

Qs +1) =3 (S~ t=kl)

From (10), we have

As(kl +17:) = [ak','vak,' 17"',@1,&(),0,"'70]7
ki
A[(l,Z):

[070'771717"'7ak‘1+17akm"'aal]-

m—Fk;

Thus,

Ak +1,:) = Au(1,)[«— (m— k)] + e£+1a[], (29)

where e,y is the (k; + 1)th canonical unit vector.
Therefore, (28) becomes
Q (ki +1,5) = 3 (S (= k)] ) +S(1, )= k]
J=1
+ Ay(1,:)[— (m — k)] + e}, yap.
(30)

Since each Q;(k; + 1,:) is an m-dimensional row vector,
the first k; entries of Q,(k; + 1,:) are identical to the last
k; entries of Q;(k; + 1,:)[— (m — k;)]. From (14), we also
know thatV ¢ > (m — 1), S(1,:)[— ¢| is a zero row vector.
Therefore, according to (30), the last k; entries of Q;(k; +
1,:)[— (m — k;)] are identical to the last k; entries of g/,
where q! is defined as

= XZ:S(L = (m— k)] + As(1,2). (31)

Substituting (24) into (31), we have

ZAf (m — kj)]
+ZZA,

i=1 j=

— k) + (m — k)] + A(1,2).

(32)

Since & > k,, we have Vi,j <5, (m — k;) + (m —k;) > m
and A,,(l,.)[—> ((m —kj) + (m —k;))] is actually a zero
row vector. So, we can rewrite (32) as

-y

We note that g is identical to v/, which we have
obtained in Algorithm 5.1. So, the f1rst k; entries of
Q;(ki+1,:) are equal to the last k; entries of the

D= (m—kj)] + A(1, ). (33)
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intermediate result v/ in Algorithm 5.1. Thus, in
Algorithm 3.2, for each 1<i<s, we only need to
compute the last (m — k;) entries of Q,(k; + 1,:), which
requires (m —k;) XOR gates, and the total XOR
complexity of Algorithm 3.2 is Y ; ,(m —k;) with the
delay of sT. O
Therefore, the entire XOR complexity of computing
product matrix M is

S

D (ki =1)+ > (m— k) =s(m—1)
im1 =1
with the delay of 2sTx. Moreover, the matrix-vector
multiplication M - b requires m(m — 1) XOR and m? AND
gates with the delay of T4 + [log, m]|Tx. Thus, for an
irreducible polynomial in which 5>k, if the linear tree
structure is used to compute S(1,:), the entire complexity of
Mastrovito multiplier is

e XOR complexity: (m + s)(m — 1),

e AND complexity: m?,

o Delay: Ty + (25 + [log, m])Tx.
5.2 Trinomial

If GF(2™) is generated by irreducible trinomial
flz) =2™+ 2"+ 1, we have

.M:&m—myghﬂz:ﬂ}

Therefore, we get k = L%J, (15) and (13) can be simplified
as

&
S(L,)=Y" (At(l,:)[—w'(m—n)}), (34)

=0
M=A,+S +8][| n. (35)

Obviously, computing
M(n+1,:) =As(n+1,:)+S(n+1,:)+S(1,:) (36)

is sufficient to construct M in (35). According to the
complexity results presented in Section 3, we know that
the XOR complexities of computing (34) and (36) are
S (m—i(m—n)—1) and (m — 1), respectively. In the
following, we will see that the above complexity values can
be further reduced. First, we show that (m — n), instead of
(m — 1), XOR gates are sufficient to complete the computa-
tion in (36). From (29), we have

A1)«

and, since S is an upper-triangular Toeplitz matrix, its
(n+ 1)th row can be written as

S(1,:)[— n]

k

= (- (AL ilm =) ) [

=0

= A1

An+1,:) = (m —mn)] + eZHaO

S(n+1,:) =

;)= nl.

So, (36) can be rewritten as

M(n+1,:) = Ay(1,:) [~ (m —n)] + egﬂao

+ A(1,)[— n] +S(1,:).

Let’s consider the addition of A,(1,:)[« (m —n)] and
S(1,:) in (37). Because the last (m — n) entries of A, (1,:)[«—
(m —n)] are zeros, we only need to compute the first n
entries of A(1,:)[« (m —n)] + S(1,:). Obviously, the first
n entries of A;(1,:)[« (m —n)] + S(1,:) are equal to the last
n entries of A;(1,:) + S(1,:)[— (m — n)] and we have

»1) +S(L3)[= (m —n)]

(iAt(l,:)[ﬁ i
= Zk: (At (1,:)[— i(

=]} + Ad(L, )= (k+1)(m —n)
=0
= S(1L,7) + A1) (k4 1)(m = n)].

Since k= [2=2|, we have (k+1)(m—n)>(m—1).
Thus, the item A,(1,:)[— (k+ 1)(m — n)] is actually a zero
vector and the first n entries of A;(1,:)[« (m —n)] + S(1,:)
are identical to the last n entries of S(1,:). Therefore, the
addition of A;(1,:)[« (m — n)] and S(1,:) does not need any
XOR gates. Furthermore, in (37), the sum of the other two
items,

(37)

Al

— A1) + m=m)])[= (m—n)

T
€100 +Af(1 0,00, Gm-1,"+,0n41 L

)= nl=10,---,
)=l =1
n m—n

has (m — n) nonzero entries. Thus, we conclude that the
computation of (37) only needs (m — n) XOR gates.

The XOR complexity of computing (34) can be reduced
by using either the linear tree or hybrid tree method, which
will lead to different trade-off between XOR complexity and
delay.

5.2.1 Linear Tree

If (34) is computed using linear tree structure as
21 A(1,))[—i(m —n)], we achieve the lowest XOR
complexity with the delay increasing linearly with k. This
approach has been thoroughly studied in [8], in which it
was proven that (n — 1) XOR gates are sufficient to compute
(34) with the delay of kTx. We have known that the
computation of (35) needs (m — n) XOR gates with delay of
1Tx. Thus, the total complexity of the Mastrovito multiplier
in [8] was obtained as:

e XOR complexity: m? — 1,

e AND complexity: m?,

e Delay: Ty + (k+ 1+ [logym])Tx, k = |2=2] .
Especially, it’s pointed out in [8] that if n =, then the XOR
complexity can be further reduced from (m?—1) to
(m? — %), with the delay reduced by 17%.

5.2.2 Hybrid Tree

We have known that using linear tree structure to compute
(34) will lead to a very low XOR complexity with the delay
increasing linearly with k. However, when k is very large,
the delay may be intolerable for applications requiring high
speed. In the following, we present another approach for
computing (34), where the XOR complexity also can be



744

t,- Depth Binary Tree B

© QP

Qop e o o .

Fig. 5. Hybrid tree computation scheme.

reduced by exploiting subexpression sharing and the delay
increases linearly with |log,(k+1)].

Let the Hamming weight of k+1 be h and
[logy(k+1)| =t;, then k+1 can always be written as

k+1=2m4201 ... 420 where th>th1> >t If
we denote Ay(1,:)[— i(m —n)] as A1, ) (34) can be
rewritten as
k ) wp—1 wp_1—1 )
> (a0") = 3 (a A1)
i=0 i=0 i=wp,
wy—1
ety (A1)
1=wsy
=g +g  + - +8,
(38)
where
h
=Y 2 1<j<h (39)
=

We compute the vector g} using a binary tree B with the
height of ¢, as shown in Fig. 5, where each node represents
a m-dimensional vector. At each depth j , there are oth—i
nodes with the following values:

21 2U+1) _1 2th —1

STA)Y, DT AT DT ALY,

i=0 =27 §=2th —2i

(40)

In (40), all other items can be dlI‘eCﬂY obtained by right
shifting the first item Y7 ' A(1 by -2/ columns,
where 1 <1 <277 —1.So, only computmg the first node at
each depth is sufficient to construct the whole binary tree.
The first node at depth j is computed by adding the first
two nodes at depth j — 1, where (m — 2"} (m — n) — 1) XOR
gates are required. Thus, the XOR complexity of computing

T -
g 1s

— 27 m —n) - 1) (1)
m — Dty — (2" —1)(m —n).

Moreover, each vector giT in (38), where 1 <i<h—1,
can be obtained by right shifting the first node at depth ¢; in
the binary tree B. Thus, we compute _,_, g/ using linear
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tree L and obtain a hybrid tree to compute (38) as shown in
Fig. 5. From (38), we know that there are only (m —1—
w;+1(m —n)) nonzero entries in vector g’. Therefore, it

requires
h

71)+Zwi(mfn)

=2

h—

—_

(m— 1 —wii(m—

I
—_

i

— (h—1)(m

(42)

XOR gates to compute the linear tree L. Combining (41) and
(42) gives the total XOR complexity for the computation of
(38) as

h
(thn+h—-1)(m-1)+ (sz — ot 4 1) (m—mn)

=2
and the delay is (¢, + 1)Tx. We have known that computing
(35) requires (m —n) XOR gates with the delay of 1Ty.
Therefore, in trinomial cases, if the above hybrid tree
structure is employed to compute (34), the total computa-
tion complexity of Mastrovito multiplier will be

e XOR complexity:

(m+t,+h—-1)(m—-1)+ (iw, — 2 1 2)(m —n),
=2

e AND complexity: m?,

o Delay: Ty + (t, + 2 + [log, m])Tx,
where t, = |logy(k+1)|, h is the Hamming weight of
(k+1), and w; is defined in (39).

5.3 Pentanomial

A polynomial f(z)=a" +ab .- +2M +1 is called
pentanomial if s = 3. For general irreducible pentanomials,
it’s impossible to write the set AV in a simple form, e.g., as in
the trinomial case, and we have to use the general approach
presented in Section 3 to design the product matrix module
and perform the possible hardware optimization for the
dedicated irreducible pentanomial.

In the following, we present two special irreducible
pentanomials for which the set A has a simple form and the
complexity of corresponding Mastrovito multipliers can be
easily obtained.

5.3.1 Special Case 1

For irreducible pentanomials where % > ks, it follows from
the analysis in Section 5.1 that if hnear tree structure is used
to compute S(1,:), the total complexity of the Mastrovito
multiplier is

e XOR complexity: (m + 3)(m — 1),
e AND complexity: m?,
o Delay: Ty + (6 + [log, m])Tx
5.3.2 Special Case 2
For such irreducible pentanomials that

m*k3:]€3*]€2:]€2*k1:7“7
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applying Algorithm 3.1, we have

N:{n:4l-r,n:(4l+1)~r,OglggJ}, (43)
where d = |2-2]. So, (15) can be simplified as
4]
5(1,9 = (8" 41-11), (44)
where
gl = Au(1,1) + Ag(1,5)[— 7). (45)

The vector g’ is computed using (m —r —1) XOR gates
with the delay of 1T%. If we use linear tree to compute (44)
as Y0 4 g’ [— 41 - 7], then, applying the results in [8], it only
requires (m — 4r — 1) XOR gates with the delay of |4]Tx.
Therefore, the total XOR complexity of computing S(1,:) is
(2m — 5r — 2) with the delay of (|4] +1)Tx. Furthermore,
using Algorithm 3.2, we need 3(m —1) XOR gates to
compute M with the delay of 37%. Thus, in this case, the

total complexity of the Mastrovito multiplier is given by

e  XOR complexity: (m + 3)(m — 1) + (2m — 5r — 2),

e AND complexity: m?,

e Delay: Ty + ([4] + 4+ [logy m])Tx.
5.4 ESP
A polynomial f(z) =1+a"+2* 4+ -+ 2" + 2™, where
(t + 1)r =m, is called an ESP (equally-spaced-polynomial).
An ESP with r =1 is usually referred as an AOP (all-one-
polynomial). For irreducible ESP, applying Algorithm 3.1,
we have N = {0,r}, based on which it can be shown that
matrix U in (5) always has the following form:

U=L+E;[— 7],

where E; is defined in (7) and
IT'X”’ |
L= |
IT'X”’ |

Onisem—1-r |

where O,,; and I;,; represent i x j zero matrix and ¢ x ¢
identity matrix, respectively. Therefore, the product
matrix M can be computed as

M = As + U . At
:Aq—l_LAf—'_El[_) 7"] Af
Let Q; denote L - A;, we have

T

QIZL'AL:[PT7PT:"'7PT} ’ (46)

where rxm matrix P = Ay (1:r:).
A+ E|[— 1]+ A;, we have

Let Q, denote

Q=A+E[—7] A=A, + A7, (47)

where A, = [AtT,o]T. Obviously, Q; and Q, are obtained
without any computation. We perform the GF(2™) multi-
plication as

c=M-b=Q,-b+Q,b.

According to (46), we know that only computing P - b is
sufficient to obtain the result of Q, - b. Since P = A;(1: r,:),
we have

P(i,:) = Ay(i:) = Ay(1,0)[= (i = 1)),

which shows that the first i entries in P(i,:) are zeros.
Therefore we get the complexity of computing Q; - b as
r+r

2 )

#ofAND = zr:(m —i)=mr —
=1

>+ 3r
2 )

#0fXOR = i(m—i— 1) =mr—
=1

and the delay is T4 + [log, (m — 1)]T%.

From the definition of A, and A, in (10), we know that
each row vector in Q,(1:m — r,:) contains r zero entries
and each row vector Q,(m — r+4,:) contains (r — i) zeros,
where 1 < i < r. Therefore, in the computation of Q, - b, the
numbers of AND and XOR gates are

#ofAND = (m —r)(m —7r) + zr:(m —r+1)

—m,

and its delay is T4 + [log, m]Tx. Obviously, Q,-b and
Q; - b can be computed in parallel. At last, we also need m
XOR gates to add Q, - b and Q, - b together to get the final
result c. Therefore, we get the total complexity as follows:

e XOR complexity: m? —r,

e AND complexity: m2,

o Delay: T4 + (1 + [logy m])Tx.
Here, we note that the above XOR complexity result is
identical to that obtained in [14].

6 CONCLUSIONS

In this paper, we have presented a systematic design
approach for Mastrovito multipliers. The complexity results
are m? AND gates and at most Y, .\, (m —n—1) — (m — 1)
XOR gates. We note that, although the complexity results
appear the same as those presented in [14], we propose an
explicit algorithm to compute the set A, which makes our
design really practical. We have extended this design
approach to the modified Mastrovito multiplication
scheme, which is suitable for high-Hamming weight
irreducible polynomials. For both original and modified
Mastrovito multipliers with general irreducible polyno-
mials, the developed computation approach effectively
exploits subexpression sharing and the complexity analyses
are given in detail. The corresponding hardware architec-
tures for both cases are highly modular. Meanwhile, in this
paper, we have studied several special irreducible poly-
nomials. For trinomials and ESPs, the complexity results
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match the best known results achieved in [8] and [14]. We
also present another computation approach for trinomials
to provide a trade-off between XOR complexity and delay.
Moreover, several other special irreducible polynomials,
which also lead to low-complexity implementation, have
been discovered and corresponding complexities are given.
Finally, we note that, with the explicit algorithms and
design procedures, all the proposed efficient design
schemes can be easily employed by VLSI automation
design tools for dedicated bit-parallel GF(2") multiplier
design.

APPENDIX A
PROOF oF THEOREM 3.1

In the following, we prove Theorem 3.1 in two steps,
through which Algorithm 3.1 is developed: 1) First, we will
show that the matrix U is equal to the sum of a series of
matrices constructed by the following procedure:

Procedure A-1.

1. Initially, set i =n =1 and create a matrix multiset

W = {U,;}. We define

Ul = [f707"'70}7
N s’
m—1

where o is the m-dimensional zero column vector;
2. VU, € W, shift down its ith column by one position

to serve as its (i + 1)th column:

Ul(::i + 1) = Ul(ﬂ/)[l 1]

3. VY U; € W, if the last entry of U;’s ith column vector,
U;(m, 1), is 1, then {Increase n by 1, create U,’s child
matrix U, as

i m—i—2

and insert U,, into W (U; is called the parent matrix
of Uy)};

4. Increase i by 1,if i=m
else return to Step 2.

— 1, procedure terminates,

Using the above procedure, we obtain a multiset W
containing N matrices Uy,---, Uy, where N = |W| is the
order of W. Each element matrix is m by (m — 1) and has
the form:

Ui: o, '707faf[l1]7"'7
——

Ti m—1—r;

fllm—-2-—r]|.

In the following, we prove by induction that the sum of all
U;s in W is identical to the matrix U:

N
=> Ui, 1<i<m—1.
=1
When i = 1, from Procedure A-1, we have U;(:,1) = f and
U,(:,1) =0, Vi > 1. From (4), we also have U(;,1) = f. So,
we get
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N
=> Ui(:1)

i=1

Assume, for [ > 1, we have

(A1)

Applying the recursive relation between the successive
columns of U as shown in (4), we compute U(:,l+ 1) as
follows:

U1+ 1) = UG DL 1]+ Ulm, D) - £
N N
_ (ZUi(:,l))[i 1)+ (;Ui(m 1)) £ )

=3 (w00 ) ¢ 3 (00m0 1),

According to Procedure A-1, we know that there always
exist two integers 1 <r <t < N and

e if 1 <r, then matrix U, is created before the Ith
iteration in the procedure and

Ui DL 1] = Ui(:, 0+ 1);
e if r<i<t, then U; is created at the Ith iteration,
U;(;, )]l 1] is zero vector, and U,(;, 1+ 1) =f;
e if t <4, then U is created after the [th iteration, both
U;(:, D[] 1] and U;(:,1+ 1) are zero vectors.
We also know that each U;(m,l) =1 corresponds to a
matrix created at the [th iteration. Thus, we have

N

( ) ZU A1)+ ;U,-(:,H—l),
( ) ZU NESN

i=1 i=r+1

Mz lMZ

Substituting the above two equations into (A.2), we get

(ZU l+1)+§:Ui(:,l+1))
- ZU

1=s5+1
_ZU

Thus, we have derived (A.3) from the assumption (A.1).
Therefore, we can conclude that the sum of all matrices in
W is equal to matrix U.

2) Next, we introduce another method to construct
multiset W with the aid of a weighted tree. Without loss of
generality, let the irreducible polynomial be

i4+1)

NESY (A.3)

J+1).

flx) =am +zk + .. 42k 41,

where m >k, >--- >k > 1. Thus, for 0 < j<m, only
when j € {(m — k;),1 <i < s}, the last entry of f[] (j —1)]
is 1. From Procedure A-1, we have
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U = [f,fu 1, £[] m—z}]

and, except U;, each other matrix U; in W can be
constructed by shifting right its parent matrix by
w columns, where w € {(m—k;),1 <i<s}. Thus, we
can construct a weighted tree D in which each node d;
represents the matrix U; in W and the weight of each
edge represents the number of columns by which the
parent matrix right shifts to generate its child matrix.
According to Procedure A-1, it can be shown that this tree
is uniquely determined by the following property:

Property A-1.

1. Each node d; in D has at most s child nodes and each
edge has the weight w € {(m —k;),1 < i <s}.

2. Let dy denote the root and h(dy,d;) denote the
weight of path from dy to d;, where h(dy,d;) =0,
we have YV dj, if I3re{(m—k),1<i<s} and
(h(di,d;) +7) <m —1, then d; always has a child
node d; and the weight of edge between d; and d; is r.

3. Vdj €D, h(dl,dj) <m—1.

Since Uj is identical to the matrix F in Theorem 3.1, we can
construct W as

W = {F|— h],Vh € M},

where H = {h(d;,d;),V d; € D}. Obviously, the multiset H
may contain some repeated elements, which means WV may
contain some identical matrices. Because here the addition
is logic XOR, the sum of two identical matrices is actually a
zero matrix. So, we can remove those repeated elements in
pairs from multiset H using the following algorithm:

Algorithm A-1.

1. Initially, set N = 0.
For0<j<m-—2,do

e create S; =0,
e VheH,if h=j then insert h into S;.
3. If (|S;| mod 2) = 1, then insert j into the set N.

Using the above algorithm, we construct a new set N C

{0,1,---,m —2} and

> Fl—=n]=)» F[-h=U.

neN heH
We note that combining Property A-1 and Algorithm A-1
just produces Algorithm 3.1 in Section 3.1. 0
APPENDIX B

PROOF OF THEOREM 4.2

Similarly to the proof of Theorem 3.1, we prove Theorem 4.2
in two steps, through which Algorithm 4.1 is developed: 1)
First, we use the following procedure to construct two
matrix multiset W and Z, where the sum of all the matrices
in these two multisets is equal to matrix V.

Procedure B-1.

1. Initially, set i =2, n; =2, and ny = 1. Create two
multisets W = {W;, W, } and Z = {Z }:

Wl:[pvp[l 1]707"'70]7
—_——

m—1

W2:[0>p707"'70]a
——_————

m—1
Zl = [0,61,07"'70],
——————
m—1

where p represents the coefficient vector of com-
plementary irreducible polynomial p(z) and e; is the
first canonical unit vector.

2. If Wy(m,1) =1, then {Increase n; by 1, create W1's
child matrix W,, = W3 and insert W, into W};

3. YW, eWandVZ e Z do

Wl(i,i—i- 1) = Wl(,l)u 1},Zl(2,i+ 1) = Zl(,l)[l 1}

4. YVW;eW, if W;(m,i—1) =1, then {Increase both
n; and ny by 1, create W;’s child matrix W,,, and

Z,, as
Wm = 07"'707p707"'70}7
v v

m—i—2

i

an = 07"'707e1a0a"'50]
‘ v
i

m—i—2

and insert W, and Z,,, into JV and Z, respectively};
5. YW, e W, if Wi(m,i) =1, then {Increase n; by 1,
create W/’s child matrix W,,, as

Wm = Oa"'a07p70a"‘a0]

i m—i—2

and insert W,,, into W};
6. Increase i by 1, if ¢ =m — 1, procedure terminates,
else return to Step 3.

Using the above procedure, we get two multisets WV and
Z. Similarly to the proof of Theorem 3.1, based on the
recursive relation of successive column vectors in matrix V
as shown in Theorem 4.1, it can be proven by induction that
matrix V is identical to the sum of all matrices in W and Z:

14 12|

V= W,+> 7,
i=1 =1

2) Next, we introduce another method to construct
multiset W and Z with the aid of a weighted tree. Since the
complementary polynomial is p(x) = 2’1 4 ... 4+ 2", the
last entry of p[| (j—1)] or p[l (j—2)] is 1 only when
je{(m—t),(m—t+1),1<i<(m-—s—1)}. According
to Procedure B-1, each child matrix in multiset W can be
obtained by right shifting its parent matrix by w €
{(m—t),(m—t;+1),1<i<(m-s—1)} columns and
the whole construction process begins from two matrices:
W, and W, = W;[— 1]. Therefore, we can construct a
weighted tree D in which every node d; represents the matrix
W, in W and the weight of each edge represents the
number of columns by which the parent matrix right shifts
to generate its child matrix. According to Procedure B-1, it
can be shown that the tree D is uniquely determined by the
following property:

(B.1)
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Property B-1.

1. The root d,, representing matrix W1, always has one
child node dy (representing W) connected by an edge
with weight w = 1. Besides dy, root d; has at most
2(m — s — 1) other child nodes, where the weight of
edge

we{lm—t),(m—t;+1),1<i<(m-s-—1)}

2. Vdj#dy, it has at most 2(m — s — 1) child nodes,
where the weight of edge

we{(m—t),(m—t;+1),1<i<(m-—s—1)}

3. Let h(dy,d;) denote the weight of path from dy
to dj, where h(di,d;)=0, we have Vd; if
dre{(m—t),(m—t;+1),1<i<(m—-s—1)}
and (h(di,d;)+7) <m —1, then d; always has a
child node d; and the weight of edge between d; and d
is r.

4. Vdj eD, h(dl, d]) <m-—1.

Since W/ is identical to the matrix P in Theorem 4.2, we can
construct the multiset W as follows:

W = {P|— h],Vh € H},

where H = {h(dy,d;),V d; € D}. Moreover, the above
weighted tree D also can be used to represent all the
element matrices in multiset Z. Let root d; represent matrix
Z, = E;, each other node d; represents a matrix generated
through shifting Z, right by h(d1, d;) columns. According to
Procedure B-1, if we introduce such a subset of all nodes in
D, denoted as D, that it contains each node which is
connected with its parent node by an edge with the weight
ze{(m—t;+1),1<i<(m—s—1)}, we have

Z ={Ei[— g],Vg € G},

where G = {1,h(d,d;),¥ d; € D}. Therefore, (B.1) can be
rewritten as

V= W,+> 2,
i€ EY

Similarly to the discussion in Appendix A, using
Algorithm A-1, we can remove those repeated elements in
pairs from multiset H and G and obtain £ C {0,1,---,m —
2} and J C {1,---,m — 2}, respectively, and

V= P+ E-j
leL JjeJ

Summarizing the above approach of constructing £ and 7,
we get Algorithm 4.1 in Section 4.1. ]
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