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Abstract— This paper presents a data-dependent defect toler-
ance design approach to improve the storage capacity of defect-
prone hybrid CMOS/nanodevice digital memories. The basic idea
is to reduce the memory redundancy overhead by exploiting the
run-time matching between the data to be stored and the memory
defects. A conditional bit-flipping technique is used to enable
the practical realization of this design approach in presence
of the conflict between the dynamic nature of run-time data-
defect matching and static nature of memory system design.
Computer simulation results demonstrate that the proposed
method can achieve much higher storage capacity compared with
conventional data-independent defect tolerance at small memory
operation overhead.

I. INTRODUCTION

As CMOS technology scales toward the end of roadmap,
hybrid CMOS/nanodevice design paradigm [1]–[7] emerges as
one of the most viable paths to continue the life of Moore’s
law. It is almost evident that, compared with current CMOS
technology, any emerging nanodevices will have worse relia-
bility characteristics (such as the probabilities of permanent
defects and transient faults) [8]–[10]. Because the uniform
functionality and regular structure of digital memories make it
relatively easy to tolerate a high degree of device unreliability,
nanoelectronic digital memories have attracted much attention
and experienced significant recent advances, e.g., see [11]–
[17]. This work concerns the fault tolerance system design for
hybrid nanoelectronic digital memories.

Fault tolerance for hybrid nanoelectronic digital memories
has been recently addressed in [18]–[21]. In spite of different
specific techniques, all the prior work share two features,
including (1) defect tolerance involves error correcting codes
(ECC) together with certain redundancy repair/reconfiguration
scheme, and (2) defects are treated in a data-independent man-
ner, i.e., all the defective memory cells are always considered
as errors that must be corrected, irrelevant to the data being
stored into these cells during runtime. As assumed in prior
work, nanodevice memory cell defects mainly include open
defect (i.e., absence of the nano-memory cell at one cross-
point) and short defect (i.e., a short at one crosspoint). Since
a memory cell short defect can be considered as nanowire
short defect and the associated two orthogonal nanowires
will be eliminated from the memory address space, ECC is
used to handle only open defects. Because an open defect
always delivers the same output, say logic 1, during the read
operation, an error occurs only if the bit written to this cell
is a logic 0. This suggests that the data-independent defect
tolerance assumed in all the prior work essentially results in

run-time ECC over-protection, leading to more-than-necessary
ECC coding redundancy overhead during runtime.

The above intuition motivates us to investigate the potential
of using run-time data-dependent defect tolerance to reduce
the ECC coding redundancy and hence improve the effective
memory storage capacity. As elaborated later, although the
basic idea is very intuitive, its practical realization may not
be trivial due to the conflict between the dynamic nature
of defect-data matching during runtime and static nature
of memory design. In this work, we propose a conditional
bit-flipping data storage concept inspired by a well-known
technique for low power data bus design [22] in order to
accommodate such design conflict. As discussed in Sec-
tion III, its practical realization incurs a design trade-off
between storage capacity and memory operation overhead.
This paper presents a specific approach to realize such data-
dependent defect tolerance through run-time conditional bit-
flipping, which allows flexible configurations of the storage
capacity vs. operation overhead trade-off. Using BCH (Bose-
Chaudhuri-Hocquenghem) codes as the ECC and following
the estimations of nanodevice memory power consumption
and access time presented in [19], this paper demonstrates the
effectiveness of the proposed design solution with computer
simulations. The simulation results show that the proposed
design approach may largely improve the storage capacity
while keeping the power and access time overhead very small.

II. BACKGROUND AND KEY ASSUMPTIONS

Fig. 1 illustrates the principal structure of hybrid nanoelec-
tronic memories considered in this work. The bulk of data
storage is realized by an array of highly dense nanoscale
crossbars in which each crosspoint holds one two-terminal
nanoscale switching device. The CMOS circuits perform test-
ing, fault tolerance, I/O, and some other critical functions.
This work assumes the following fault model in nanodevice
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Fig. 1. Principal structure of hybrid nanoelectronic memories.
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memory array: In terms of defects, we only consider static
defects of nanowires and nanodevice memory cells. We as-
sume a defective nanowire (irrelevant to defect type) will
make all the connected nanodevice memory cells unfunctional.
A memory cell may be subject to open or short defects.
Since a memory cell short defect will short two orthogonal
nanowires, it can be considered as nanowire defect. An open
defect does not affect the operation of any other memory cells
and any nanowires. We assume these static defects are random
and statistically independent, which are characterized by two
defect probabilities, including (1) bit defect probability pbit

that represents the probability of memory cell open defects,
and (2) nanowire defect probability pwire that represents the
probability of nanowire defects. In a broad sense, transient
faults refer to all the memory operational errors that are not
induced by the above static defects. We also assume that
transient faults are random and statistically independent, which
is characterized by a transient fault rate ptf .

As pointed out in [21], due to the high defect density and
its possible spatial variations, different memory blocks may
have (largely) different number of defective memory cells
hence demand (largely) different error correcting capability.
Therefore, other than using a single ECC code, we may use
a group of ECC codes, denoted as C, with different error
correcting capability and hence different coding redundancy.
All the codes in C should be able to share the same hardware
ECC encoder and decoder. Given target memory block error
rate Etarget, transient fault rate ptf , and an ECC code with
codeword length of l and error correction capability of t, we
can calculate the required transient fault correcting capability,
i.e., find the minimum value of ttr that satisfies

l∑
i=ttr+1

(
l
i

)
pi

tf (1− ptf )l−i ≤ Etarget. (1)

This means that, out of the total t-error-correcting capability
of the ECC code, ttr is reserved to compensate the possible
transient errors and the remaining t − ttr is available for
correcting the errors induced by defects.

III. PROPOSED DATA-DEPENDENT FAULT TOLERANCE
DESIGN APPROACH

As pointed out in Section I, conventional data-independent
defect tolerance tends to result in a significant ECC over-
protection since open defects may not necessarily produce
read errors. By leveraging the run-time data-defect matching,
data-dependent defect tolerance intends to only compensate
those open defects that do not match the stored data during
runtime. Fig. 2 shows a motivating example: A 12-bit memory
block contains four open defects marked by “X”, and the
data as shown in Fig. 2 has been written into this memory
block. Without loss of generality, we assume an open defect
always produce a logic 1 during read operation. As shown
in Fig. 2, only two bit errors occur when this data block
is being read even though the memory block has four open
defects. Intuitively, it is desirable to leverage such run-time

data-defect matching to reduce the ECC coding redundancy.
However, its practical realization may not be trivial, which
is explained as follows. Clearly, memory design (i.e., to
determine the physical location and length of each memory
block and the associated ECC code) is static and each physical
memory block must be able to handle the worst-case scenario.
Straightforwardly, the worst-case run-time data-defect match-
ing will make all the open defects produce read errors and
hence demand the same ECC coding redundancy as that of
conventional data-independent defect tolerance. Therefore, the
conflict between the dynamic nature of run-time data-defect
matching and static nature of memory design makes it non-
trivial to realize data-dependent defect tolerance in practice.
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Fig. 2. An example shows run-time data-defect matching.

To tackle this challenge, we propose a method based on
conditional bit-flipping. The key is to modify the memory
write/read procedure so that the worst-case run-time data-
defect matching demands much less ECC coding redundancy
than that of conventional data-independent defect tolerance.
Fig. 3 illustrates the corresponding run-time memory write
and read procedure, which is further explained as follows.
Consider a memory block that uses a t-error-correcting ECC
code. Since the ECC code is used to compensate both defect
and transient faults, let tdef and ttr (note that t = tdef + ttr)
denote the error correcting capability for compensating read
errors induced by defects and transient faults, respectively. Let
d denote the number of open defects in this memory block,
we set tdef ≥ bd

2c, i.e., the storage reliability can be ensured
up to when half of the defects produce read errors. Therefore,
given any data block to be stored, either itself or its bit-wise
flip will ensure enough data-defect matching so that less than
tdef open defects produce errors. As shown in Fig. 3, in order
to write one input data block into the memory, we first write
the ECC encoded data to the memory block, then immediately
read it out and count the number of errors which is denoted as
Nerr. If Nerr > tdef , i.e., the current data-defect matching is
not sufficient, we simply bit-wise flip the entire data block and
write it to the memory block. A 1-bit flip decision associated
with each memory block is stored in the CMOS memory,
which will be used in the read operation as shown in Fig. 3.

As the cost of reduced ECC coding redundancy, certain
memory operation overhead is incurred, particularly during
the write operation. To store each data block, we need to per-
form either write-read or write-read-write operation sequence.
Intuitively, if we set tdef = bd

2c for each memory block,
the occurrence of write-read and write-read-write operations
may be equally possible. Meanwhile, based on the memory
operation metric estimation results presented in [19], memory

2



Storage of Flip 
Configuration

ECC 
Encoding

Write to 
Memory

Nerr>tdef?

Read and 
Count Nerr

Bit-Wise Flip 
and Write

ECC 
Decoding

Bit-Wise Flip if 
Required

Read from 
Memory

Input

1 bit

OutputY

Write without 
Bit-Wise Flip

N

Write

Read

Fig. 3. The memory write and read procedure using the proposed bit-flipping
method.

read can be much more energy-efficient and faster compared
with memory write1. Hence, the overall energy and speed
overhead may largely reduce if we reduce the possibility of
occurrence of write-read-write operations. This can be realized
by increasing the value of tdef for each memory block, i.e.,
using a stronger ECC code to reduce the possibility that
the data block has to be flipped. Clearly, this will increase
the ECC coding redundancy and hence reduce the effective
storage capacity. Therefore, this results in a design trade-off
between memory operation overhead and achievable storage
capacity. Such trade-off can be easily adjusted by introducing
a parameter ∆ such that tdef = bd

2c+ ∆. In next section, we
will demonstrate such design trade-offs based on computer
simulations.

To realize the above proposed data-dependent defect toler-
ance, one remaining issue is the static memory system design,
i.e., how to determine the physical location of each memory
block and its associated ECC code. Using the same principle
of the two-level hierarchical memory system design approach
in [21], we develop the following memory design procedure.
The design objective is to partition the nanodevice memory
array into a certain number of consecutive memory cell
segments so that each segment can store one ECC codeword
with just enough coding redundancy to handle the worse-case
data-defect matching. Hence each physical memory segment
corresponds to one unique logical memory address. The infor-
mation of each segment location and the associated ECC code
configuration (i.e., which code code out of the code group is
being used for present segment) are stored in CMOS memory.
Let C denote the ECC code group, and for each code Ci, tidef

denote its error correcting capability used for defect tolerance
and lic denote its codeword length. All the codes are ordered
so that tidef < tjdef for i < j. Given this code group C and

1Notice that, if a special write mode is used other than typical random
write, the speed of write may be higher than read. Readers are referred to
[19] for a detailed discussion.

the design parameter ∆ that is used to adjust the trade-off
between storage capacity and memory operation overhead, we
have the following design procedure.

Proposed Procedure for Memory System Design

After excluding all the defective nanowires from the nan-
odevice memory physical address space, we initialize two
memory cell pointers, Ptr Head and Ptr Tail, that point to
the first memory cell, and start the following iterative process
to locate each memory segment and determine the associated
ECC code. This iterative process will terminate when either
pointer reaches the end of the memory cell array.
Step 1: Initialize the ECC code index counter i as 0;
Step 2: Move Ptr Tail forward over the next (lic − li−1

c )
memory cells, where we set l−1

c = 0.
Step 3: Count the number of defective memory cells, denoted

as Ndef , between Ptr Head and Ptr Tail.
Step 4: If tidef ≥ bNdef

2 c+∆, i.e., the currently selected ECC
code can support the realization data-dependent defect
tolerance and ensure the target block error rate, then
one segment has been successfully located. We store the
physical address of Ptr Head and the designation of the
currently selected BCH code into CMOS memory, set
Ptr Head = Ptr Tail + 1, and go to Step 1.

Step 5: If tidef < bNdef

2 c+ ∆, then increment the ECC code
index counter by 1, i.e., i = i + 1. If i < |C|, go to Step
2, otherwise go to Step 6.

Step 6 Change the location of current segment by moving
Ptr Head forward over the first next defective memory
cell, and go to Step 1.

The implementation overhead of this proposed design tech-
nique mainly includes ECC code encoder/decoder realization
and configuration data storage in CMOS domain. Furthermore,
to improve the effective storage capacity, this proposed design
technique sacrifices memory access speed and energy. There-
fore, trade-offs among the implementation overhead, memory
access penalty, and effective storage capacity must be carefully
evaluated in order to obtain an appropriate overall memory
system design. We will present a design example in the
next section to demonstrate the effectiveness of this proposed
design technique and the involved design trade-offs,

IV. DESIGN EXAMPLE

Let Snano denote the average number of user bits that could
be stored in each nanodevice memory cell array, and SCMOS

denote the average number of configuration bits stored in
CMOS memory. To take into account of the storage overhead
in CMOS domain, we define net storage capacity as Snet =
Snano − d · SCMOS , where the factor d represents the ratio
between the effective cell area of a CMOS memory cell and
a nanodevice memory cell. Simulations are carried out with
the following configurations: each nanodevice memory cell

3



array is 512 × 512; nanowire defect probability pwire = 0.3;
target block error rate Etarget = 1 × 10−15; and the factor
d = 25. We considered three different numbers of user bits
per block, including 512, 1024 and 2048. We use BCH codes
as ECC and construct three BCH code groups as listed in
Table I for these three scenarios, respectively, where nmax

represents the maximum code length and tmax represents the
maximum number of correctable errors.

TABLE I
BCH CODE GROUP CONFIGURATIONS.

Group I Group II Group III

Galois Field GF(210) GF(211) GF(212)

nmax 1023 2047 4095

tmax 57 106 198

Fig. 4 shows the simulation results on the average stor-
age capacity per 512 × 512 nanodevice memory cell array,
including the user bits stored in nanodevice memory cells,
configuration bits stored in CMOS memory, and net storage
capacity. We set ∆ = 6. In each figure, the dotted, solid, and
dashed curves correspond to the transient fault rates of 0, 1‰,
and 5‰, respectively. Given the nanowire defect probability of
0.3, on average each nanodevice memory cell array contains
(1−0.3)2 ·512 ·512 ≈ 1.3×105 memory cells after excluding
the defective nanowires.

To further demonstrate the storage capacity improvement
by using the proposed data-dependent defect tolerance, Fig. 5
shows the net storage capacity comparison between data-
dependent defect tolerance and conventional data-independent
defect tolerance. We set ∆ = 6 for all the cases when
using data-dependent defect tolerance. The transient fault rate
is assumed to be 1‰. It clearly shows that the proposed
data-dependent defect tolerance can significantly improve the
effective data storage capacity as the defect density increases.

As pointed out in Section III, the storage capacity improve-
ment is gained at the cost of memory operation overhead.
Furthermore, the trade-off between the storage capacity and
memory operation overhead is directly determined by the
design parameter ∆. Fig. 6 demonstrates such a design trade-
off and quantifies the memory operation overhead compared
with the conventional data-independent defect tolerance. In
this context, we use the estimated memory operation metrics
given in [19], where the ratio of power consumption between
write and read is about 2500 and the ratio of access time
between write and read is about 20. By normalizing the
metrics of conventional data-independent defect tolerance as
1, Fig. 6(b) and (c) show the normalized average write cycle
time and write power consumption when using data-dependent
defect tolerance. We note that the worst-case write cycle time
is more than twice as large compared to data-independent
case. These results clearly justify that the proposed data-
dependent defect tolerance may achieve a significant storage
capacity improvement at small memory operation overhead.
For example, when ∆ = 6, the average write cycle time

increases by less than 10% and write power consumption
increases by less than 5%. Finally, it should be pointed out
that the effectiveness of this technique heavily depends on the
underlying fault model (this work assumes the defects and
transient faults are random and statistically independent) and
does not depend on the specific ECC codes being used.

V. CONCLUSIONS

A data-dependent defect tolerance design approach is pre-
sented to tackle the fault tolerance challenge in the emerg-
ing defect-prone hybrid nanoelectronic digital memories. The
basic idea is to exploit the run-time data-defect matching
to reduce the required ECC coding redundancy and hence
improve the effective memory storage capacity. We proposed a
conditional bit-flipping technique and the corresponding mem-
ory system design procedure to practically implement data-
dependent defect tolerance. Computer simulations demonstrate
that such data-dependent defect tolerance may greatly improve
storage capacity at small memory operation overhead in terms
of average write cycle time and write power consumption.
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Fig. 4. Simulation results on the average storage capacity per 512× 512 nanodevice memory cell array using the data-dependent fault tolerance approach
(∆ = 6). The dotted, solid, and dashed curves correspond to the transient fault rates of 0, 1‰, and 5‰, respectively. Under the nanowire defect probability
of pwire = 0.3, on average each 512× 512 nanodevice memory cell array contains 1.3× 105 cells after excluding the defective nanowires.
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