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per unit power per unit area, the MORA RC shows over 4× higher
throughput efficiency compared to AsAP and AsAP-II architectures.
While pure MOPS numbers for MORA are comparable to those
of competing architectures, MORA achieves significantly higher
MOPS/mm2 implying higher throughput efficiency and processing
density.

It is also worth noting that the actual advantage of the pro-
posed architecture comes in the form of throughput efficiency and
resource cost. For instance, when performing 8 × 8 2-D-DCT, the
proposed architecture shows a performance of 9.945 MSamples/s
and 21.36 MSamples/s compared to 2.8 MSamples/s reported for
the SmartCell architecture. In terms of cycle count comparison, the
proposed RC requires 72 cycles with a latency of 36 cycles when
processing 8 DCT blocks in parallel, compared to 64 and 96 cycles
required for single block computation by the Montium [5] and RaPid
[6] processors, respectively. To get a fair idea of throughput efficiency
per power and area resources, we have also included an estimation
of performance per unit power per unit area. This figure of merit
accounts for both the architecture as well as circuit design decisions
and gives a fairly accurate idea of the overall resource efficiency and
resource cost of the architecture.

IV. CONCLUSION

This brief presented recent findings in the design and performance
evaluation of a low-complexity low-cost reconfigurable processor
to be part of MORA, our coarse-grained reconfigurable array. The
processor operating at its optimum performance-power point was
found to be capable of delivering a peak throughput of 75 MOPs/mW.
When evaluated for popular benchmark algorithms, the processor
offered over 4× advantage in resource efficiency compared to
recently proposed architectures and seems a promising solution for
resource-efficient reconfigurable computing.
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Error Rate-Based Wear-Leveling for NAND Flash
Memory at Highly Scaled Technology Nodes

Yangyang Pan, Guiqiang Dong, and Tong Zhang

Abstract— This brief presents a NAND Flash memory wear-leveling
algorithm that explicitly uses memory raw bit error rate (BER) as
the optimization target. Although NAND Flash memory wear-leveling
has been well studied, all the existing algorithms aim to equalize
the number of programming/erase cycles among all the memory
blocks. Unfortunately, such a conventional design practice becomes
increasingly suboptimal as inter-block variation becomes increas-
ingly significant with the technology scaling. This brief presents a
dynamic BER-based greedy wear-leveling algorithm that uses BER
statistics as the measurement of memory block wear-out pace, and
guides dynamic memory block data swapping to fully maximize
the wear-leveling efficiency. Simulations have been carried out to
quantitatively demonstrate its advantages over existing wear-leveling
algorithms.

Index Terms— Error rate, process variation, solid state drive, wear
leveling.

I. INTRODUCTION

NAND Flash memory is subject to gradual memory cell wear-out
caused by programming/erase (P/E) operations. This leads to a P/E
cycling endurance limit that continuously degrades with technology
scaling. Since erase operations are carried out in the unit of
block and gradual memory cell wear-out is reflected as increasing
storage raw bit error rate (BER), designers have been developing
techniques to embrace the effects of technology scaling from two
aspects: 1) more powerful error correction code (ECC) and signal
processing solutions that can tolerate higher raw BER [1], [2]
and 2) effective wear-leveling solutions that can equalize
wear-out pace among all the blocks as much as possible.

Since the wear-out pace of each memory block is reflected
as its raw BER, wear-leveling should ideally aim to equalize
the raw BER among all the blocks. However, all the existing
wear-leveling algorithms [3], [4] simply use the number of P/E
cycles as the equalization target. Although memory block raw
BER heavily depends on the number of P/E cycles, given the
maximum allowable raw BER, different memory blocks may have
largely different endurance due to fabrication process variation.
Such a conventional design practice is a reasonable simplifica-
tion for older technology nodes, where the memory block P/E
cycling endurance is large (e.g., several hundreds of thousands)
and process variation is relatively very small. However, it becomes
increasingly suboptimal for newer technology nodes (e.g., 35 nm
and below), where the memory block P/E cycling endurance has
significantly dropped (e.g., few tens of thousands or even few
thousands) and process variation has become relatively much more
significant.

Very intuitively, the above discussion suggests that we should
explicitly use memory block BER as the equalization target in
wear-leveling at highly scaled technology nodes. Design of wear-
leveling algorithms is inherently subject to a tradeoff between wear-
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leveling efficiency and garbage collection efficiency, and prior work
has well demonstrated the advantages of dynamic wear-leveling
schemes [3]–[8]. In this brief, we present a dynamic BER-based
greedy (DBG) wear-leveling algorithm. Besides explicitly using BER
as equalization target, it applies BER-based dynamic block data
swapping to further on-the-fly equalize the memory block wear-
out pace among all the memory blocks. We carried out trace-based
simulations to demonstrate the effectiveness of the proposed BER-
based wear-leveling algorithm. Results clearly show the advantages
of such BER-based wear-leveling over existing wear-level strategies,
and further demonstrate the wear-leveling efficiency versus garbage
collection efficiency tradeoffs.

II. BACKGROUND AND PRIOR WORK

The objective of wear-leveling is to equalize the wear-out process
among all the blocks, which can maximize the overall NAND Flash
memory lifetime. Conventional wear-leveling algorithms make all the
blocks undergo almost the same amount of P/E cycles. In the run
time, each block may contain both valid and invalid pages. Before
one block can be erased, the data in all its valid pages must be
copied to other blocks, after which all the pages in this block can
be considered as garbage and hence this block can be erased. This
process is referred to as garbage collection. The essential task of
wear-leveling is to determine which block should be erased and hence
become ready to store new data. Various wear-leveling algorithms
can be categorized as either static or dynamic, depending on whether
run-time data access characteristics are taken into account. In the
following, we briefly describe several well-known existing wear-
leveling algorithms. Readers are referred to a survey paper [9] for
much detailed discussions.

The simplest wear-leveling algorithm is the so-called static ran-
dom (SR) algorithm, which randomly chooses a block to erase
regardless of how many times the block has been erased and
how many valid pages are contained in the block. Due to its
random nature, the SR algorithm can keep the P/E cycling of
different blocks almost the same throughout the memory lifetime.
Nevertheless, it suffers from poor garbage collection efficiency.
The static wear-ignore greedy (SWIG) algorithm aims to erase the
block with the minimum number of valid pages, regardless of how
many times the block has been erased. Clearly, this algorithm can
improve the garbage collection efficiency at the penalty of wear-
leveling efficiency. The static wear-aware greedy (SWAG) algo-
rithm determines which block to be erased by jointly considering
both the wear-leveling efficiency and garbage collection efficiency.
In particular, it aims to erase the block with the minimal number of
valid pages subject to a P/E cycling constraint.

By on-the-fly identifying the “hot” and “cold” data, dynamic
wear-leveling algorithms [10] periodically swap the hot and cold
data among different blocks in order to improve the wear-leveling
efficiency. The dynamic erase-number-based greedy (DEG) algorithm
identifies the “hotness” of each block based on how long has elapsed
since the block has been erased, and periodically swaps the data on
the coldest and hottest blocks. It always erases the coldest block
during wear-leveling.

III. PROPOSED WEAR LEVELING ALGORITHM

Continuous Flash memory technology scaling causes increasingly
severe inter/intra-die process variation, leading to significant variabil-
ity of critical memory cell device parameters, such as oxide thickness
and gate width/length. This results in significant variations of memory
cell threshold voltage distribution over P/E cycling [11]. Therefore,
under the same P/E cycling, pages in different memory blocks may

Fig. 1. Normalized bit error number per block with 1-MB capacity probability
distribution function, based on measurements among 1000 blocks of a 35-nm
MLC NAND Flash memory chip under the same P/E cycling of 15 K.

have largely different worst-case raw BER. Equivalently, given the
same ECC, different memory blocks may have largely different P/E
cycling endurance. To quantitatively demonstrate such inter-block
variation, Fig. 1 shows the normalized bit error number per 1-MB
block probability distribution based on measurements among 1000
blocks of a 35-nm multi level cell (MLC) NAND Flash memory chip
under the same P/E cycling of 15 K. Each block has 64 physical
wordlines and 256 4-kB logical pages. Similar measurement results
have been reported in [12].

The significant inter-block P/E cycling endurance variation
makes conventional wear-leveling algorithms largely subopti-
mal, since conventional wear-leveling algorithms assume an
equal P/E cycling endurance of all the blocks and aim
to equalize the P/E cycling number among all the blocks.
In the presence of significant inter-block P/E cycling endurance
variation, such a conventional design practice makes NAND Flash
memory lifetime limited by the worst block and leaves many blocks
largely under-utilized. Assume a Flash memory system contains total
M memory blocks, and let Di denote the achievable P/E cycling
endurance of the i-th block. Ideally, this memory system can sustain
total

∑M
i=1 Di block erase operations. If we use conventional wear-

leveling schemes, the total number of erase operations is upper
bounded by min(Di ) · M , i.e., the percentage of NAND Flash memory
under-utilization is lower bounded by

∑M
i=1 Di − min(Di ) · M

∑M
i=1 Di

. (1)

With the technology scaling, the inter-block P/E cycling endurance
variation becomes larger and meanwhile the magnitude of P/E cycling
endurance continues to reduce. Therefore, conventional wear-level
schemes will become increasingly suboptimal and result in increas-
ingly larger memory under-utilization. Very intuitively, in order to
address this issue, wear-leveling algorithms should explicitly take into
account of inter-block P/E cycling endurance variation. Due to the
better performance of dynamic wear-leveling schemes, this brief only
focuses on incorporating the awareness of inter-block P/E cycling
endurance variation into dynamic wear-leveling. Nevertheless, the
proposed design strategy can be straightforwardly applied to improve
static wear-leveling.

In this brief, we propose a DBG wear-leveling algorithm. The key
is to explicitly use the raw BER statistics of each memory block as
the measurement of its wear-out pace. We note that the raw BER
statistics can be obtained and updated when one block has been read
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Fig. 2. Illustration of the operational flow diagram of the proposed
BER-based wear-leveling algorithm.

most recently, i.e., when any page within one block is read, it will
be processed by an ECC decoder at the controller, and the raw BER
statistics can be obtained by comparing the input and output of the
ECC decoder. In addition, we apply BER-based dynamic block data
swapping to further on-the-fly equalize the memory block wear-out
pace among all the blocks. Let Vi and Ei denote the number of valid
pages and BER of the i-th block, let Eavg denote the average BER
of all the blocks, and Tber ∈ [0, 1] represent a pre-defined threshold
factor. In addition, let Npage denote the total number of pages per
block, we define Nth ∈ [0, Npage] as a valid page number threshold.
Fig. 2 shows the flow diagram of this proposed dynamic BER-based
wear-leveling algorithm.

In Fig. 2, B denotes all the dirty blocks to be cleaned, and S
denotes the dirty blocks with high error rate and valid pages number
bigger than a pre-defined threshold Nth. This dynamic wear-leveling
algorithm employs run-time data swapping to equalize the BER
among all the blocks while jointly considering the tradeoff among
the garbage collection efficiency, wear-leveling efficiency, and data
swapping overhead. In the proposed algorithm, instead of cleaning
the blocks in S, we swap the data of the block in S (i.e., hot data) with
the data of blocks in B with low error rate and valid pages number
smaller an Nth (i.e., cold data). As shown in Fig. 2, it uses two pre-
defined parameters, Tber and Nth, to adjust the tradeoff, where Tber
controls the allowable variation of BER among all the blocks and Nth
explicitly sets a constraint to ensure garbage collection efficiency. As
we reduce the parameter Tber and/or increase the parameter Nth, we
can improve the wear-leveling efficiency at the penalty of garbage
collection efficiency, and meanwhile more data swapping operations
will occur, leading a higher data swapping overhead. Since practical
workloads may have varying data access characteristics in the run
time, the NAND Flash memory controller can on-the-fly monitor
the garbage collection efficiency, wear-leveling efficiency, and data
swapping overhead, based on which the controller can adjust these
parameters accordingly.

IV. SIMULATION RESULTS

We carried out trace-based simulations to demonstrate the
effectiveness of the proposed BER-based wear-leveling algorithm.
We use the SSD module [9] in DiskSim [13], and use three work-
load traces, including Iozone, Postmark, and a synthetic workload
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Fig. 3. Normalized average BER when different algorithms are used.
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Fig. 4. Normalized variance of BER when different algorithms are used.

trace [9] consisting of 25 M read requests and 25 M write requests,
among which 50% requests are random and the other 50% requests
are sequential. In the SSD module, each chip package contains two
dies that share an eight-bit I/O bus and a number of common control
signals, and each die contains four planes and each plane contains
2048 blocks. Each block contains 64 4-kB pages. We assume the use
of SLC NAND Flash memory, for which the latencies of program,
read, and erase operations are 200 μs, 25 μs, and 1.5 ms, respectively.
Following the ONFI 2.0 specification [14], we set the interface bus
bandwidth of NAND Flash chip as 133 Mb/s.

A. Modeling of Process Variation Impacts

We model the impact of process variation on NAND Flash memory
error rate distribution according to our measurement results on 35-
nm MLC device. As shown in Fig. 1, under the P/E cycling of
15 K, the block BER could spread more than 13×, i.e., among
the 1000 blocks, the minimum block BER is about 8.3 × 10−5

and the maximum block BER is about 1.1 × 10−3. Measurement
results show that both BER and BER spread grow with the number
of P/E cycles, and we approximately model the block BER as
e = 10−s·N , where N is the number of P/E cycles and s is one
parameter reflecting different BER growth rates among different
memory blocks due to process variation. The maximum and minimum
values of s are smax = 4.6 × 10−4 and smin = 2.8 × 10−4,
hence the mean of s is μ = (smax + smin)/2 = 3.7 × 10−4.
Measurement results suggest that we may approximately assume
the parameter s follows a bounded Gaussian distribution,
i.e., let f (s) denote the probability density function of s,
we have

f (s) =
⎧
⎨

⎩

1√
2πσ

e
− (s−μ)2

2σ2 , if smin ≥ s ≥ smax

0, else.
(2)

The standard deviation σ is set as 9 × 10−5. Assuming the ECC can
tolerate up to 10−3 of BER, we have that P/E cycling endurance of
all the memory blocks fall into the range of [15 000, 24 600].

B. Wear-Leveling Efficiency

In the presence of significant process variation, wear-leveling effi-
ciency of NAND Flash memory should be directly evaluated in terms
of block BER instead of P/E cycling number, i.e., a wear-leveling
algorithm, which can result in less average and variance of error
rates of all the blocks, has a better wear-leveling efficiency. Figs. 3
and 4 show the simulation results on average and variance of BER
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Fig. 5. Normalized total garbage collection time (including block erase time).

among all the blocks when different wear-leveling algorithms are
used. Regarding the parameters used in the proposed DBG algorithm,
we set Tber = 0.8 and Nth = 20. Besides the proposed BER-based
DBG algorithm, we consider the SR algorithm, SWIG algorithm,
SWAG algorithm, and DEG algorithm, which are all briefly dis-
cussed in Section II. To facilitate the comparison, the average and
variance of BER are normalized against the case of using the SR
algorithm.

The results clearly show that the proposed BER-based DBG
algorithm almost consistently outperforms the other algorithms in
terms of both average and variance of BER. This is a very reasonable
result since the proposed DBG algorithm explicitly uses the block
BER as the metric during wear-leveling. The effectiveness of the
conventional DG algorithm tends to vary over different workloads,
and is consistently worse than that of the proposed DBG algorithm. In
addition, the simplest SR algorithm has better wear-leveling efficiency
than other conventional static algorithms. This is mainly because SR
algorithm does not take into account of garbage collection efficiency
at all. The static algorithm SWIG has the worst wear-leveling
efficiency, since it most heavily trades wear-leveling efficiency for
garbage collection efficiency.

C. Garbage Collection Efficiency

We further studied and compared the garbage collection efficiency
of different algorithms. Intuitively, in order to ensure a higher wear-
leveling efficiency (i.e., more equalized BER among all the blocks),
we may have to move and copy more data among all the blocks,
leading to a lower garbage collection efficiency. Therefore, any wear-
leveling algorithm is inherently subject to a tradeoff between wear-
leveling efficiency and garbage collection efficiency. Fig. 5 shows the
normalized amount of time devoted to garbage collection (including
block erase).

Combining the results shown in Figs. 3 and 5, we can clearly see
that the algorithms with higher wear-leveling efficiency (including
SR, DEG, and proposed DBG algorithms) induce longer garbage
collection time (i.e., lower garbage collection efficiency). The SR
algorithm tends to have the worst garbage collection efficiency. This
is because it randomly chooses the blocks without considering the
valid pages on the blocks. The other four algorithms explicitly take
into account of the number of valid pages in each block, hence
they tend to have better garbage collection efficiency. The two
static algorithms, SWIG and SWAG, have better garbage collection
efficiency than the two dynamic algorithms, DEG and the proposed
DBG. This is because dynamic algorithms invoke run-time data
swapping to improve wear-leveling efficiency, which nevertheless
induces more data movement and hence lower garbage collection
efficiency.

D. System Performance

The above results demonstrate that the proposed BER-based DBG
algorithm can noticeably improve the wear-leveling efficiency over
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Fig. 6. Simulated SSD average response time.
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Postmark Iozone Synthetic Workload
0

1

2

3

4

5

6

N
or

m
al

iz
ed

 V
ar

ia
nc

e
 o

f E
rr

or
 R

at
e

 Tber=0.5  Tber=0.8  Tber=1.0  Tber=1.2

Fig. 8. Normalized variance of error rate with different Tber .

existing solutions, which can lead to a longer solid state drive life-
time. This is increasingly desirable as continuous technology scaling
inevitably degrades the NAND Flash memory cycling endurance.
However, the above results also show that the proposed DBG
algorithm has relatively low garbage collection efficiency, especially
compared with conventional static wear-leveling algorithms. From the
system perspective, different garbage collection efficiency is reflected
as different impact on the system speed performance, since a lower
garbage collection efficiency corresponds to more data movement that
may more noticeably interfere with normal I/O requests. Therefore,
system-level response time can be used as a more relevant metric to
evaluate and compare different wear-leveling algorithms in terms of
garbage collection effects.

Fig. 6 shows the simulated average response time. The SR
algorithm consistently has much worse system speed performance
compared with all the other algorithms. Hence, the SR algorithm is
not practically attractive, in spite of its relatively good wear-leveling
efficiency. The results show that the proposed DBG algorithm can
achieve almost the same average response time as the conventional
DG algorithm. Compared with the two static algorithms, SWIG
and SWAG, these two dynamic wear-leveling algorithms only suffer
around 3% system speed degradation. With its noticeable advantages
on wear-leveling efficiency and almost negligible disadvantages on
system speed performance, this proposed BER-based DBG algorithm
can be a preferable solution for future solid state storage systems.

E. Sensitivity Analysis

In the proposed BER-based wear-leveling algorithm, the parameter
Tber plays a very important role in determining the overall perfor-
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Fig. 10. Normalized average system response time with different Tber .

mance. As we reduce the value of factor Tber, we can increase
the wear-leveling efficiency and decrease the garbage collection
efficiency. The above simulations were carried out by fixing Tber
as 0.8. In the following, we show further simulation results with four
different Tber, i.e., 0.5, 0.8, 1.0, and 1.2. As shown in Figs. 7 and
8, a larger Tber increases the variance of the error rate and keeps
the average error almost the same, thus decreasing the wear-leveling
efficiency. Meanwhile, as shown in Figs. 9 and 10, a larger Tber
reduces the data swapping operation and reduces the total erasing
time, thus increasing the garbage collection efficiency and the system
speed performance. The simulation results suggest Tber of 0.8 appear
to be an appropriate configuration considering the tradeoff between
wear-leveling efficiency and system speed performance.

V. CONCLUSION

Conventional NAND Flash memory wear-leveling algorithms are
becoming increasingly suboptimal as the technology scaling continue
to degrade memory P/E cycling endurance and increase process
variation. As the very natural option, we must replace the number of
memory block P/E cycles with the memory block BER as the opti-
mization target of wear-leveling algorithms for NAND Flash memory
at highly scaled technology nodes. Following this simple intuition,
this brief presented a dynamic BER-based wear-leveling algorithm.
Based upon measurement results of 35-nm NAND Flash memory
chips and an SSD simulator, we carried out extensive simulations
and showed that the proposed BER-based algorithm can noticeably
improve the wear-leveling efficiency while maintain almost the same
impact on the memory system speed performance compared with
conventional design solutions.
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Reduced Power Transition Fault Test Sets for Circuits With
Independent Scan Chain Modes

Irith Pomeranz

Abstract— This brief considers circuits with multiple scan chains
where each scan chain can operate in shift, functional, or hold mode
independently of the other scan chains. For circuits where the hardware
overhead of controlling the scan chains independently is acceptable, this
brief describes a procedure whose goal is to generate a test set that
achieves the same transition fault coverage as a test set that consists of
both broadside and skewed-load tests, but where the shift mode is used
as few times as possible during the first patterns of the tests. This allows
the circuit to operate closer to its functional operation conditions, and
reduces the power dissipation during the second patterns of the tests,
which are applied at-speed.

Index Terms— Design-for-testability, full-scan circuits, switching
activity, transition faults, two-pattern tests.

I. INTRODUCTION

Two-pattern tests are applied to scan circuits in order to detect
delay faults. A two-pattern test can be represented as <s1v1, s2v2>,
where s1v1 is the first pattern of the test, and s2v2 is the second
pattern. For i = 1 and 2, si is a state and vi is a primary input
vector. The state s1 is the scan-in state. The first pattern, s1v1, is
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