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ABSTRACT
A soft digital signal processing (DSP) design paradigm has been
recently proposed to reduce the energy consumption of DSP sys-
tems through voltage overscaling. This paper shows that the selec-
tion of arithmetic unit structure can be an important and non-trivial
issue in soft DSP system design. We present an optimal formula-
tion and propose sub-optimal low-complexity approximations for
selecting the appropriate arithmetic unit structure in voltage over-
scaled signal processing systems. We further present a case study
on choosing the appropriate MAC (multiply-accumulate) structure
in voltage overscaled FIR (finite impulse response) filter.

Categories and Subject Descriptors
B.2.4 [High-Speed Arithmetic]: Cost/performance

General Terms
Algorithms, Design

Keywords
voltage overscaling, signal processing, low power

1. INTRODUCTION
Voltage scaling is very effective to reduce the energy consump-

tion in CMOS integrated circuits (IC) [1, 2]. In conventional prac-
tice, voltage scaling is lower bounded by Vdd-crit under which the
critical path delay equals the target clock period. It has been re-
cently pointed out [3,4] that voltage overscaling (i.e., overscale the
supply voltage below Vdd-crit), if used appropriately, may provide
a promising potential to further reduce the energy consumption of
various IC systems. The key of voltage overscaled IC design is
how to maintain the satisfactory functionality in presence of the
transient logic errors due to voltage overscaling while ensuring the
overall system energy consumption is reduced. The Razor tech-
nique [4] tackles this issue by using a detect-then-recover mecha-
nism. It can be very effective for applications such as general pur-
pose computing that may tolerate the latency overhead due to the
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error recovery operation. However, this technique may not be ap-
plicable to many digital signal processing (DSP) functions that typ-
ically perform real-time continuous data processing, which makes
it difficult to support such detect-then-recover flow. Furthermore,
as pointed out in [3], most DSP functions mainly concern certain
quantitative performance criteria (e.g., signal to noise ratio (SNR))
and operations with such transient logic errors may not necessarily
make the signal processing performance unacceptable. Therefore,
it may not be necessary to always recover from such logic errors.

In the context of signal processing, Shanbhag [3, 5] proposed
a framework, referred to as soft DSP, that intends to compensate
the signal processing performance degradation induced by volt-
age overscaling from the algorithm perspective at minimal energy
cost. This may be realized by applying voltage overscaling on
the original DSP block and compensating the resulted performance
degradation with a separate and much simpler error control block.
Shanbhag and his colleagues developed various error control block
design schemes for linear filters [5–7] and fast Fourier transform
(FFT) [8]. In most DSP functions, arithmetic units (i.e., adders and
multipliers) are the major building blocks and typically constitute
the critical paths. Therefore, the signal processing performance
degradation heavily depends on the output errors of those arith-
metic units. We note that, in all the prior work [5–8] on soft DSP,
only ripple-carry adder structure is considered. Intuitively, different
arithmetic unit structures (e.g., ripple-carry adder, carry-lookahead
adder, and carry-select adder) may respond to the overscaled volt-
age differently, which will result in different signal processing per-
formance degradation and hence different energy saving potential.
Therefore, the selection of arithmetic unit structure in soft DSP sys-
tem design may be a non-trivial issue, which nevertheless has never
been addressed in the open literature.

This paper presents an attempt to elaborate on this issue. In con-
ventional design scenario without the use of voltage overscaling,
the selection of arithmetic unit structure can be relatively straight-
forward, e.g., given a set of available arithmetic unit structures, we
simply select the one that can meet the critical path requirement
at the minimum energy consumption. However, in the context of
soft DSP, different arithmetic unit realizations with the same critical
path may result in different error characteristics and hence differ-
ent signal processing performance degradation vs. power savings
characteristic. Intuitively, we should select the arithmetic struc-
tures that lead to the minimum average power consumption under
typical signal processing performance degradation scenario. This
makes the appropriate selection of arithmetic unit structures inher-
ently more complex. In this paper, we present the optimal for-
mulation for searching the best arithmetic unit structures, which
nevertheless tends to incur prohibitive computational complexity.
Accordingly, we further propose two sub-optimal approaches by



trading the optimality for significant computational complexity re-
ductions. Finally, we present a case study on FIR (finite impulse
response) filter design by applying the proposed approach to se-
lect the appropriate MAC (multiply-accumulate) structure, which
is further verified by comprehensive computer simulations. For all
the experimental studies presented in the paper, we use Synopsys
DesignWare to generate the arithmetic units without any manual
optimization in order to ensure a reasonably fair comparison among
different arithmetic unit structures.

2. A MOTIVATING EXAMPLE
With 16-bit adder design as an example, this section shows that

different arithmetic unit structure may respond to the voltage over-
scaling in a (largely) different manner, leading to (largely) different
error characteristics.

We considered three adder structures including carry-ripple adder,
carry-lookahead adder, and carry-select adder. We use Synopsys
DesignWare to generate these adders using TSMC 65nm CMOS
standard cell library (with 0.9V supply voltage) without any manual
optimizations. The timing constraint is set 1.25ns (i.e., 800MHz)
at the normal 0.9V supply voltage and all the synthesized adders
have zero timing slack. Hence, they have the same critical voltage
Vdd-crit of 0.9V. When operating at 0.9V and 800MHz, the carry-
ripple adder consumes 0.556mW, the carry-lookahead adder con-
sumes 0.498mW, and the carry-select adder consumes 0.557mW.
Therefore, in conventional practice, we may want to choose the
carry-lookahead adder. In the following, we will show that a dif-
ferent choice may be preferred in the context of voltage overscaled
DSP system.

We use the Synopsys Composite Current Source (CCS) model
[9] to enable the simulations under voltage overscaling. The CCS
model is a complete open-source current based modeling solution
for timing, noise, and power analysis. Because CCS is current-
based, it can enable both temperature and voltage scaling of the
cell behavior and achieve the timing analysis accuracy within 2%
of SPICE, which is better than the conventional Non-Linear Delay
and Power Models (NLDM/NLPM) [10].
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Figure 1: Simulated propagation delay vs. supply voltage for
1-bit full adder.

During the simulation, we set the voltage overscaling factor K
in the range of 0.8 ∼ 1 (i.e., the voltage ranges between 0.72V
and 0.9V). To illustrate the propagation delay vs. supply voltage
characteristic of the TSMC 65nm standard cell library being used,
we carried out the simulations on a 1-bit full adder (with the load

of an inverter with 10 times of minimum size) as shown in Fig. 1.
It shows that the propagation delay is almost linearly proportional
to the supply voltage.

We further carried out simulations on the above three 16-bit adders
under different supply voltages, while keeping the frequency as
800MHz. We randomly generated 106 pairs of 16-bit input data
(each bit has equal probability to be 0 or 1 and all the bits are ran-
domly generated independent from each other). Fig. 2 shows the
simulated average error magnitude vs. normalized power consump-
tion.
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Figure 2: Simulated average error magnitude vs. normalized
power consumption for the three 16-bit adders operating at
800MHz.

Fig. 3 further shows the relations between the error occurrence
probability for each bit and the supply voltage for these three adders,
where VOS stands for voltage overscaling. The bit 0, 15, and 16
correspond to the Least Significant Bit (LSB), Most Significant Bit
(MSB), and adder carry out, respectively. Such further information
provided in Fig. 3 can approximately explain the different average
error magnitude vs. supply voltage characteristic among the three
adders. The different error distribution characteristics as shown in
Fig. 3 may be intuitively explained as follows:

1) In the carry-ripple adder, the more significant bit has longer
worst-case delay and hence can be more subject to errors. On the
other hand, for more significant bits, their worst-case-delay paths
tend to be activated less frequently. As the results of these two
somehow conflicting trends, the error occurrence probabilities of
those more significant bits tend to be similar as shown in Fig. 3(a).

2) The carry-lookahead adder consists of several segments that
form a carry-lookahead chain and within each segment a carry-
ripple adder should be used. As a result, the MSBs of each segment
tend to have similar worst-case delay that are the same or close to
the overall adder critical path. Therefore, these MSBs within all the
segments are more subject to the errors, as illustrated in Fig. 3(b).

3) The carry-select adder also consists of several segments. But
the two possible addition results of each segment (corresponding
to the two scenarios that the carry input to this segment is 0 and
1) are pre-computed and are simply selected by the carry input.
Therefore, the less significant bits within each segments may be
more subject to errors compared with more significant bits in the
same segment. Since the adder is generated using DesignWare, the
segment partition information is not readily available. From the
Fig. 3(c), we guess that the bits around the position 8 and 12 are



LSBs within two adjacent segments.
The above results suggest that, even though the carry-lookahead

adder has the minimum power consumption under normal supply
voltage, the carry-select adder may be preferred in voltage over-
scaled DSP system design since the average error magnitude may
directly affect the signal processing performance degradation.

3. PROPOSED ARITHMETIC UNIT STRUC-
TURE SELECTION APPROACHES

It is desirable to have a systematic framework to provide quan-
titative comparison among different arithmetic unit structures for
voltage overscaled system design. This section first presents the op-
timal formulation for such a framework, which nevertheless tends
to incur prohibitive computational complexity. Then we propose
two sub-optimal formulations that may dramatically reduce the com-
plexity.

In a DSP system, we define an arithmetic unit as an indivisi-
ble arithmetic block that spans over at least one pipeline stage,
e.g., if one pipeline stage contains one multiplier followed by an
adder, this multiplier-adder concatenation will be considered as
one arithmetic unit. Let N represent the total number of arith-
metic units in the DSP system, and each arithmetic unit Ui may

choose from ki different structures {U (1)
i , U

(2)
i , · · · , U

(ki)
i }. As-

sume the DSP system is measured by a single performance metric
(e.g., the SNR), and let δ denote the signal processing performance
degradation incurred by voltage overscaling. Let pd(δ) represent
the desired probability distribution function of δ during the oper-
ation of the DSP system. Subject to a certain performance degra-
dation δ, different arithmetic unit structures may allow different
degree of voltage scaling and hence different power consumption.
Therefore, the DSP system power consumption can be expressed
as a function of δ and the set of arithmetic unit structures being

used, i.e., ge(δ, U
(j1)
1 , U

(j2)
2 , · · · , U

(jN )
N ). Given the maximum al-

lowable performance degradation δmax, we would like to select the
structure set {j1, j2, · · · , jN} that can minimize

Z δmax

0

pd(δ) · ge(δ, U
(j1)
1 , U

(j2)
2 , · · · , U

(jN )
N ) dδ.

Such optimally formulated approach for arithmetic unit strcture se-
lection clearly is subject to a very high computational complex-
ity for two reasons: (i) We have to exhaustively search in the N -
dimensional space, where N can be large in practical DSP sys-
tems. (ii) Given each set of arithmetic unit structures, the value of

ge(δ, U
(j1)
1 , U

(j2)
2 , · · · , U

(jN )
N ) should obtained through computer

simulations on the entire DSP system.
In the following, to largely reduce the computational complexity

at the cost of optimality, we propose two sub-optimal approaches,
where the second approach is essentially a further approximation
of the first one. Among all the arithmetic units in the DSP system,
we first categorize those arithmetic units with the same functional-
ity into the same type. Suppose the DSP system contains t different
types of arithmetic units, and each type of arithmetic unit, denoted

as Ai, may choose from si different structures {A(1)
i , A

(2)
i , · · · , A

(si)
i }.

Since many DSP systems have very regular and uniform structure,
the value of t typically is not big and much less than N . We assume
that the same type of arithmetic units tend to have the same (or sim-
ilar) input data characteristics and always use the same structure.

Hence, the function ge(δ, U
(j1)
1 , U

(j2)
2 , · · · , U

(jN )
N ) in the above

can be reduced to a function fe(δ, A
(j1)
1 , A

(j2)
2 , · · · , A

(jt)
t ), and

the objective becomes to select the structure set {j1, j2, · · · , jt}
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Figure 3: Error occurrence probability of each bit of the three
different adders.



that can minimizeZ δmax

0

pd(δ) · fe(δ, A
(j1)
1 , A

(j2)
2 , · · · , A

(jt)
t ) dδ.

Clearly, this approach reduces the dimension of the structure search
space from N to t, which may result in a large complexity reduc-
tion. Nevertheless, even the t-dimension search space may be too
big for many practical systems and this approach still needs to per-
form the simulations on the entire DSP systems in order to obtain

the function fe(δ, A
(j1)
1 , A

(j2)
2 , · · · , A

(jt)
t ).

Therefore, we propose to further approximate the above approach
in order to further reduce the complexity. This proposed second
approach is based on the following assumption: The errors of the
arithmetic units are independent random variables and certain sta-
tistical characteristic of the errors (such as the expectation and vari-
ance) additively determine the signal processing performance degra-
dation. We denote such error statistical characteristic as φ. We note
that such an assumption can be reasonably valid for many linear
DSP systems such as FIR and FFT. Based upon this assumption,
we can individually evaluate the impact of different structures for
each type of arithmetic units, i.e., the above t-dimensional opti-
mization problem can be further decomposed into t 1-dimensional
optimization problems.

Moreover, since the same type arithmetic units have the same or
similar input data statistical characteristics, we assume that their
output errors have the same value of φ and hence the same im-
pact on the signal processing performance. For Ai-type arithmetic
unit, we define a function φ(i) = Γi(δ) that (approximately) trans-
lates the desired signal processing degradation δ to the value of
error statistical characteristic φ(i). Given the maximum allowable

signal processing performance degradation δmax, we have φ
(i)
max =

Γi(δmax). Let ni denote the number of Ai-type arithmetic units

in the DSP system, we use φ
(i)
max/ni to estimate the maximum al-

lowable value of the error statistical characteristic φ for each Ai-
type arithmetic unit if only Ai-type arithmetic units contribute to
the signal processing performance degradation. Moreover, for each
Ai-type arithmetic unit, its average power consumption can be ex-

pressed as a function of φ and the selected structure, i.e., f
(i)
e (φ, A

(j)
i ).

Accordingly, we define a metric called IUPP (Integration of Unit
Performance and Power) for the Ai-type arithmetic unit as follows:

IUPPi(j) =

Z φ
(i)
max/ni

0

pd(Γ−1
i (ni · φ)) · f (i)

e (φ, A
(j)
i ) dφ. (1)

Therefore, for each Ai-type arithmetic unit, we simply select
the structure j̃i that can minimize the corresponding IUPP metric
without considering the overall DSP system, i.e.,

IUPPi(j̃) = min
j∈[1,si]

`
IUPPi(j)

´
,

and use the set of {j̃1, · · · , j̃t} as the approximation of the structure
set obtained by solving the above t-dimensional optimum problem.

Realization of the above proposed approaches in practice will in-
volve certain trade-offs and design decisions. We can only estimate

the functions fe(δ, A
(j1)
1 , A

(j2)
2 , · · · , A

(jt)
t ) and f

(i)
e (φ, A

(j)
i ) through

sampled numerical simulations. This clearly involves a trade-off
between the accuracy and computational complexity. When using
the second approach, in the simulations, we need to feed the arith-
metic unit with input data whose statistical characteristics should be
close to that in real DSP system. This may not be always feasible
and we may rely on some further system-wise simulations to extract
the appropriate input data characteristics. Moreover, the function
φ(i) = Γi(δ) that relates the signal processing performance degra-

dation to the arithmetic unit error statistical characteristic may also
depend on some run-time environmental parameters of the DSP
systems (e.g., the power of the noise from other resources). There-
fore, we have to make some decisions on the appropriate setup of
these parameters. Finally, the desired distribution of the signal pro-
cessing performance degradation can also be heavily dependent on
the DSP run-time environment. Hence certain further assumptions
may be necessary. All these factors will inevitably affect the accu-
racy of the above two sub-optimal approaches. Nevertheless, since
we may only be interested in the relative comparisons of various
arithmetic unit structure options and practical design may be more
concerned of how to avoid the use of those relatively very bad struc-
tures, the above proposed approaches may provide reasonably good
frameworks for selecting appropriate arithmetic unit structures in
voltage overscaled DSP systems.

4. A CASE STUDY ON FIR FILTER
This section presents a case study on voltage overscaled FIR fil-

ter to further illustrate the impact of various arithmetic unit struc-
tures and the use of the above proposed second approach. We con-
sidered a 19-tap low-pass FIR filter with (0 ∼ 0.3)·ω/2π passband
as illustrated in Fig. 4. This FIR filter intends to extract the desired
signal within (0 ∼ 0.25) ·ω/2π from the interfering signals within
(0.35 ∼ 1) ·ω/2π and additive white Gaussian noise (AWGN). Its
filtering performance is measured in terms of SNR. For the finite
word-length configuration, we use 17-bit fixed-point representation
for the filter input/output, filter coefficients, and all the intermediate
data, where the point sits between the MSB and second MSB.
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Figure 4: FIR filter frequency response and run-time environ-
ment setup.

This FIR filter has a transposed structure, hence it only contains
one type of arithmetic unit, i.e., MAC. For the design of MAC,
as pointed out in prior work [5, 11], using sign-magnitude input
data representation may reduce the dynamic power consumption
and, more importantly, reduce the error occurrence on more signif-
icant bits of the MAC output when the voltage overscaling is being
used. Therefore, we use the sign-magnitude data representation
for the input/output of the MACs in the FIR filter, as illustrated in
Fig. 5. Let mag(·) and sign(·) represent the magnitude and sign
of the data, respectively. As illustrated in Fig. 5, the Carry-Save
Adder followed by the Merge Adder calculate mag(A)·mag(B)+
mag(C) if sign(A·B) equals to sign(C), or mag(A)·mag(B)−
mag(C) otherwise, and the calculation is realized by internally
representing mag(A) · mag(B) and ±mag(C) with 2’s comple-
ment format. The output of the Merge Adder is D = mag(A) ·
mag(B) ± mag(C) in 2’s complement representation. To obtain
the magnitude of D, we should XOR its MSB with all the other
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bits and meanwhile add its MSB to the LSB position. To remove
the overhead incurred by such an extra addition in each MAC, we
can delay it to the final FIR filter output and refer the MSB of D as
the residual LSB output, as illustrated in Fig. 5. Accordingly, we
have the overall FIR filter structure as shown in Fig. 6.
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Figure 6: Structure of the FIR filter.

We are interested in selecting the appropriate MAC structure for
voltage overscaled FIR filter. Using Synopsys DesignWare with
TSMC 65nm CMOS standard cell library, we obtained four differ-
ent MACs, which only differ at the Merge Adder that is ripple-carry
adder, carry-lookahead adder, carry-select adder, or Brent-Kung
(BK) adder. We denote these four different MACs as RC-MAC,
CL-MAC, CS-MAC, and BK-MAC, respectively. Synthesized un-
der the timing constraint of 2.8ns (i.e., 357MHz), the four MACs
have the same timing slack of 0.

In the following, we will use the above proposed second ap-
proach to select the appropriate MAC among these four options
by calculating IUPP metric for each MAC. In this context, we first
need to determine the specific statistical characteristic of the MAC
output error. Since the performance of the FIR filter is measured in
terms of SNR, the variance of the MAC output error should be used.
Let σ2

e denote the error variance, i.e., φ = σ2
e in the formulations

presented in the above. The function f
(i)
e (σ2

e , A
(j)
i ) for each MAC

can be obtained from the simulations, as shown in Fig. 7. The func-
tion δ = Γ−1(σ2

e) that maps error variance to SNR degradation can
be approximately represented as

δ = Γ−1(σ2
e) = 10 log10(

σ2
s

σ2
n

) − 10 log10(
σ2

s

σ2
n + σ2

e

)

= 10 log10(
σ2

n + σ2
e

σ2
n

),

where σ2
s is the signal variance, σ2

n is the variance of the AWGN,
and σ2

e is the total variance of the MAC errors. In the simula-
tion setup, the power of AWGN is -38dB, corresponding to σ2

n =
1.56×10−4. Furthermore, we assume the desired SNR degradation
δ has a uniform distribution between 0dB and 5dB, i.e., δmax=5dB.
Accordingly, we can obtain σ2

e,max = 3.37 × 10−4. Therefore, we

can calculate the IUPP metric for each MAC based on (1) by re-

placing φ with σ2
e and replacing φ

(i)
max/ni with σ2

e,max/19. Table 1
lists the IUPP metrics, which suggests that the BK-MAC may be a
good choice.
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Figure 7: Simulated curves of error variance vs. normalized
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Table 1: Normalized IUPP Metrics of the Four MACs
CR-MAC CL-MAC CS-MAC BK-MAC

Normalized
1 0.75 0.85 0.73

IUPP

To further testify this conclusion, we conducted the much more
time-consuming simulations on the entire FIR filter using these four
different MACs, and Fig. 8 shows the simulated SNR vs. normal-
ized power consumption, which agrees with the above conclusion
that BK-MAC may be preferred. The relative comparisons among
different MACs shown in Table 1 also agrees with the comprehen-
sive simulation results in Fig. 8. Moreover, the results in Fig. 8 sug-
gest that voltage overscaling may also be considered even though
no performance degradation is allowed, e.g., we may use voltage
overscaling to reduce the power consumption by about 13% when
using either BK-MAC or CL-MAC at no noticeable SNR degrada-
tion.
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5. CONCLUSIONS
This paper addresses the issue of arithmetic unit selection in volt-

age overscaled soft DSP system design. For the first time, we show
that different arithmetic unit structures can respond to the voltage
overscaling very differently, which may result in largely different
design effectiveness of soft DSP system. The optimal formula-
tion for searching the best arithmetic unit structures is presented,
which nevertheless tends to incur prohibitive computational com-
plexity. Therefore, we further propose two sub-optimal approaches
that may realize reasonably good results at largely reduced compu-
tational complexity. Finally, we present a case study on choosing
the appropriate MAC structures for voltage overscaled FIR filter.
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