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Abstract—It is almost evident that SRAM-based cache memories will be subject to a significant degree of parametric random defects

if one wants to leverage the technology scaling to its full extent. Although strong multibit error-correcting codes (ECC) appear to be a

natural choice to handle a large number of random defects, investigation of their applications in cache remains largely missing arguably

because it is commonly believed that multibit ECC may incur prohibitive performance degradation and silicon/energy cost. By

developing a cost-effective L2 cache architecture using multibit ECC, this paper attempts to show that, with appropriate cache

architecture design, this common belief may not necessarily hold true for L2 cache. The basic idea is to supplement a conventional L2

cache core with several special-purpose small caches/buffers, which can greatly reduce the silicon cost and minimize the probability of

explicitly executing multibit ECC decoding on the cache read critical path, and meanwhile, maintain soft error tolerance. Experiments

show that, at the random defect density of 0.5 percent, this design approach can maintain almost the same instruction per cycle (IPC)

performance over a wide spectrum of benchmarks compared with ideal defect-free L2 cache, while only incurring less than 3 percent of

silicon area overhead and 36 percent power consumption overhead.

Index Terms—Cache, defect tolerant, error-correcting code.
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1 INTRODUCTION

CONTINUOUS CMOS technology scaling makes the design
of robust and high-density SRAM-based cache an

increasingly challenging task [1]. Potential faults in SRAM
can be parametric/catastrophic defects or transient soft
errors, both of which are becoming increasingly serious as
the technology feature size shrinks. In conventional design
practice, memory defects are handled by using spare (or
redundant) rows, columns, and/or words to repair (i.e.,
replace) the defective ones, while soft errors are compen-
sated by error-correcting codes (ECC) such as single-error-
correcting and double-error-detecting (SEC-DED) codes that are
being widely used in L2 cache of modern microprocessors
[2], [3]. As the technology continues to scale down, the
increasingly severe process variability tends to render
future SRAM subject to a parametric random defect of
0.1 percent or even higher [4]. As a result, traditional repair-
only defect tolerance strategy may no longer be sufficient to
ensure high enough yield, which has motivated recent work
on extending the role of ECC for compensating both soft
errors and defects in cache memories [5], [6]. In [5], the
authors developed techniques that allow the use of the
existing SEC-DED codes to handle defects for the cache
blocks consisting of a single defect while maintaining soft
error tolerance at the cost of memory communication
bandwidth loss, and hence, noticeable instructions per cycle
(IPC) degradation. In [6], 2D array codes (or product codes)

[7] are used to handle clustered soft errors and/or defects.
Nevertheless, since one 2D array codeword protects many
cache blocks altogether, the use of array codes may incur
significant energy cost and IPC degradation in the presence
of a large amount of random defects.

This work concerns the feasibility and potential of using
multibit ECC (i.e., the ECC that can correct multiple errors
within one codeword) in each individual cache data with
small size (e.g., 32- or 64-bit) to tolerate a large amount of
random defects in L2 cache without the loss of soft error
tolerance. In fact, the use of multibit ECC for memory defect
tolerance has been well studied, two decades ago [8], [9],
where researchers developed several multibit ECC that can
realize a shorter decoding latency than conventional multibit
ECC such as the BCH code at the cost of coding redundancy.
Therefore, this work does not intend to develop any new
multibit ECC; instead, we focus on how to enable the effective
use of multibit ECC in L2 cache. The use of multibit ECC for
cache memories clearly faces two problems: 1) The decoding
latency of multibit ECC is (much) longer than that of the
existing SEC-DED code. Because cache memories are ex-
tremely read-latency sensitive in nature, the longer decoding
latency appears as the most critical issue. 2) Compared with
the existing SEC-DED code, multibit ECC tends to incur
much higher coding redundancy, particularly when being
used to protect relatively small cache data (e.g., 32- or 64-bit).
It is arguably true that the above two issues make many
researchers tend to easily preclude the possibility of using
multibit ECC in cache memories.

Although it is most likely true that multibit ECC can be
hardly used in L1 cache, we contend that, contrary to the
common belief, multibit ECC can indeed hold a great
promise to play a key role in L2 cache design as the
technology scaling begins to incur a significant degree of
parametric random SRAM cell defects. First, let us revisit the
above quoted two problems regarding the use of multibit
ECC in cache memories. Since cache blocks consisting of one
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or more defective cells can be identified during memory
testing [8], it is very intuitive that a better choice is to apply
multibit ECC to the cache blocks only whenever necessary
instead of uniformly protecting all the cache blocks using
multibit ECC. Such a simple selective use of multibit ECC
may largely alleviate the above two quoted problems, i.e.,
1) since not all cache read operations invoke multibit ECC
decoding, the impact on the overall cache performance may
be reduced and 2) the amount of memory cells required to
store the coding redundancy can be accordingly reduced.
Intuitively, implementation of the selective use of multibit
ECC must perform runtime table lookup to check whether
or not the cache block being accessed should be protected by
the multibit ECC. This can be realized by content-addres-
sable memory (CAM) [10], e.g., the authors of [11] proposed
to use CAM to store the address of the memory blocks in
which the defects are handled by ECC. However, although a
direct realization of selective use of multibit ECC accom-
panied by CAM is quite straightforward, its effectiveness
may be inadequate in the presence of a relatively high
random defect density for two main reasons: 1) as the
random defect density increases, a larger percentage of
cache read operations may invoke multibit ECC decoding,
which will directly degrade the overall system performance
such as IPC and 2) since the energy consumption of CAM is
substantially larger than that of normal SRAM and the size
of CAM will increase as the random defect density increases,
a significant energy consumption overhead will be incurred.

Following the same simple design principle (i.e., selective
use of multibit ECC accompanied by CAM), this work
develops methods that can reduce the cache memory
performance degradation and energy consumption overhead
in the presence of a large amount of random defects. The basic
ideas are simple and intuitive, and are briefly described as
follows. To reduce the cache memory performance degrada-
tion and energy consumption, we propose to add a small
buffer that keeps the copies of the most recently accessed
cache blocks being protected by multibit ECC. Because of the
well-known cache access temporal locality, the use of this
small duplication buffer can largely reduce the occurrence of
explicit multibit ECC decoding. To further reduce the energy
consumption incurred by CAM access, we add another small
CAM to store the addresses of the most recently accessed
cache blocks that are not protected by multibit ECC. Again,
because of the cache access temporal locality, it may avoid
much of explicit access to the bigger CAM that supports the
selective use of multibit ECC. It should be pointed out that, if
all of the error-correcting capabilities of an ECC are devoted
to defect tolerance for one cache block in L2 cache, this cache
block will be left unprotected for soft errors. For clean cache
blocks, an extra error-detecting capability would be sufficient
since correct data can be fetched from the lower level
memory. Data integrity problem happens only if soft errors
occur in dirty cache blocks that are not backed up elsewhere.
A straightforward solution is to always write such dirty
L2 cache blocks back to the next level memory, which may
incur intermemory-hierarchy bandwidth loss. In this work,
we propose to add a small buffer inside L2 cache to keep the
copies of the most recent write-back data from L1 cache,
which can largely reduce the frequency of the write back from
L2 cache to the next level memory. We note that, in case of
multithreading applications, the technique proposed in [12]
can also be used to strengthen soft error tolerance.

The effectiveness of the proposed methods has been
demonstrated in a case study that assumes a random defect
density of 0.5 percent and the use of double-error-correcting
and triple-error-detecting (DEC-TED) code based on BCH code
as the multibit ECC. The SimpleScalar and Cacti tools are
used for processor simulation and cache memory modeling
at 45-nm technology node. Results show that, under the
defect density of 0.5 percent, the developed design approach
can maintain almost the same IPC performance over a wide
spectrum of SPEC2000 benchmarks compared with ideal
defect-free L2 cache, while only incurring less than 3 percent
of silicon area overhead and 36 percent of energy consump-
tion overhead.

The rest of this paper is organized as follows: Section 2
presents motivating examples to further justify this work.
Section 3 describes the proposed L2 cache architecture that
can effectively handle a large amount of random defects.
Sections 4 and 5 present the experimental methodology and
results to demonstrate the effectiveness of the proposed
design solution. The conclusions are drawn in Section 6.

2 MOTIVATION

In modern microprocessors, each L2 cache block is typically
partitioned into several equal-sized subblocks and each
subblock is protected with an SEC-DED code for soft error
tolerance. In this work, we categorize cache subblocks based
on the number of defective cells they contain:

. A subblock that does not have any defective cell is
called a good subblock, which is denoted as g-subblock.

. A subblock that has one defective cell is called a
single-defect subblock, which is denoted as s-subblock.

. A subblock that has two or more defective cells is
called a multidefect subblock, which is denoted as
m-subblock.

Furthermore, a cache block that only contains g-subblocks is
called a g-block, a cache block that contains both g-subblocks
and s-subblocks is called an s-block, and a cache block that
contains one or more m-subblocks is called an m-block. Let
Pg�sblk; Ps�sblk, and Pm�sblk represent the probabilities that an
n-bit cache subblock is a g-subblock, s-subblock, and
m-subblock, respectively, which can be calculated as
follows given the random cell defect density �

Pg�sblk ¼ ð1� �Þn;
Ps�sblk ¼ n� ð1� �Þn�1 � �;
Pm�sblk ¼ 1� Pg�sblk � Ps�sblk:

Furthermore, let Pg�blk; Ps�blk, and Pm�blk represent the
probabilities that a block consisting of k subblocks is a
g-block, s-block, and m-block, respectively, which can be
calculated as

Pg�blk ¼ Pk
g�sblk;

Ps�blk ¼ ð1� Pm�sblkÞk � Pg�blk;
Pm�blk ¼ 1� Pg�blk � Ps�blk:

For example, following the same L2 cache configuration in
AMD Opteron processor [3], let us consider a 1 MB L2 cache
in which each cache block contains eight subblocks and
each cache subblock contains 64 bits. Accordingly, we can
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calculate those different probabilities under different ran-
dom cell defect densities, as shown in Fig. 1.

As random defect density increases, the percentages of
m-subblocks and m-blocks quickly become nonnegligible,
e.g., under the defect density of 0.5 percent, the possibilities
that a cache block is a g-block, s-block, and m-block are
7.7 percent, 63.8 percent, and 28.5 percent, respectively.
Clearly, if we use redundancies to repair all the cell defects,
92.3 percent of all cache blocks should be repaired. Even
though we use redundancies only to repair all the m-blocks
and use SEC-DED code to handle the s-blocks, the
redundancy overhead is still significant (i.e., 28.5 percent
of all cache blocks should be repaired). Although recently
proposed CAM-based self-repair approaches [13] may
achieve better memory defect tolerance efficiency than
traditional repair approaches, they tend to become infeasible
under high defect density, briefly explained as follows.
Those techniques demand a CAM with 41,944 entries to
record all the addresses of defective cells in the 1 MB
L2 cache under the defect density of 0.5 percent. According
to the memory modeling tool Cacti 5 [14], the area overhead
can be as high as 10.3 percent. More importantly, since the
CAM is searched for every memory access when using self-
repair approach, the dynamic energy consumption of the
CAM is 95 times larger than L2 cache itself, which makes the
self-repair approaches infeasible for L2 cache defect

tolerance at the relatively high defect density. The above
discussion clearly suggests that state-of-the-art defect
tolerance strategies may no longer be adequate under a
relatively high random defect density, and we believe that
extending the role of ECC for both soft error tolerance and
defect tolerance appears almost inevitable. It should be
emphasized here that ECC are used to complement with the
existing redundant repair, other than replacing it, for the
purpose of memory defect tolerance.

The above simple calculations indicate that a stronger
multibit ECC may be necessary in order to enable a dual-role
of ECC. However, a straightforward use of multibit ECC in
L2 cache, i.e., all the L2 cache blocks are uniformly protected
by the same multibit ECC, will incur prohibitive cache access
latency and silicon area penalty. For example, compared
with SEC-DED codes, BCH-based DEC-TED codes that can
correct up to two errors and detect the occurrence of three
errors demand much more check bits as listed in Table 1.
More importantly, the decoding latency of BCH-based
DEC-TED codes can be much longer than that of SEC-DED
codes. The decoding of SEC-DED codes only involves simple
XOR operations and can be efficiently parallelized while the
decoding of BCH-based DEC-TED codes involves more
complex Galois Field arithmetics and even its fully parallel
realization, at the cost of a significant silicon area overhead,
still suffers from relatively long latency [15]. Although there
exist other types of DEC-TED codes with less decoding
latency [8], [9], they will incur much more check bits than
BCH-based DEC-TED codes and their decoding latencies are
still considerably longer than that of SEC-DED codes. As
pointed out earlier, we should selectively use multi-ECC for
cache blocks whenever necessary, and a straightforward
realization of such selective use of multi-ECC tends to incur
significant access latency, silicon area, and energy consump-
tion overhead.

3 PROPOSED L2 CACHE ARCHITECTURE

In this section, we present an L2 cache architecture that
enables the selective use of strong multibit ECC to
strengthen defect tolerance at small cache access latency,
silicon area, and energy consumption overhead, while
maintaining soft error tolerance. Fig. 2 shows the overview
of this proposed L2 cache architecture, which consists of
three main blocks:

1. A conventional L2 cache core that follows the current
L2 cache design practice (e.g., see [3]) and uniformly
protects all the subblocks using SEC-DED codes.

2. A multibit ECC core that contains a fully associative
multibit ECC cache (denoted as M-ECC cache), the
corresponding ECC encoder/decoder, and two small
accessory buffers. The fully associative M-ECC cache
is tagged by the location of each m-subblock and
stores the corresponding multi-ECC check bits. As
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Fig. 1. Histogram of different types of (a) cache subblocks and (b) cache

blocks under different random defect rates.

TABLE 1
Coding Redundancy Comparison between

SEC-DED and DEC-TED Codes



explained later, the two small buffers, i.e., the
predecoding buffer and fast lookup (FLU) buffer, as
shown in Fig. 2, are used to reduce the probabilities
that the M-ECC cache is accessed and multibit ECC
decoding is explicitly invoked.

3. A small fully associative dirty replication cache that
is used to keep copies of most recent write-back data
from L1 cache, which is used to ensure soft error
tolerance as described later.

3.1 Multibit ECC Core for Strong Defect Tolerance

As illustrated in Fig. 2, the fully associative M-ECC cache
holds the location and the corresponding multibit ECC
check bits of each m-subblock. Since the M-ECC cache may
not always be full, we can add one valid bit to each tag to
indicate whether it indeed contains the check bits for one
m-subblock, which can be leveraged to reduce the M-ECC
cache access energy. The tag portion of this M-ECC cache
can be supplied from embedded/external nonvolatile
memories such as flash memory. If a built-in self-test (BIST)
unit [16], [17] is available, this information can be periodi-
cally updated to handle the defects that develop in the field.
The operation of this fully associative M-ECC cache itself is
very simple, i.e., in case of write, the m-subblock data are
encoded by the multibit ECC encoder and the check bits are
stored in the corresponding entry in the M-ECC cache; in
case of read, the check bits are fetched from the M-ECC
cache and sent to the multibit ECC decoder.

As pointed out earlier, if we only use this fully associative
M-ECC cache to realize the selective multibit ECC protection
in L2 cache, it may result in prohibitive cache access latency
and energy consumption cost as the random defect density
increases. To address these two issues, as illustrated in Fig. 2,
we propose to add a small fully associative cache, denoted as
predecoding buffer, that keeps the copies of most recently
accessed m-blocks. This fully associative predecoding buffer
employs the least recently used (LRU) policy for replace-
ment when it is full. In case of an L2 cache read hit, this
predecoding buffer is searched before accessing the M-ECC
cache, and if a hit occurs, the cache block stored in this buffer
will be sent out without incurring explicit M-ECC cache
access and multibit ECC decoding. Because of the typically
high degree of cache access temporal locality, the use of this

small predecoding buffer can obviate a large percentage of
multibit ECC decoding operations and a certain degree of
M-ECC cache access. As a result, the average cache access
latency and energy consumption, incurred by explicit
M-ECC cache access and multibit ECC decoding, can be
reduced.

Although the predecoding buffer can reduce the occur-
rence of M-ECC cache access in case that an m-block is being
accessed, M-ECC cache will be explicitly accessed if a g-block
or an s-block (i.e., those cache blocks that are not protected by
the multibit ECC) is being accessed. Since most cache blocks
are either g-blocks or s-blocks, the M-ECC cache may still be
accessed frequently, which can make the energy consump-
tion incurred by accessing the fully associative M-ECC cache
tend to be high. To further reduce such energy consumption
cost, we propose to add another small CAM, called
FLU buffer, to keep the address of recently accessed cache
blocks that are not protected by the multibit ECC. If an
FLU hit occurs, which means the cache block being accessed
is either a g-block or an s-block, then it is not necessary to
check the M-ECC cache. The FLU buffer is dynamically
updated using LRU policy similar to the predecoding buffer.

By supplementing the main M-ECC cache with the small
predecoding and FLU buffers, we can largely reduce the
impact of M-ECC cache access and multibit ECC decoding
on the overall L2 cache access latency and energy consump-
tion, which will be further demonstrated by experimental
results presented later. Fig. 3 shows the overall operation
flow of the M-ECC core described above. Finally, we note
that, because the storage capacity of the entire M-ECC core
can be much less than that of the L2 cache core, it is
reasonable to expect that the SRAM cell defects in M-ECC
core can be solely handled by conventional redundancy-
repair strategy at modest silicon cost.

3.2 Dirty Replication Cache for Soft Error Tolerance

This section addresses how to maintain soft error tolerance
while using the existing error-correcting capability for defect
tolerance. For cache hierarchy using write-back policy, when
all the error-correcting capability of ECC is devoted to
realizing defect tolerance, the defective cache subblock
clearly becomes vulnerable to soft errors. If a subblock does
not contain any defective cell (i.e., it is a g-subblock), the
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uniformly applied SEC-DED code is sufficient to ensure soft
error tolerance as in conventional design practice. However,
the occurrence of soft errors may only be detectable but
cannot be corrected for

. an s-subblock that contains a single defect and is
protected by SEC-DED code, or

. an m-subblock that contains more than one defect
and is protected by multibit ECC.

Hence, we must restore the full soft error tolerance for those
cache blocks. In this regard, we note that not all the soft
errors demand explicit error correction by ECC. If the cache
block corrupted by soft errors is clean, then error detection
by ECC is sufficient since the correct data can be obtained
from the lower level memory. Data integrity problem
occurs only if the corrupted cache blocks are dirty. There-
fore, in the following, we only focus on the realization of
soft error tolerance for those dirty cache blocks.

One possible solution is to simply use write-through
policy instead of write-back policy (i.e., every write to the
L2 cache causes a synchronous write to its lower level
memory, for example, main memory). In general, write-
through policy tends to incur very significant bandwidth
overhead, leading to noticeable degradation of the overall
computing system performance. As a result, write-through
policy is less popular than its write-back counterpart in
practice. Therefore, this work is only interested in write-back
cache. In the context of write-back cache, it is intuitive that the
problem can be solved if we are allowed to selectively carry
out write-through for dirty defective cache blocks, referred to
as assurance update [5]. However, under high random defect
densities, even assurance update may severely increase the
intercache-hierarchy communication burden and result in
performance degradation. The authors of [5] proposed to
maintain the dirtiness and assurance update at the cache
subblock level, which can reduce the communication burden

compared with keeping assurance update at the cache block
level. However, the incurred implementation overhead and
performance degradation tend to be nonnegligible under
relatively high random defect density (e.g., 0.1 percent and
higher).

In this work, following the same principle of selective
L2 cache write-through, we propose to directly add a small
dirty replication cache (denoted as DR cache) within the
L2 cache itself. The small embedded DR cache simply keeps
the copies of most recent write-back cache blocks (i.e., dirty
cache blocks) from L1 cache to ensure soft error tolerance for
those dirty cache blocks. In other words, the soft error
tolerance is realized by data duplication other than explicit
error correction within L2 cache. The small DR cache is fully
associative and its operation flow is shown in Fig. 4: During
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Fig. 4. Operation flow chart of the dirty replication (DR) cache.



L2 cache write, in case of a DR cache hit, the corresponding
cache block in the DR cache will be updated together with the
cache block in L2 cache itself; in case of a DR cache miss, if the
DR cache is not full, the incoming data will be added into it as
a new entry, otherwise the copy of the least recently used
cache block in the DR cache will be replaced and written back
to the next level memory. Moreover, if a dirty L2 cache block is
replaced, its copy in the DR cache will be discarded
simultaneously. Equipped with this small DR cache, the
L2 cache can ensure that there is always a backup for each
cache block in either the DR cache or next level memory, no
matter the cache block is clean or dirty. Therefore, whenever a
soft error makes a cache block uncorrectable, a backup can
always be found, leading to a full restoration of soft error
tolerance in L2 cache. As shown by our experiments
described later, with a modest size of DR cache, most write
back from L1 cache can result in a hit of this small cache,
leading to almost no impact on intercache-hierarchy com-
munication load.

Finally, it should be pointed out that, in the above
proposed cache architecture, all the extra memory modules
are essentially based on CAM, and hence, their soft error
tolerance may not be trivial. Researchers recently presented
several techniques that can correct or detect soft errors in
CAM, e.g., see [18], [19], [20]. Another possibility is to simply
upscale the transistors in those small memory modules to
strengthen the soft error immunity.

4 EVALUATION METHODOLOGY

4.1 Platform and Benchmark

To evaluate the performance of the above presented L2 cache
architecture, we carry out simulations using the popular
SimpleScalar 3.0 simulator [21]. Table 2 lists the simulator

configuration parameters. The cache memory defect density

is set as 0.5 percent. We assume the use of BCH-based

DEC-TED code, each cache subblock contains 64 bits, and

cache subblocks containing more than two errors are

repaired by redundancy. We assume that the BCH DEC-TED

decoder has a decoding parallelism of 2 and uses the PGZ

decoding algorithm [22], leading to an estimated decoding

latency of 82 cycles. We use Cacti 5, the latest version of a

widely used cache modeling tool Cacti [14], to estimate the

characteristics of the main L2 cache core, M-ECC cache,

predecoding buffer, FLU buffer, and DR cache at 45 nm node.

Regarding the extra logic circuit overhead, using verilog

HDL synthesized with TSMC 65 nm standard cell library, we

designed the circuits to implement the entire operation flows

including ECC codec. After being scaled down to 45 nm, the

overall area is less than 0:01 mm2, i.e., the area overhead of

the operation flow is about 0.2 percent of the area of the

L2 cache core. Hence, the following evaluation only focuses

on the overhead of additional memories in the proposed

architecture.
Table 3 shows the 12 benchmarks used in our experiment,

including 7 SPEC2000 integer benchmarks and 5 SPEC2000
floating-point benchmarks [23]. For each benchmark, we
searched and simulated over the instruction sequences with
relatively high L2 access rate. Table 3 lists the number of
instructions skipped to reach the phase start, i.e., the fast-
forward (FFWD) column, and the number of instructions
simulated, i.e., the RUN column. Table 3 also shows the
average number of L1 cache misses and L2 cache hits
per million instructions and the corresponding average IPC.

4.2 Target Systems

Since the M-ECC core for defect tolerance and the DR cache
for soft error tolerance are completely independent from
each other, we can evaluate them separately. Regarding
M-ECC core for defect tolerance, we consider the following
four different scenarios:

. Base: The L2 cache is defect-free; hence, does not
employ any defect tolerant functions.

. M-ECC-only: The L2 cache core is only equipped
with an M-ECC cache, so each L2 cache access incurs
one M-ECC cache access.

. M-ECC-pbuf: The L2 cache core is equipped with an
M-ECC cache and a predecoding buffer.
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. M-ECC-pfbuf: The L2 cache core is equipped with
the entire M-ECC core consisting of the M-ECC
cache, predecoding buffer, and FLU buffer.

We evaluate the performance and overhead of the dirty
replication cache, which is further compared with both the
block-level assurance update, denoted as AU-blk, and the
subblock-level assurance update, denoted as AU-sblk [5].

5 EVALUATION RESULTS

5.1 M-ECC Core

5.1.1 Size of the Predecoding Buffer

We first investigate how the size of the fully associative
predecoding buffer affects the cache performance. By setting
L2 cache core to be 1 MB, 8-way associative as shown in
Table 2, we vary the size of the predecoding buffer from
16 cache blocks up to 128 cache blocks. Fig. 5 shows the
predecoding hit rate for five different benchmarks. Clearly,
the predecoding hit rate increases with the increase of the
predecoding buffer size. With the size of 64 cache blocks and
higher, the hit rate can be larger than 98.4 percent, on average,
which means that most explicit multibit ECC decoding can be

avoided. Furthermore, for a 64-block predecoding buffer, we
conduct experiments to examine the predecoding buffer hit
rate by varying the number of associativity of the L2 cache.
Fig. 6 shows the predecoding buffer hit rates with the number
of L2 cache associativity varying from 4-way to 16-way. As
the set associativity increases, the predecoding buffer hit rate
decreases. Nevertheless, even for the 16-way associative
L2 cache, a 64-block predecoding buffer can still achieve a hit
rate as high as 98 percent. The above results suggest that
64-block predecoding buffer appears to be an appropriate
choice in this experimental setup.

5.1.2 Size of the FLU Buffer

The proposed cache design leverages the FLU buffer to
reduce the energy consumed by searching the M-ECC cache.
In the following experiment, we intend to determine the
appropriate size for the fully associative FLU buffer. Fig. 7
shows the FLU hit rates with different buffer sizes varying
from 16 entries to 128 entries. For FLU buffers with 64 or
more entries, the FLU hit rates are larger than 97.5 percent,
which means most g-block and s-block accesses do not need
to search the M-ECC cache to check their classification. For a
64-entry FLU buffer, we conduct experiments to examine
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Fig. 5. Multibit ECC predecoding hit rates for Predecoding buffers of 16,

32, 64, and 128 blocks. The L2 cache is fixed to be 1 MB, 8-way

associative (only the five worst case benchmarks are shown).

Fig. 6. Multibit ECC predecoding hit rate for 4-way, 8-way, and 16-way set

associative 1 MB L2 cache. The Predecoding buffer is fully associative

with 64 blocks (only the five worst case benchmarks are shown).

Fig. 7. FLU hit rate for FLU buffers of 16, 32, 64, and 128 entries. The L2

cache is fixed to be 1 MB, 8-way associative (only the five worst case

benchmarks are shown).

Fig. 8. FLU hit rate for 4-way, 8-way, and 16-way set associative 1 MB

L2 cache. The FLU buffer is fully associative with 64 entries (only the

five worst case benchmarks are shown).



the FLU buffer hit rate by varying the number of
associativity of the L2 cache. Fig. 8 shows the FLU buffer
hit rate with the number of L2 cache associativity varying
from 4-way to 16-way. Even in the worst case (i.e., 16-way),
it can still maintain a high hit rate above 96 percent.
Considering the trade-off between performance and cost,
we may choose 64-entry as the proper size of the FLU buffer.

5.1.3 Overall Performance Comparison

To evaluate the latency, power, and area overhead of the
proposed design, we set the size of the M-ECC cache and
predecoding buffer as 16 KB and 4 KB (i.e., 64 blocks),
respectively, and the FLU buffer has 64 entries. Table 4 lists
the corresponding modeling results produced by Cacti at
45 nm technology node, including access/cycle time,
dynamic energy, and area. Clearly, the access time of the
M-ECC cache, predecoding buffer and FLU buffer is much
less than that of the L2 cache, and can even be comparable to
the cycle time of the L2 cache. Hence, it is reasonable to
assume that access to the M-ECC cache can be parallel with
the access to the L2 cache core and will not add any extra
cycles. However, the latency caused by the multibit ECC
decoding can significantly impact the IPC performance.
According to the normalized IPC comparison among three
target systems shown in Fig. 9 (since M-ECC-pbuf and
M-ECC-pfbuf have the same IPC performance but different
energy consumption, only M-ECC-pbuf is shown here),
almost all the benchmarks show severe performance degra-
dation when using the M-ECC-only scheme, especially for
those benchmarks with relatively higher L2 cache hit rate. The

IPC performance degradation can be greatly compensated by
using the M-ECC-pbuf (and M-ECC-pfbuf) scheme in which
the predecoding buffer can very effectively reduce the
occurrence of explicit multibit ECC decoding.

According to Table 4, the energy consumption of one
M-ECC cache access is almost 20 times higher than that of
one L2 cache core access. This clearly suggests that we must
minimize the frequency of accessing the M-ECC cache,
which is the purpose of introducing the FLU buffer. Fig. 10
shows the normalized power consumption of the entire
M-ECC core using the M-ECC-pfbuf scheme with respect to
the power consumption of the 1 MB L2 cache core. For the
majority of benchmarks, the power consumption of the
entire M-ECC core is less than 30 percent of that of the
L2 cache core. As shown in Fig. 11, the energy consumption
of L2 cache only occupies a quite small fraction with respect
to the whole cache hierarchy (less than 11 percent). Hence,
the energy consumption of the proposed M-ECC cache core
is relatively insignificant.

Finally, according to the Cacti modeling results listed in
Table 4, the silicon area of the M-ECC cache, predecoding
buffer, and FLU buffer are much smaller than that of the
L2 cache core, especially for the FLU buffer as it only
contains the addresses of cache blocks. The total area
overhead is less than 2.5 percent of the area of the 1 M 8-way
associative L2 cache core. This clearly suggests that the
proposed design is area-efficient.

5.2 Dirty Replication Cache

Fig. 12 shows the hit rates for the DR cache with 8, 16, 32, and
64 blocks, respectively, where the L2 cache is fixed as 1 MB
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TABLE 4
Cacti Report for L1 Cache, L2 Cache, M-ECC Cache, DR Cache, Predecoding Buffer, and FLU Buffer

Fig. 9. Normalized IPC comparison among Base, M-ECC-only, and

M-ECC-pbuf schemes. Fig. 10. Normalized power consumption of the M-ECC-pfbuf scheme.



8-way associative. For the DR cache with 64 blocks, the hit

rate is above 96.4 percent for all the benchmarks. From the

result of associative sensitivity experiment, shown in Fig. 13,

the DR cache behaves quite consistently, except the bench-

mark “vortex” that has relatively very small amount of write

back from L1 cache (i.e., 925 per million instructions).
Facilitated with the small dirty replication cache, a very

high percentage of write-back data from L1 cache can be
stored and replicated. In case the dirty replication cache is
full, the least recent entry will be replaced and written back to
the next level memory. Hence, when a soft error is detected,
the processor can always recover the data from a backup in
either the dirty replication cache or the next level memory. In
the meantime, the proposed design tends to be more cost-
efficient compared with other methods, including the AU-blk
and AU-sblk schemes. Since AU-blk updates dirty data at
cache block level, this scheme becomes an almost write-
through policy at a high defect density, leading to a serious
performance degradation. By moving to the cache subblock
level, the AU-sblk scheme proposed in [5] can reduce the
performance degradation; however, the area and power
overhead tend to be high since each tag block in AU-sblk
scheme adds extra 16 bits to realize the subblock-level

assurance update. Our simulation based on Cacti shows that
the energy per access to the modified L2 cache in the AU-sblk
scheme is 0.0253 nJ and the area is 6:63 mm2. There are
26.5 percent and 11.0 percent increases, respectively. The area
overhead of the DR cache is the same as the predecoding
buffer, i.e., only 0.3 percent of the L2 cache area. As the energy
consumption of the DR cache only occurs in the presence of
L1 cache write back, the power is relatively much lower than
the AU-sblk scheme. Since it is difficult to use Simplescalar to
simulate how the L2-cache-to-main-memory communication
impacts the overall performance, we do not show the IPC
comparison. Nevertheless, it is clear that the DR cache tends
to minimize the L2-cache-to-main-memory burden and may
not lead to noticeable IPC degradation.

6 CONCLUSIONS

This work was motivated by the almost evident trend that on-
chip SRAM will contain a large amount of parametric
random cell defects if we want to leverage the future
technology scaling to its full extent. In particular, we are
interested in how to effectively use unconventional strong
multibit ECC for SRAM-based L2 cache defect tolerance at
minimal performance and implementation cost. This paper
proposes an L2 cache architecture in which cache blocks
containing more than one defect SRAM cells are protected by
multibit ECC. Two small buffers, i.e., predecoding buffer and
fast lookup buffer, are embedded into the L2 cache to largely
reduce the probability that the major heavy-load multibit
ECC functional blocks are explicitly invoked, hence reduce
the performance degradation and energy cost incurred by the
use of multibit ECC in L2 cache. Meanwhile, we propose to
further embed a small dirty replication cache in L2 cache to
ensure soft error tolerance by keeping copies of most recent
write-back data from L1 data cache.

The proposed cache architecture has been extensively
evaluated by using popular processor simulator and
memory modeling tools. Results show that this proposed
design solution is able to maintain almost the same IPC
performance at the high defect density of 0.5 percent
compared with the ideal defect-free L2 cache, while only
incurring less than 2.5 percent of silicon area overhead and
36 percent of energy consumption overhead. With an area
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Fig. 11. Normalized power consumption comparison among L1

instruction cache, L1 data cache, and L2 cache.

Fig. 12. Write-back hit rates for DR cache of 8, 16, 32, and 64 blocks.

The L2 cache is fixed to be 1 MB 8-way associative (only the six worst

case benchmarks are shown).

Fig. 13. Write-back hit rates for 4-way, 8-way, and 16-way set associative

1 MB L2 cache. The DR cache is fully associative with 64 blocks (only the

six worst case benchmarks are shown).



overhead of only 0.3 percent, the dirty replication cache can
store up to 96.4 percent of the write-back data from
L1 cache, which means it can ensure soft error tolerance
for dirty cache blocks in L2 cache at very small overhead on
L2-cache-to-main-memory communication load.
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