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ABSTRACT

Gallager’s Low-Density Parity-Check (LDPC) codes have
recently received a lot of attention because of their excellent
performance. The decoder hardware implementation is ob-
viously one of the most crucial issues determining the extent
of LDPC applications in the real world. The straightfor-
ward fully parallel decoder architecture usually incurs too
high complexity for many practical purposes and should be
transformed to a partly parallel realization. In this paper,
we propose a joint code and decoder design approach to
construct a class of ( ���	� )-regular LDPC codes which ex-
actly fit to a partly parallel decoder implementation. The
partly parallel decoder architecture is suitbale for efficient
VLSI implementation and it has been shown that the jointly
developed ( �
��� )-regular LDPC codes have very good per-
formance.

1. INTRODUCTION

Gallager’s Low-Density Parity-Check (LDPC) codes [1]
have recently received a lot of attention because of their
excellent performance and have been widely considered as
a promising candidate error-correcting coding scheme for
many real applications in telecommunications and magnetic
storage.

However, little consideration has been given to the LDPC
decoder hardware realization which is required in many ap-
plications. As we will see later, the LDPC decoding al-
gorithm is essentially a fully parallel algorithm matching a
random-like graph. Thus the fully parallel architecture is the
most natural solution for the LDPC decoder hardware archi-
tecture design, e.g., a 1024bit, rate-1/2 fully parallel LDPC
decoder with the maximum throughput of 1 Gbit/s has been
physically implemented [2]. However, because of its appar-
ent high complexity, such a fully parallel implementation is
not suitable for many practical purposes, even short code
length (less than 10000 bits) is used, and an effective design
approach to reduce complexity is highly desirable.
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To reduce the hardware complexity, we have to effec-
tively transform the fully parallel architecture to partly par-
allel ones. However, due to the randomness of LDPC codes,
it’s nearly impossible to find an effective transformation for
an arbitrary given LDPC code. To solve this problem, Boutil-
lon et al. [3] propose to reverse the code design sequence:
Instead of trying to obtain a partly parallel decoder from
a given LDPC code, we can use an available partly par-
allel decoder to define a constrained random LDPC code,
which leads to the decoder-first code design [3]. However,
the decoder obtained from this design approach contains
many constrained random number generators which will in-
cur much complexity for real implementations and make the
entire design process very complicated.

In this work we consider the partly parallel decoder ar-
chitecture design for LDPC codes with short block length
(less than 10000 bits) and we believe these LDPC codes
are of great interest from practical point of view. It’s well
known that the LDPC decoding algorithm works well if the
corresponding Tanner graph (as explained later) does not
contain too many short cycles. Inspired by the criteria for
less short cycles and the decoder-first code design method-
ology in [3], we propose a joint code and decoder design ap-
proach to develop a class of implementation-oriented ( �
��� )-
regular LDPC codes which exactly fit to a partly parallel
decoder architecture. Compared with decoder-first code de-
sign, our proposed joint design approach leads to a much
more efficient decoder by eliminating those complicated ran-
dom number generators. The performance of such ( �
��� )-
regular LDPC code is nearly identical to the fully random
LDPC codes as shown in two design examples presented in
this paper.

2. LOW-DENSITY PARITY-CHECK CODES

A LDPC code is defined as the null space of a very
sparse ���� parity check matrix � , and typically is repre-
sented by a bipartite graph1, usually called Tanner graph, in
which one set of � nodes, the variable (or message) nodes,

1A bipartite graph is one in which the nodes can be partitioned into two
disjoint sets.
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corresponds to the set of codeword, and another set of �
nodes, the check (or constraint) nodes, corresponds to the
set of parity check constraints, as illustrated in Fig. 1. The
construction of LDPC codes is typically random. We say
that a LDPC code is (� ��� )-regular if each variable node has
a degree of � and each check node has a degree of � , where
the code rate will be ������� � provided that � is full rank.

check nodes

variable nodes

variable−to−check message

check−to−variable message

Fig. 1. Tanner graph representation of a LDPC code and the
decoding message flow.

LDPC codes can be effectively decoded by the iterative
belief-propagation (BP) algorithm. As shown in Fig. 1,
the structure of BP decoding algorithm directly matches the
Tanner graph: each variable node is initialized with intrinsic
(or channel) information, then decoding message (check-to-
variable and variable-to-check message), referred as extrin-
sic information in the following, is iteratively computed on
each node and exchanged through the edges between neigh-
boring nodes. Since BP algorithm works well when Tanner
graph doesn’t contain too many short cycles, LDPC code
is typically constructed under the constraint that the corre-
sponding Tanner graph is 4-cycle free.

3. JOINT DESIGN APPROACH

In this section, we propose a joint code and decoder de-
sign approach to obtain a partly parallel ( �
��� )-regular LDPC
decoder architecture which defines ( ���	� )-regular LDPC code
ensemble. As shown later, we may consider that each code
in this code ensemble is constructed by letting the decoder
insert certain random check nodes into the deterministic high-
girth ( � �	� )-regular LDPC code. Thus it is reasonable to ex-
pect that the Tanner graph doesn’t contain too many short
cycles and the corresponding code may assume good per-
formance, which will be further illustrated by two design
examples. We call such a design approach as joint code and
decoder design. Moreover, by exploiting their special struc-
tures, we propose a systematic efficient encoding scheme
for the implementation-oriented ( �
��� )-regular LDPC codes.

Before presenting the joint design approach, we intro-
duce the definition of girth average of a graph � [4]: Let 	�

denote the length of the shortest cycle that passes through
node � in graph � , then  
���� 	�
�� � is denoted as girth
average of � , where ����� ��� is the total node number of
� . As proposed in [4], we can use girth average as an effec-
tive criterion for searching good LDPC code over one code

ensemble. The joint design approach is briefly described
next and the corresponding schematic diagram is shown in
Fig. 2.

1. Explicitly construct the two matrices, ��� and ��� , so
that ������ ���� � ����! � defines a ( ����� )-regular LDPC
code denoted as "$# ;

2. Obtain a ( ����� )-regular LDPC decoder which defines a
random ( �
��� )-regular LDPC code ensemble and each
code in this ensemble is a sub-code of "�# ;

3. Use the decoder to randomly generate a certain num-
ber of ( �
��� )-regular LDPC codes from which we se-
lect one code with good performance by girth average
comparison and computer simulations.
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Fig. 2. Joint design flow diagram.

3.1. Construction of ��� and ���
In the following, we propose a novel method to con-

struct matrix ��%�&� ���� � ����  � which defines a ( � �	� )-regular
LDPC code with girth of 12. Although 12 is not a very large
girth value, our simulations show that it is sufficient for gen-
erating good implementation-oriented ( �
��� )-regular LDPC
codes for short code lengths (less than 10000 bits) which are
of interest. More important, such construction method will
lead to a very simple decoder architecture and provide more
freedom on the selection of code length: Given � , any code
length that could be factored as '�( � # is permitted, where '
can not be factored as ')�+*,(.- , /0* �1-325476
�8(.(8( �	�9�:�<; .
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The structures of ��� and ��� are shown in Fig. 3. Each
block matrix ����� � in ��� is an '  ' identity matrix and
each block matrix � ��� � in � � is obtained by a cyclic shift
of an ' �' identity matrix. Let � denote the right cyclic
shift operator where �
	����� represents right cyclic shifting
matrix  by � columns, then � ��� � ��� 
 ����� where � ������5� ���3(���������� ' and � represents the '  ' identity
matrix. For example, let ':� � , � � � and ���"! , we have
� �#�����:��� ($�%�����9' �'&(�����)� � � , then

�%*�� + �,� * ����� �
-....
/
6 6 6 � 6
6 6 6 6 �
� 6 6 6 6
6 � 6 6 6
6 6 � 6 6

021111
354

Clearly, matrix �� � � ���� ������! � defines a ( ����� )-regular
LDPC code with ' (�� # variable nodes and ��' (�� check
nodes. Let � denote the corresponding Tanner graph, we
have the following theorem pertaining to the girth of � :

Theorem 3.1 If ' can not be factored as ' � * ( - , where
* � - 2 476
�8(8(.( ��� �:�<; , then the girth of � is 12 and there is
at least one 12-cycle passing each check node.

3.2. ( ���	� )-regular LDPC decoder architecture

Denote the ( � �	� )-regular LDPC code defined by �� �
� � �� � � � �  � as " # . In the following, we present an ( ���	� )-
regular LDPC decoder architecture as shown in Fig. 4. It
will be shown that this decoder defines a ( �
��� )-regular LDPC
code ensemble in which each code has ' ( � # variable nodes
and ��' ( � check nodes and is a sub-code of " # .
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Fig. 4. ( ����� )-regular LDPC decoder architecture.

This decoder contains � # memory banks, the �76�8 mem-
ory bank is represented as MEM BANK-( � ��� ), where � �������� ���9����� ����: � and � �<; 	>= �?A@ : � , and each one

stores all the intrinsic information (in RAM B ), extrinsic
information (in two-port RAM C � , C9� and C � ) and esti-
mated decoded bits (in RAM " ) associated with ' variable
nodes; a � -layer shuffle network ( D = � or Id); a 	 -layer shuf-
fle network; � Check Node processor Units (CNU’s) and � #
Variable Node processor Units (VNU’s). One Address Gen-
erator (AG) is associated with each memory bank to provide
the access address. The 	 -layer shuffle network consists of
	�� -layer shuffle networks, each one is configured by a sin-
gle control bit E 	 leading to a given permutation D 	 if E 	 �� ( D �	 ), or to the identity permutation (Id= D �	 ) otherwise.
Thus, configured by the 	 -bit word F �G��E�H = � �8(.(8( ��E �I� # ,
the overall permutation pattern D is the product of 	 per-
mutations: D �JDLK7M�NPOH = �RQ (8(.( Q D KTS� . The control word F is
generated by Random Permutation Generator (RPG). Here
we note that ' can not be factored as ' � *�( - , where
* � - 25476��.(8(.( ���,�:�<; .

In this decoder, the decoding message delivered along
the same edge in Tanner graph are stored in the same mem-
ory location alternatively, and � extrinsic information (check-
to-variable message or variable-to-check message) associ-
ated with the same variable node are stored in the � dif-
ferent RAMs, C�� , C9� and C � , respectively, with the same
address. As shown in Fig. 4, intrinsic and extrinsic infor-
mation are represented using U and V bits, respectively. This
decoder completes each decoding iteration in ��' clock cy-
cles, and in each clock cycle it performs:

1. In each memory bank, if all the check-to-variable mes-
sage associated with one variable node become avail-
able after previous clock cycle, then

(a) Retrieve � intrinsic information and � check-to-
variable message associated with this variable
node;

(b) VNU computes � variable-to-check message and
updates the corresponding estimated decoded bit;

(c) Store the � variable-to-check message back to
RAM C � , C9� and C � and estimated decoded
bit to RAM " .

2. Retrieve � # variable-to-check message and the corre-
sponding estimated decoded bits from the � # memory
banks at the addresses provided by AG 	 ’s;

3. Shuffle the � # variable-to-check message and estimated
decoded bits according to E = � and F provided by the
comparator and RPG, respectively;

4. Each CNU 	 computes � check-to-variable message
and performs the parity check on the corresponding
� estimated decoded bits;

5. Unshuffle the � # check-to-variable message and store
them back into the � # memory banks at the initial lo-
cation.

Since C � ��C9����C � are two-port RAMs, we can perform
the step � in the above decoding process in parallel with
all other steps. Moreover, this decoder has the following
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properties:�
Each Address Generator (AG) associated with MEM
BANK-( � ��� ), denoted as AG ��� � , is realized by a sim-
ple modulo- ' binary counter. Each counter is preset
with initial value

� ��� � every ' clock cycles, i.e., at� � 6
� ' � �<' , and

� ��� � � �� � 6�� � �+6����� �:��� ( ��� ��� �,' � � �+'� ��� � � � � ��' � (1)

where each
� ��� � is chosen in random with the follow-

ing constraints:
Given � , we have

� ��� � O��� � ��� �
	 , / � � ��� # 2 4�� �8(8(.( ���!; ;
Given � , we have

� � O � ��� � ��	 � � �� ����� �<�9� # � ( ��� �����3' ,
/ � � ��� # 254�� �8(.(8( �	�!; .�
Provided with the address from each AG, the RAMSC�� , C9� and C � are accessed by the CNU array in the
��T6 , ����� and ����� ' clock cycles, respectively. Thus
in one iteration, the variable-to-check message will
be computed by VNU only in the last ( ����� ) ' clock
cycles;�
The 1-bit output of comparator E = � � � if ��� ' ,E = � �+6 otherwise ;�
The 1-layer shuffle network ( D = � or Id) performs the
permutation D K NPO= � . D = � permutes an input data se-
quence 4 � � �8(.(8( ��� ? 	 = � ; to 4���� NPO
� ��� �.(8(8( ����� NPO�� ? 	 = ��� ; ,where

D = ���>� � �#��� � ��� ��� ( �%: ; �� @ 4 (2)�
During the first ��' clock cycles, the output of RPG
is a zero vector so that the 	 -layer shuffle network
performs the identity permutation, and during the last
' clock cycles, RPG performs as a hash function � :
4 �<' �8(8(.( � ��'5�:�<; �! �476��.(8(.( � � H � ��; .

We can easily verify that the above presented decoder
architecture defines a ( ����� )-regular LDPC code ensemble
in which each code has a Tanner graph with ' ( � # variable
nodes and � �,( ' check nodes and the corresponding parity
check matrix can be divided into � submatrices: each one
is ':( � by ':( � # and corresponds to the interconnections
among all the '�(	� # variable and � ( ' check nodes realized
by this decoder in the ��T6 , ����� or ����� ' clock cycles in each
decoding iteration.

It can be proved that the first two submatrices of each
code are always identical to matrix � � and � � presented
in last section. The third submatrix, denoted as ��# , of
each code is jointly specified by all

� ��� � ’s, the hash func-
tion � and the 	 -layer shuffle network. Recall that we de-
note the high-girth ( � ��� )-regular LDPC code specified by
�� � � ���� ������  � as " # , we know that each code in this

code ensemble is actually a sub-code of " # . Moreover, we
may consider that each code is constructed by using the de-
coder to introduce extra ' ( � check nodes into " # .

We can prove that if we construct the hash function �
and the 	 -layer shuffle network in a fully random manner
and generate the value of each

� ��� � in random with the con-
straints as described above, the code ensemble defined by
this decoder only contains 4-cycle free codes which is de-
sirable in practice. Furthermore, from its special structure,
it can be proved that the parity check matrix of each code at
least contains 2 redundant checks, which just means that the
actual code rate may be slightly higher than what the parity
check matrix indicates, i.e., ��� ��� � .

For real applications, we must select a good code from
the implementation-oriented ( �
��� )-regular LDPC code en-
semble. In this work, we propose to combine the girth aver-
age comparison and computer simulations together to find
a good code: first randomly generate a certain number of
implementation-oriented ( ���	� )-regular LDPC codes, then
pick several codes with high girth averages and select the
one leading to the best simulation result in extensive com-
puter simulations.

3.3. Design Examples

To illustrate the above design methodology, we develop
two implementation-oriented ( ���#" )-regular LDPC codes with
different code length.

Let '$�5�$"�! and ' # ��� ��& . Then, using the above
presented decoder architecture, we may obtain two code en-
sembles with different code length: � �9�&'$��( � # � � ��6�!
and � # � ' # ( � # �'!�"�6�& . In both cases, we set 	 � � and
independently generate 500 groups of hash function � , 3-
layer shuffle network and all

� ��� � in random with the above
two constraints on

� ��� � . Then we feed these parameters to
the ( ����" )-regular LDPC decoder as shown in Fig. 4 and ob-
tain two code ensembles, each one contains 500 codes. The
histograms of the girth averages of these two code ensem-
bles are shown in Fig. 5 (b) and (d). In each ensemble, we
choose 5 codes with relatively high girth averages and select
the one leading to the best performance based on the exten-
sive computer simulations. In the computer simulation, we
assume that the LDPC codes are modulated by BPSK and
transmitted over AWGN channel.

We denote the selected implementation-oriented ( �
�#" )-
regular LDPC codes with � � �%� ��6�! and � # � !�"�6�& as
" �% and " #% , respectively. Since the parity check matrices
of both " �% and " #% contain 2 redundant checks, " �% and
" #% are ( � ��6�! �8���I� ! ) and ( !�"�6�&
� � ��6�" ) codes, respectively.
Moreover, we randomly generate two fully random 4-cycle
free ( �
�#" )-regular LDPC code ensembles with code length
� � ��� ��6�! and � # �J!�"�6 & , respectively. Each code en-
semble contains 500 codes and the histogram of the girth
averages is shown in Fig. 5. In each ensemble, we also
choose 5 codes with relatively high girth averages and se-
lect the one leading to the best performance. We denote
the selected fully random LDPC codes with ��� � � ��6�!
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and � # � !�"�6�& as " �� and " #� , respectively. In this work,
" �� and " #� are ( � ��6�!
�.������� ) and ( !�"�6�&
� � ��6�! ) code, respec-
tively.
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Fig. 5. Histograms of girth average for (a)(c) fully random
codes, and (b)(d) implementation-oriented codes.

The finite precision simulation results of each " 	% and
" 	� are shown in Fig. 6. In the finite precision simula-
tions, we adopt the quantization scheme developed in [5]:
received data is quantized with 4 bits and all intrinsic and
extrinsic information are represented with 6 bits. In order to
guarantee the simulation accuracy, especially at high SNR,
each point in the simulation results is obtained under the
condition that the block error number at least exceeds 100.
As shown in Fig. 6, the performance of the ( �
��� )-regular
LDPC codes developed by these two different approaches
are almost identical, but we note that it’s nearly impossible
to develop a partly parallel decoder for those fully random
LDPC codes.
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Fig. 6. Finite precision simulation results where solid lines
and dash lines correspond to " 	� and " 	% , respectively.

4. CONCLUSIONS

In this paper, based on a novel method of construct-
ing deterministic high-girth ( � ��� )-regular LDPC code, we

present a partly parallel ( ���	� )-regular LDPC decoder ar-
chitecture which defines an implementation-oriented ( �
��� )-
regular LDPC code ensemble. Each code in this ensemble
is actually constructed by inserting certain check nodes into
the high-girth ( ����� )-regular LDPC code, thus it’s reason-
able to expect a good performance for such codes which
is illustrated by the two design examples. Compared with
the decoder-first code design approach, this joint design ap-
proach eliminates the implementations of those random num-
ber generators in the decoder so that the complexity is much
lower and the entire design process is more simple. We be-
lieve such joint design approach should be a key for prac-
tical LDPC coding system implementations and future re-
search work will be directed towards extending this joint de-
sign methodology to the more general(� �	� )-regular LDPC
codes and irregular LDPC codes.
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