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Using Lossless Data Compression in Data
Storage Systems: Not for Saving Space
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Abstract—Lossless data compression for data storage has become less popular as mass data storage systems are becoming
increasingly cheap. This leaves many files stored on mass data storage media uncompressed although they are losslessly
compressible. This paper proposes to exploit the lossless compressibility of those files to improve the underlying storage system
performance metrics such as energy efficiency and access speed, other than saving storage space as in conventional practice. The
key idea is to apply runtime lossless data compression to enable an opportunistic use of a stronger error correction code (ECC) with
more coding redundancy in data storage systems, and trade such opportunistic extra error correction capability to improve other
system performance metrics in the runtime. Since data storage is typically realized in the unit of equal-sized sectors (e.g., 512 B or
4 KB user data per sector), we only apply this strategy to each individual sector independently in order to be completely transparent to
the firmware, operating systems, and users. Using low-density parity check (LDPC) code as ECC in storage systems, this paper
quantitatively studies the effectiveness of this design strategy in both hard disk drives and NAND flash memories. For hard disk drives,
we use this design strategy to reduce average hard disk drive read channel signal processing energy consumption, and results show
that up to 38 percent read channel energy saving can be achieved. For NAND flash memories, we use this design strategy to improve
average NAND flash memory write speed, and results show that up to 36 percent write speed improvement can be achieved for 2 bits/
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cell NAND flash memories.

Index Terms—Data storage, lossless compression, hard disk drive, NAND flash memory, error correction code.

1 INTRODUCTION

ONE of the most prevailing real-life applications of data
compression [1] is to increase the effective storage
capacity of mass data storage media such as conventional
hard disk drives and emerging solid-state drives based on
NAND flash memory. However, compared with lossy data
compression being universally used in multimedia file
storage, lossless data compression is much less popular,
which may arguably attribute to two main reasons: 1) a
compressed file may not be easily modified and managed
on the storage media and 2) since the lossless data
compression ratio' can rarely be much better than 2:1 in
contrast to lossy data compression ratio of over hundreds,
there is less interest and incentive in using lossless data
compression to save storage space, particularly as mass
data storage systems are becoming increasingly cheap
nowadays. Therefore, although lossless data compression
was used to compress hard disk drives in early 1990s when
hard disk drives were very small (e.g., less than 100 MB), it
has become much less popular today. As a result, except
multimedia data files, many files stored on mass data
storage media today are not compressed at all although

1. In this work, compression ratio is defined as the ratio of the data
length before compression over the length after compression; hence, it
should be greater than one.
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they are losslessly compressible, such as Web pages, text
files, software and system files, etc. This work aims to
exploit the lossless compressibility of those files to improve
the underlying storage system performance metrics such as
energy efficiency and access speed, other than saving
storage space as in the conventional practice.

The rationale of this work is briefly described as follows:
In hard disk drives and NAND flash memory, data storage
is realized in the unit of sectors,® where the sector size
ranges from 512-byte to 4-Kbyte user data. At present, the
hard disk drive industry is migrating from the 30-year old
512-byte sector size to a new 4-Kbyte sector size, and most
NAND flash memories use 4-Kbyte sector size. As the
storage density continues to grow, both hard disk drives
and NAND flash memory use increasingly powerful error
correction code (ECC) on each individual data sector to
ensure storage reliability [2], [3]. A more powerful ECC
with stronger error correction capability tends to demand
more redundant bits, and hence, occupy more storage
space. Therefore, designers always select an ECC that
provides just enough error correction capability to satisfy the
given reliability specifications. It is clear that if one sector
user data can be losslessly compressed to a certain extent,
more storage space will become available to store ECC
coding redundancy, which makes it possible to use a
stronger ECC with more-than-enough error correction
capability for the present sector. Intuitively, such opportu-
nistic extra error correction capability may be traded to
improve other system performance metrics in the runtime.

2. In fact, sector is the terminology being used in hard disk drives. In
NAND flash memory, it is called page. For the sake of simplicity, we use the
terminology sector to represent the basic storage unit in both hard disk
drives and NAND flash memory.

Published by the IEEE Computer Society
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Motivated by the above intuitive discussion, this paper
aims to explore the practical feasibility and potential of such
design strategy in real-life data storage systems including
both hard disk drives and NAND flash memories. In
particular, this work focuses on using low-density parity
check (LDPC) code [4], [5], [6] as ECC for two main reasons:
1) As a topic of great current interest, LDPC codes have
excellent error correction capability and are being widely
used in real-life communication and storage systems; and
2) in sharp contrast to classical linear blocks codes such as
BCH and Reed-Solomon (RS) codes [7], the computational
complexity of LDPC code in each decoding iteration is
largely independent with the code rate (and hence, error
correction capability), which will be further elaborated in
Section 2. To sustain the continuous growth of areal storage
density of hard disk drives, besides the use of more and
more powerful ECCs, increasingly sophisticated read
channel with complex digital signal processing must be
used [8], [9]. As a result, entire hard disk drive read channels
tend to become increasingly power-hungry. Hence, in the
context of hard disk drives, the more-than-enough error
correction capability enabled by runtime opportunistic
intrasector lossless data compression can be exploited to
enable the use of less complex and less power-hungry read
channel signal processing. Based upon a representative
perpendicular recording read channel architecture, we
demonstrate that this design strategy can reduce the entire
read channel power consumption by up to 38 percent. It
should be pointed out that although reducing energy
consumption of read channel may not noticeably impact
the total hard disk drive energy consumption, it is still
valuable to reduce read channel energy consumption mainly
because it can reduce the on-chip power delivery system
design complexity and reduce heat dissipation, and hence,
reduce packaging cost/complexity.

NAND flash memory has a relatively slow write speed
with the write latency of a few hundred microseconds (e.g.,
see [10], [11]), which may become a system performance
bottleneck, particularly for applications with heavy data
traffics. As explained in Section 4, there is an inherent trade-
off between the memory write speed and raw memory
storage reliability in NAND flash memories. Therefore, the
more-than-enough error correction capability enabled by
runtime opportunistic intrasector lossless data compression
can allow the raw memory storage reliability to degrade to a
certain extent, which can be directly leveraged to improve
the NAND flash memory write speed. Our simulation
results show that the write speed can be improved by up to
36 percent for 2bits/cell NAND flash memory. Finally, we
note that since this design strategy is applied to each sector
independently at the physical layer, it is completely
transparent to the firmware, operating systems, and users.

The remainder of this paper is organized as follows:
Section 2 elaborates on the proposed design strategy and
presents the basics of LDPC codes. Sections 3 and 4 present
case studies on hard disk drives and NAND flash memory,
respectively, to show the effectiveness of this proposed
design strategy. The conclusions are drawn in Section 5.

2 PROPOSED DESIGN STRATEGY

The key idea of this work is to apply runtime intrasector
lossless data compression to opportunistically enable the
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use of a stronger ECC whose stronger-than-necessary error
correction capability can be traded for improving certain
data storage system performance metrics. The practical
feasibility of this very intuitive idea nevertheless is subject
to the following two issues:

1. Compression ratio of lossless data compression
tends to heavily depend on the data length; hence,
it can be very difficult to achieve a large compression
ratio such as 2:1 within each individual sector.

2. Generally speaking, a stronger ECC tends to incur a
higher decoding implementation cost and energy
consumption, which may possibly offset the poten-
tial gain if we want to trade error correction
capability for storage system energy consumption.

Moreover, the implementation and energy consumption
cost of on-the-fly lossless data compression should also be
carefully taken into account in practice.

As demonstrated in the case studies presented in
Sections 3 and 4, the first issue above may not necessarily
be a concern in practice. Different from the conventional
use of lossless data compression that is used to improve
effective storage capacity, and hence, should achieve a
compression ratio of close or even larger than 2:1, a very
small compression ratio such as 1.05:1 can provide enough
extra storage space for a sufficiently stronger ECC to enable
this design strategy. For example, a compression ratio of
1.03:1 can reduce the ECC code rate from 15/16 to 10/11,
which represents a large coding gain (i.e., large error
correction capability improvement). Hence, this can dras-
tically simplify the implementation of intrasector lossless
data compression. Moreover, modern data storage systems
have reasonably large sector size, e.g., hard disk drives are
migrating from 512-byte user data per sector to 4-Kbyte
user data per sector, and most NAND flash memories use
4-Kbyte user data per sector (and some latest NAND flash
memories even use 8-Kbyte user data per sector [12], [13]).
Such relatively large sector sizes make it more feasible to
achieve a small compression ratio within each sector at
reasonable implementation cost.

To address the second issue above on the ECC decoder
overhead, this work focuses on using LDPC code as the ECC
in data storage systems. It is true that for classical linear block
codes such as BCH and RS codes, their decoding computa-
tional complexities quadratically grow with their error
correction capability. In sharp contrast, the decoding
computational complexity of LDPC codes is largely inde-
pendent on their code rate (and hence, error correction
capability), i.e., once we fix the LDPC codeword length and
the number of 1s in its parity check matrix, the decoding
computational complexity is largely independent on the
code rate. Meanwhile, as the storage densities are being
pushed toward their limits for both hard disk drives and
NAND flash memory, more powerful ECCs become almost
indispensable, for which LDPC codes appear to be the most
promising candidate and have been very actively studied for
hard disk drives (e.g., see [14], [15], [16], [17], [18], [19]). In
fact, LSI Corporation, one of leading hard disk drive chip
vendors, recently announced that LDPC codes have been
used in their latest hard disk drive read channel chips at the
40 nm technology node (see [20]). We note that LDPC codes
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Fig. 1. Message-passing decoding based on LDPC code bipartite graph.

have been adopted by many recent communication stan-
dards such as DVB-S2 for video broadcasting, IEEE 802.11
for wireless LAN, and IEEE 802.3 for 10 Gigabit Ethernet.

In the following, we briefly explain why the LDPC code
decoding computational complexity is largely independent
on the code rate (and hence, the error correction capability).
Readers are referred to [4], [5], [6] for detailed discussions
on LDPC codes. An LDPC code is defined as the null space
of an M x N sparse parity check matrix. It can be
represented by a bipartite graph between A check (or
constraint) nodes in one set and N variable (or message)
nodes in the other set. For any “1” entry in the sparse parity
check matrix at (i, j), there will be a connection between the
ith check node and jth variable node in the bipartite graph.
An LDPC code can be effectively decoded by the iterative
message-passing decoding algorithm [5], [21] that directly
matches the code bipartite graph, as illustrated in Fig. 1:
After each variable node is initialized with the input channel
message, the decoding messages are iteratively computed
by all the variable nodes and check nodes and exchanged
through the edges between the neighboring nodes.

Clearly, the LDPC code decoding computational com-
plexity per decoding iteration only depends on the number
of edges in the bipartite graph (i.e., the number of 1s in the
LDPC code parity check matrix). Data storage systems
always demand a relatively high ECC code rate, e.g., 8/9
and higher, for which the LDPC code parity check matrix
should be regular (i.e., all the columns have the same
number of 1s) and the column weight (i.e., the number of 1s
per column) should be 3 or 4. Therefore, once we fix the
ECC codeword length and the code parity check matrix
column weight, the LDPC code decoding computational
complexity and energy consumption per decoding iteration
will remain almost the same, regardless to the code rate.
Under the same condition, LDPC codes with different code
rates may require different number of decoding iterations
on average, i.e., a lower code rate LDPC code tends to
require a (slightly) less number of decoding iterations than

Rate-adaptable Magnetic

LDPC encoder Storage Media
Lossless data Rate-adaptable Configurable Read Channel
decompressor LDPC decoder Signal Processing

(@)

Lossless data
compressor

its higher code rate counterpart. Therefore, overall decoding
energy consumption may (slightly) differ among LDPC
codes with different code rates, and lower code rate codes
tend to consume less decoding energy consumption.

Let R, denote the code rate of the normal LDPC code
used by the data storage system in current design practice
without using any intrasector lossless data compression,
i.e., the same rate-R, LDPC code is used to protect all the
sectors of uncompressed original user data as in current
design practice. If one sector of user data can be compressed
with a compression ratio of r,, we could accordingly reduce
the LDPC code rate from R, to R, /7., leading to a stronger
error correction capability. This work aims to leverage such
runtime opportunistically enhanced error correction cap-
ability to improve other performance metrics of data
storage systems without sacrificing the overall storage
system reliability. In particular, we consider both hard disk
drives and NAND flash memory, as illustrated in Figs. 2a
and 2b, which is further explained as follows:

e Modern hard disk drives employ very complex and
power-intensive magnetic recording read channel
signal processing [8], [9], which works together with
the ECC to ensure a satisfied hard disk drive data
storage reliability. In the presence of a stronger-than-
necessary error correction capability enabled by the
opportunistic intrasector lossless data compression,
we could accordingly relax the signal processing
performance requirement of the magnetic recording
read channel signal processing. This allows the use
of less complex, and hence, less power-intensive
read channel signal processing. If the average read
channel signal processing energy saving can offset
the energy overhead induced by runtime intrasector
lossless data compression, we can reduce the overall
hard disk drive energy consumption.

e One of the critical drawbacks of NAND flash
memory, especially multilevel NAND flash memory
that largely dominates the entire flash memory
market, is the relatively long write latency compared
with other solid-state memory technologies. As
explained in Section 4, there is an explicit trade-off
between NAND flash memory write latency and raw
storage reliability: As we reduce the NAND flash
memory write latency by adjusting certain memory
circuit operational parameters, the raw NAND flash
memory storage reliability will degrade. The oppor-
tunistic stronger-than-necessary error correction cap-
ability enabled by the opportunistic intrasector
lossless data compression can accommodate a worse

Lossless data Rate-adaptable Write Latency
Ccompressor LDPC encoder Controller
Lossless data Rate-adaptable NAND Flash

decompressor LDPC decoder Memory

(b)

Fig. 2. lllustration of proposed design approaches for (a) hard disk drives and (b) NAND flash memory.
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Fig. 3. Perpendicular read channel communications model.

raw NAND flash memory storage reliability, which
can be directly leveraged to reduce the NAND flash
memory write latency.

Ideally, we may expect that the LDPC code rate (and
hence, error correction capability), together with the read
channel signal processing (for hard disk drives) and write
latency configuration (for NAND flash memories), can be
gracefully adjusted with a very fine granularity in order to
maximize the potential benefit. However, such ideal
scenarios with fine-grained configurability and adaptability
may largely complicate the overall system design and incur
non-negligible implementation overhead. Therefore, in this
work, we consider the simplest and most practical scenario
where only two different LDPC code rates are allowed. Let
R, and R, (where R, > R;) denote these two code rates,
where R, is the rate of the normal LDPC code when storage
systems do not use any intrasector data compression and R;
is the rate of a stronger LDPC code enabled by opportu-
nistic runtime lossless data compression. Accordingly, in
case of hard disk drives, the read channel signal processing
only needs to support two different signal performance
versus power consumption trade-off configurations, and in
case of NAND flash memory, the memory circuits only
need to support two different memory write speed modes.
Define compression ratio threshold r, = R, /R, given the
runtime intrasector lossless compression ratio r, we have

e Ifr <r; then we use the normal rate-R,, LDPC code
to protect the uncompressed user data, and accord-
ingly, we set the read channel signal processing in its
normal power mode (for hard disk drives) and set
the memory write circuits operate with the normal
write speed (for NAND flash memory).

e Ifr > r, then we use the stronger rate-R; LDPC code
to protect the compressed user data, and accord-
ingly, we set the read channel signal processing in its
low-power mode (for hard disk drives) and set the
memory write circuits operate with the fast write
speed (for NAND flash memory).

In the remainder of this paper, we present two case
studies to quantitatively demonstrate the effectiveness of
the above presented design strategy with its simplest two-
mode realization to reduce read channel signal processing
power consumption in hard disk drives and improve write
speed in NAND flash memory.

3 CAse StupY I: REDUCING READ CHANNEL
ENERGY CONSUMPTION IN HARD DiSK DRIVES
To sustain the continuous storage density growth of hard

disk drives, magnetic recording read channel plays an
increasingly important role and employs more and more

powerful and complex signal processing [22], [23], which
nevertheless incurs significant energy consumption over-
head. In this section, we show that the above presented
design strategy can be used to reduce the read channel
signal processing power consumption.

3.1 Magnetic Recording Read Channel Basics

The magnetic recording media magnetic anisotropy can be
either oriented in the recording medium plane, referred to
as longitudinal recording, or aligned perpendicular to the
recording medium plane, referred to as perpendicular
recording [24]. Although it has been well recognized that
perpendicular recording could result in higher storage
density than its longitudinal counterpart, practical realiza-
tion of suitable perpendicular recording media is much
more complicated than its longitudinal counterpart [25]. As
a result, longitudinal recording has been dominating the
commercial hard disk drives until recently when the
industry began to ship perpendicular recording hard disk
drives in 2005. Since then, perpendicular recording has
gained an ever increasing momentum, and the entire
industry is quickly switching from longitudinal recording
to perpendicular recording. Therefore, this work only
considers the use of perpendicular recording. Fig. 3 shows
a digital communication model for magnetic read channel
[9]. It models the perpendicular recording channel as

2k = Z amh(kT —mT + 6m)7

where

h(t) = erf(2tvIn2/(PW50)),

and the media jitter noise 6,, is modeled as a Gaussian
variable N(0, }) The parameter PW50 is defined as the
pulsewidth of the derivative of h(¢) at half of its peak
amplitude. Following [26], we define the overall SNR as

SNR — [52 (h(t) = h(t - T))2 dt
202 + 203 f+oo (r( ))

where the signal energy is in the “dibit” response and the
noise reflects the first-order jitter model. The read channel
uses an equalizer, noise predictor, and detector to recover
the recorded bit sequence, which is further passed to the
ECC decoder.

As the storage density increases, the readback signal
from hard disks is subject to severe intersymbol interference
(ISI), i.e., readback signals from adjacent bits on the disk
tend to interfere with each other. The equalizer is used to
reshape the readback signals so that the equalized signal
only depends on a small number of adjacent bits on the
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disk, which allows a detector with reasonable hardware
complexity. The equalizer in read channel typically is
implemented in the form of an finite impulse response (FIR)
filter that carries out a convolution:

L1
TE = g Cj * Tk—i,

i=0

where z;, are the input samples, ¢; are the FIR equalizer
coefficients, rj, are the output of equalizer, and L. is the
number of equalizer taps. Since the equalizer tends to
introduce colored noise, which will degrade the subsequent
signal detection, a noise predictor (also called noise
whitening filter) is always used to further filter the output
of equalizer so that the input to the subsequent trellis
detector becomes

L1
E Qi Th—is
i=0

where a; are the noise predictor coefficients and L, is the
number of filter taps. Assume that the equalizer has an
M-order equalization target, i.e., the ISI of the equalized
signal has the form H(D)=ho+hy-D+ -+ hy - DM,
The L,-tap noise predictor will increase the order of ISI to
M + L, — 1, and hence, the state number of the subsequent
trellis detector is 2*L»~1. The design parameters M, L.,
and L, directly affect the read channel signal processing
performance versus power consumption trade-off.

3.2 A Baseline Read Channel Design

Following the perpendicular recording read channel para-
meter configurations presented in [27] where the ratio of the
transition noise to the total noise power is 0.5 and the
normalized channel bit density is 2.5 (we use these channel
parameters for all the work), we design a baseline perpendi-
cular recording read channel by choosing H(D) =1+ 0.75D
with M =1, L, = 10, and L, = 3 which has the reasonable
complexity and performance. Therefore, the state number of
the trellis detector is 2L~ = 8. Since the LDPC code
decoder demands soft input, the trellis detector must be able
to generate soft detection output. In this work, we implement
the soft-output trellis detector using the soft-output Viterbi
algorithm (SOVA) with a two-step detector structure [28].
Targeting at 4 KB user data per sector, we construct a regular
rate-15/16 (34,976, 32,790) quasi-cyclic LDPC (QC-LDPC)
code with the parity check matrix column weight of 4. The
code parity check matrix contains an array of 2 x 32 circulant
matrices, where all the circulant matrices have a column
weight of 2 and are constructed randomly subject to the four-
cycle free constraint. The QC-LDPC encoder is designed
using the approach presented in [29], and the QC-LDPC
decoder employs the min-sum decoding algorithm [30] and
is implemented using the decoder architecture presented in
[31]. To determine finite word length configurations, we
carried out simulations and choose the configurations so that
there is almost no performance gain if we further increase the
finite word length. The chosen finite word length configura-
tion is listed as follows:

e The coefficients and inputs/outputs of the equalizer
and noise predictor use 6 bits.

TABLE 1
Baseline Read Channel Power Estimation Results

Power Consumption (mW)
LDPC Decoder @ 11.1dB 101.76
8-state SOVA Detector 83.81
Equalizer + Noise Predictor 61.05
\ Total \ 246.62 |

e The path metric and soft output of the SOVA
detector use 9 and 3 bits, respectively.
e The internal LDPC decoding messages use 3 bits.

With the above design parameters and assuming a 2 Gbps
magnetic recording read channel operational throughput, we
designed the entire read channel data path application-
specific integrated circuit (ASIC) using Synopsys tools and
TSMC 65 nm CMOS standard cell and SRAM libraries with
1.2 V supply voltage. The number of the maximum allowable
internal LDPC decoding iterations is set to 16. Table 1 lists the
power estimation results, which show that the read channel
signal processing, including equalization, noise prediction,
and SOVA detection, consume more than 58 percent of the
total read channel power consumption.

3.3 Low-Power Read Channel Design

Based upon the above baseline read channel, this section
quantitatively investigates the power saving potential when
using the design strategy presented in Section 2. To reduce
the read channel signal processing power consumption at
the cost of degraded signal processing performance, we
could reduce the equalization target order M, equalizer tap
number L., and/or noise predictor tap number L,. In the
above baseline read channel, the equalization target order
M is only 1. As a result, further decreasing M will
drastically degrade the read channel signal processing
performance, which can hardly be compensated by using
a stronger LDPC code. Therefore, in this work, we only
consider to decrease the other two parameters L. and L,,.
As pointed out in Section 2, to most simplify its practical
implementation, we only use two different LDPC codes (i.e.,
anormal high-rate LDPC code and a stronger low-rate LDPC
code) and the read channel only needs to operate under two
modes (i.e.,, a normal mode and a low-power mode).
Following the above baseline read channel design, the
normal LDPC code rate is 15/16 and the normal mode read
channel signal processing has L. =10 and L, = 3. Let L
and L, denote the reduced tap numbers of the equalizer and
noise predictor when read channel signal processing oper-
ates in the low-power mode. Weset L. = 3and L,, = 2 while
keeping the same equalization target H(D) = 1 + 0.75D. Asa
result, the trellis state number reduces from 8 to 4 in the low-
power mode. Clearly, when operating in the low-power
mode, the read channel signal processing is subject to
performance degradation. As shown in Fig. 4, if we keep
the same rate-15/16 LDPC code, such read channel power
reduction will come with about 0.5 dB performance loss. If
we could leverage the intrasector lossless compression to
enable the use of a rate-10/11 LDPC code, the overall read
channel sector error rate (SER) performance can be fully
recovered, as shown in Fig. 4. Hence, we have the two
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Fig. 4. Sector error rate comparison for different modes.

LDPC code rates R, =15/16 and R, =10/11, and the
compression ratio threshold r, = R, /R, =1.03. Accord-
ingly, given the runtime lossless compression ratio 7, we have

e Ifr < 1.03, then we use the normal rate-15/16 LDPC
code to protect the uncompressed user data, and
accordingly, the read channel signal processing data
path operates in the normal mode and contains a
10-tap equalizer, 3-tap noise predictor, and an 8-state
SOVA detector.

e If r>1.03, then we use the stronger rate-10/11
LDPC code to protect the compressed user data, and
accordingly, the read channel signal processing data
path operates in the low-power mode and contains a
3-tap equalizer, 2-tap noise predictor, and a 4-state
SOVA detector.

Let P.y, Py, Pier, and Ppppc denote the power consump-
tion of the 10-tap equalizer, 3-tap noise predictor, 8-state
SOVA detector, and rate-15/16 LDPC code decoder in the
normal mode read channel, respectively; and let P/, P,
P!, and P!, .. denote the power consumption of the 3-tap
equalizer, 2-tap noise predictor, 4-state SOVA detector, and
rate-10/11 LDPC code decoder in the low-power mode read
channel, respectively. Moreover, let P,,,, denote the power
consumption of the lossless data compressor. We note that
the power consumptions of LDPC encoder and lossless data
decompressor are relatively very small; hence, they are not
considered in the following power saving analysis. Assume
that the hard disk drive carries out read and write
operations with the probabilities of « and 1 — «, and let 8
represents the probability that the runtime lossless data
compression ratio r > 1.03. Then, the total read channel
power saving can be estimated as

Pea,u =Q- B(Pt - Rgl) - (1 - a)Przorm (1)

where

B :Peq+Pprd+Pdet+PLDPC7
! ! ! ] !
P =P, +P,;+ P+ Prppc-
To quantitatively evaluate the power saving and extra
silicon area cost, we carried out further ASIC design using

Synopsys tools and TSMC 65 nm CMOS standard cell and
SRAM libraries with 1.2 V supply voltage. All the finite
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TABLE 2
Silicon Area Cost Results

Silicon Area (mm?)
Baseline | Dual-code-rate architecture
LDPC Decoder 1.32 1.36
SOVA Detector 0.27 0.28
Equalizer and Noise Predictor 0.12 0.12
LZ77 Compressor N/A 0.05
| Total [ 171 ] 1.81

word length configurations remain exactly the same as
those presented in the above baseline read channel design.
Table 2 lists design results of silicon area. To support such a
dual-mode operation, we need to redesign and/or add four
components: lossless compressor, LDPC decoder, SOVA
detector, and equalizer/noise predictor. Among them, the
equalizer and noise predictor only need to store seven extra
6-bit coefficients, leading to negligible extra silicon cost.
Hence, the silicon area of the equalizer and noise predictor
remains the same, as shown in Table 2.

Targeting at relatively low lossless compression ratios for
common and representative files including Web pages,
e-mails, text files, executable files, and system files, etc., the
lossless data compressor is designed based on the well-
known LZ77 algorithm [32]. The LZ77 compressor mainly
uses a 1 Kbyte content addressable memory (CAM) with
128 address entries and 8-byte word length for each address
for high-speed comparison, and contains a 128-byte buffer.
The estimated silicon area for the designed LZ77 compres-
sor based on 65 nm technology is 0.05 mm?.

In the context of LDPC code decoder, we use the decoder
architecture presented in [31] that employs the min-sum
decoding algorithm as pointed out in the above. To support
such dual-code rate decoding with the same target decod-
ing throughput, we only need to increase the storage
capacity of the decoding message storage module and add
configurability to the decoding computation module, which
tends to incur small silicon overhead. Therefore, the overall
silicon area of LDPC code decoder only increases from 1.32
to 1.36 mm?, as shown in Table 2. In the context of SOVA
detector, following the architecture presented in [28], in
order to support both 4-state and 8-state SOVA, two extra
MUXs are needed in the add, compare, and select (ACS)
module. The survivor memory unit (SMU) and the path
equivalence detector (PED) also need two extra MUXs for
each step. Hence, we need to add 2 - (10 + 10) = 40 binary
MUXs and two 9-bit MUXs in total, where 10 is the
traceback length for the SMU and PED in the case of 4-state
mode. As a result, the silicon area of SOVA detector
increases from 0.27 to 0.28 mm?, as shown in Table 2.

Table 3 summarizes the estimated power consumption
when the read channel signal processing operates in the
low-power mode. We notice that the rate-10/11 LDPC
code decoder consumes slightly less power compared with
the rate-15/16 LDPC code, which is mainly because the
average LDPC internal decoding iteration number slightly
reduces under the same channel SNR.

When the dual-mode data path works under the normal
mode, the power consumption of LDPC decoder, SOVA
detector, and equalizer/noise predictor is the same as the
baseline power consumption in Table 1. Therefore, according
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TABLE 3
Low-Power Mode Power Estimation Results
Power Consumption (mW)
LDPC Decoder @ 11.1dB Pl po =9326
4-state SOVA Detector Pl =29.08
Equalizer + Noise Predictor Péq + Pé,r a= 26.94
LZ77 Compressor @ r > 1.03 Peom = 14.12
P} 149.28

to (1) and Tables 1 and 3, we can calculate the power saving
as Py, =97.34-a- 5 —14.12- (1 — ), where « is the prob-
ability that one hard disk drive access is a read operation and
B is the probability that the runtime lossless data compres-
sion ratio 7 > 1.03. Clearly, different environments and
workloads will have different a and/or (3, leading to
different power saving potentials.

Fig. 5 shows the power saving for a € [0.5,1] and
B € [0, 1]. At the extreme scenario (i.e., each user data sector
can be compressed with the ratio over 1.03 and all the
system requests are read), about 39 percent power saving
can be achieved. We can see that in order to achieve net
power saving when half of the system requests are read, at
least 18 percent user sectors stored in the hard disk should
be compressible with the ratio over 1.03. Therefore, this
proposed method is not effective when the disk drive is
used for cameras, MP3/MP4 players, and media servers
where most files in these devices are lossless incompres-
sible. On the other hand, when the system requests are
dominated by read and many frequently accessed files are
losslessly compressible with the ratio over 1.03, there will be
noticeable power saving. We note that for large-capacity
hard disk drives in data centers and high-performance
computing systems where high reliability is extremely
important, people use the “scrubbing” technique [33] to
detect latent errors by always trying to read hard disk
drives during idle time. Meanwhile, the stored files in high-
performance computing systems may be losslessly com-
pressible with higher possibilities. Hence, this proposed
design strategy can be particularly useful for those high-
performance computing systems.

In order to further verify the power saving under real
applications, we carried out compression for various user-
stored data, executable and system files on one server with
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red hat enterprise edition Linux, and several EDA software
installed. The results show §=0.9787. Fig. 6 shows the
overall read channel power saving for « € [0.5,1] with
being fixed as 0.9787. Under this case, when the hard disk
drive predominantly carries out read operations, the overall
power saving can be as high as 38 percent.

4 CAse StupY IlI: IMPROVING WRITE SPEED OF
NAND FLASH MEMORY

As the fastest growing segment in global semiconductor
industry, NAND flash memory is being widely used in
consumer electronics and quickly entering various high-end
and personal computing system. As the technology con-
tinues to scale down and multibit per cell storage is being
aggressively pursued to push the envelope of storage
density, NAND flash memory faces increasingly serious
storage reliability and endurance problems, which makes
the use of powerful ECCs indispensable. Meanwhile,
NAND flash memory has a relatively slow write speed
with the typical write latency of a few hundred micro-
seconds. In this section, we discuss and demonstrate the use
of the above presented design strategy to improve NAND
flash memory write speed.

4.1 Basics of NAND Flash Memory

Each NAND flash memory cell is a floating gate transistor
whose threshold voltage can be configured (or pro-
grammed) by injecting certain amount of charges into the
floating gate. The continuous growth of NAND flash
memory storage density has been mainly driven by
aggressive technology scaling, e.g., an NAND flash memory
with 34 nm CMOS technology has been recently reported in
[34]. In fact, NAND flash memory has surpass micropro-
cessors as the leading edge technology scaling driver.
Besides technology scaling, multilevel per cell (MLC)
technique, i.e., to store more than 1 bit in each memory
cell (or floating gate MOS transistor) by programming the
cell threshold voltage into one of I > 2 voltage windows,
has been widely used to further improve the NAND flash
memory storage density. Because of its obvious storage
density advantage, MLC NAND flash memory has been
increasingly dominating flash memory market. In current
design practice, most MLC NAND flash memories store
2 bits per cell, while 3 and even 4 bits per cell NAND flash
memories have been recently reported [11], [12], [13], [35]
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and are being manufactured by several NAND flash
memory vendors such as Micron and Samsung,.

Before one flash memory cell can be programmed, it must
be erased (i.e., its threshold voltage is set to the lowest voltage
window). A tight threshold voltage control is typically
realized by using program-and-verify approach with a
staircase program voltage V},, [3], as illustrated in Fig. 7.
Because NAND flash memory should sweep the entire
operational voltage window using this program-and-verify
procedure, the NAND flash memory write latency tends to
be inversely proportional to the program step voltage AV,

Ideally, threshold voltage distributions of different
storage states should be sufficiently far away from each
other to ensure a high raw storage reliability. In practice,
due to various effects such as background pattern depen-
dency, noises, and cell-to-cell interference [36], the thresh-
old voltage distributions may be very close to each other or
even overlap, leading to non-negligible raw bit error rates.
In the following, we present an MLC cell threshold voltage
distribution model that will be used for quantitative
performance evaluation and comparison in this work. The
erase state tends to have a wide Gaussian-like distribution
[37], i.e., the probability density function (PDF) of the
threshold voltage distribution can be approximated as

)2
1 =
o

z) = e ,
S

where o( is the standard deviation and p is the mean
threshold voltage of the erase state. All the other states tend
to have the same threshold voltage distribution, as
illustrated in Fig. 8. The model consists of two parts,
including an uniform distribution in the middle and
Gaussian distribution tail on both sides [37]. The width of
the uniform distribution equals to the program step voltage
AV}, and the standard deviation of the Gaussian distribu-
tion is denoted as o. The Gaussian distribution on both
sides models the overall effect of background pattern
dependency, noises, and cell-to-cell interference. Let F
and P; denote the probabilities of the uniform distribution
and the Gaussian distribution, respectively. We have the
overall PDF f,.(z) as

C
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Fig. 8. Threshold voltage distribution model NAND flash memory (except
the erase state).

where b is the mean of the threshold voltage (i.e., the center
of the distribution, as shown in Fig. 8), and the constant ¢
can be solved based on Py + P, = f:;o for(z)da = 1.

To push the storage density envelope, NAND flash
memory cells are organized in an array— block— page
hierarchy, as illustrated in Fig. 9, where an NAND flash
memory array is partitioned into blocks, and each block
contains a number of pages. Within each block, each
memory cell string typically contains 16-64 memory cells,
and all the memory cells driven by the same word line are
programmed and sensed at the same time. All the memory
cells within the same block must be erased at the same time.
Data are programmed and fetched in the unit of page,
where the page size ranges from 512 B to 8 KB user data.

4.2 Quantitative Evaluation

In this work, we consider the use of LDPC code as ECC for
2 bits/cell NAND flash memory with 4 KB page size. We
use the same rate-15/16 QC-LDPC code as in Section 3 for
hard disk drives. Since the LDPC code decoder requires soft
input, we assume that each NAND flash memory cell is
sensed with a 16-level uniform quantization scheme, as
illustrated in Fig. 10, where the quantization thresholds are
represented by the red dot lines.

In a baseline case when the user data are not compressed
and the rate-15/16 LDPC code is being used, we set the
program step voltage AV}, as 0.16 while normalizing the
distance between the mean of two adjacent threshold
voltage windows as 1. Given the value of program step
voltage AV,,, the LDPC code decoding failure rate (i.e., the
sector error rate) will depend on the standard deviations of
the erased state (i.e., 0y) and the other three programmed
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Fig. 9. NAND flash memory structure.
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Threshold Voltage

Fig. 10. The sensing quantization schemes for LDPC-coded system.

states (i.e., o). In this work, we fix the normalized value of
oo as 0.2 and carry out simulations to evaluate the sector
error rate versus normalized o, as shown in Fig. 11. In order
to improve the NAND flash memory write speed, we must
increase the program step voltage AV}, which nevertheless
will widen each programmed state threshold voltage
window. As a result, there is a higher probability that
adjacent states have overlaps, leading to a higher raw bit
error rate. As shown in Fig. 11, if we increase AV, from 0.16
to 0.22 while keeping the same rate-15/16 LDPC code, a
significant sector error rate degradation is incurred due to
the degraded raw NAND flash memory storage reliability.

Using the design strategy presented in Section 2, we can
exploit runtime intrasector lossless data compression to
allow the use of a stronger LDPC code whose extra error
correction capability can be directly traded to enable an
increase of the program step voltage AV,,. In this case
study, we consider to use a stronger rate-9/10 LDPC code.
Similarly, the rate-9/10 LDPC code is a regular QC-LDPC
code with the parity check matrix column weight of 4. The
code parity check matrix contains an array of 2 x 20
circulant matrices, where all the circulant matrices also
have a column weight of 2 and are constructed randomly
subject to the four-cycle free constraint. As shown in Fig. 12,
when the rate-9/10 LDPC code is being used, we could
increase the program step voltage AV}, from 0.16 to 0.22
while maintaining almost the same overall NAND flash
memory system storage reliability.

Hence, we have R, =15/16 and R, =9/10, and the
compression ratio threshold r, = R,,/R, = 1.04. Accordingly,
given the runtime lossless compression ratio r, we have

e If r < 1.04, then we use the normal rate-15/16 LDPC
code to protect the uncompressed user data, and
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Fig. 11. Simulated NAND flash memory sector error rates when
rate-15/16 LDPC code is being used.
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accordingly, the data are written to the NAND flash
memory at a low speed with the normalized
program step voltage AV}, of 0.16.

e Ifr > 1.04, then we use the stronger rate-9/10 LDPC
code to protect the compressed user data, and
accordingly, the data are written to the NAND flash
memory at a high speed with the normalized
program step voltage AV}, of 0.22.

It is clear that the rate-9/10 LDPC code is certainly not
the only choice. Given the baseline LDPC code rate in the
normal mode, as we reduce the rate of LDPC code in the
high write speed mode, we could more aggressively
increase the program step voltage AV,, but demand a
larger lossless data compression ratio threshold r;, while a
larger 7, may directly reduce the probability §. To
demonstrate the involved trade-off, we further considered
two other low-rate LDPC codes including 13/14 and 11/12.
For each code rate, we constructed a regular QC-LDPC code
with column weight of 4 and carried out extensive
computer simulations to find a corresponding program
step voltage AV, that can ensure almost the same sector
error rate performance as the baseline case with rate-15/16
LDPC code and AV, =0.16. Simulations show that for
rate-13/14 and rate-11/12 LDPC codes, choices of AV}, as
0.18 and 0.20 can maximize the write speed while ensuring
storage reliability. Meanwhile, according to each code rate,
we are able to calculate the lossless compression ratio
threshold r,. Again, let 3 represent the probability that the
runtime lossless data compression ratio r > r;. The average
NAND flash memory write speed improvement v can be
expressed as

_ (A
y = (m—l) - B % 100%. (2)

Since different environments and workloads have
different f3, leading to different write speed improvement
potentials, we show in Fig. 13 the write speed improvement
for different code rate LDPC when 3 changes from 0 to 1. It
can be seen that up to 38 percent write speed improvement
can be achieved when each sector of data stored in the flash
memory can be compressed by a ratio over r,. This
proposed method can be useful for NAND-flash-based
SSD, especially the enterprise-level SSD in data center,



344

40%

7 35%| [—— AVpp = 0.22, rate-9/10 LDPC

5 —— AVpp = 0.20, rate-11/12 LDPC
30%}

£ —— AVpp = 0.18, rate-13/14 LDPC

3 25%F

o

£ 20%}

pe]

S 15%}

73

® 10%}

= 5%

01 02 03 04 05 06 07 08 09 1

B

Fig. 13. Write speed improvement in different cases.

where the stored data may be more likely losslessly
compressible and at the same time, high write speed is
important. Of course, for applications such as MP3/MP4
player, cameras, and media servers, this proposed method
will have little performance gain as the media files in those
application are losslessly incompressible.

Using the same LZ77 compressor as described in
Section 3.3, we carry out compression for various files on
the same Linux server. Results show 8 = 0.9613, 0.9807, and
0.9991 when rate-9/10, 11/12, and 13/14 LDPC code is
used, respectively. It translates to an average NAND flash
memory write speed improvement of 36, 24.5, and
12.5 percent, respectively, according to (2). The results are
further summarized in Table 4.

5 CONCLUSIONS

This paper demonstrates the potential of using lossless data
compression to improve other performance metrics of data
storage systems, including energy efficiency and access
speed, instead of saving storage space. This work has a
twofold motivation: 1) lossless data compression is not being
widely used today in mass data storage systems such as hard
disk drives and NAND flash memories, leaving many
losslessly compressible files are stored uncompressed, and
2) data storage is typically realized in the unit of equal-sized
sectors, and modern data storage systems employ increas-
ingly powerful ECCs to protect each sector data to ensure the
storage integrity, while a stronger ECC needs more storage
space to store coding redundancy. The underlying idea of
this work is to apply runtime intrasector lossless data
compression to enable an opportunistic use of a stronger
ECC without incurring any storage space overhead, and
trade such more-than-enough error correction capability for
other data storage system performance metrics.

To evaluate and demonstrate this design strategy, we
carried out case studies for both hard disk drives and
NAND flash memory, the two mainstream mass data
storage media. In the case studies, we use LDPC codes as
the ECC in data storage systems. For hard disk drives, this
design strategy is used to reduce average hard disk drive
read channel signal processing energy consumption. To
sustain continuous hard disk drive storage density growth,
ever increasingly powerful and complex read channel
signal processing is being used, which nevertheless incur
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TABLE 4
Results When Different Low-Rate LDPC Codes Are Used
LDPC code rate 13/14 11/12 9/10
AVpp 0.18 0.20 0.22
T 1.01 1.02 1.04
B 0.9991 | 0.9807 | 0.9613
~ 125% | 245% 36%

more energy consumption overhead. We carried out
detailed read channel ASIC design and power estimation,
and results show that up to 38 percent energy saving can be
achieved. For NAND flash memory, we use this design
strategy to improve the average NAND flash memory write
speed in order to alleviate the slow write speed problem of
NAND flash memory. Results show that up to 36 percent
write speed improvement can be achieved for 2 bits/cell
NAND flash memories.
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