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GRNN-Based Real-Time Fault Chain Prediction

Anmol Dwivedi

Abstract—This paper proposes a data-driven graphical frame-
work for the real-time search of risky cascading fault chains (FCs).
While identifying risky FCs is pivotal to alleviating cascading
failures, the complex spatio-temporal dependencies among the
components of the power system render challenges to modeling and
analyzing FCs. Furthermore, the real-time search of risky FCs faces
an inherent combinatorial complexity that grows exponentially
with the size of the system. The proposed framework leverages the
recent advances in graph recurrent neural networks to circumvent
the computational complexities of the real-time search of FCs.
The search process is formalized as a partially observable Markov
decision process (POMDP), which is subsequently solved via a
time-varying graph recurrent neural network (GRNN) that judi-
ciously accounts for the inherent temporal and spatial structures of
the data generated by the system. The key features of this structure
include (i) leveraging the spatial structure of the data induced by
the system topology, (ii) leveraging the temporal structure of data
induced by system dynamics, and (iii) efficiently summarizing the
system’s history in the latent space of the GRNN. The proposed
framework’s efficiency is compared to the relevant literature on the
IEEE 39-bus New England system and the IEEE 118-bus system.

Index Terms—Cascading failures, fault chains, graph recurrent
neural networks.

I. INTRODUCTION

ARGE-SCALE disruptions in power systems generally

follow a sequence of less severe anomalous events that
gradually stress the system over time. Various reports on the
events preceding blackouts indicate that system operators are
either unaware of these gradual changes or oblivious to the
contingencies following these changes. Specifically, such small-
scale anomalies can lead to hidden failures that propagate and
eventually result in large-scale monitoring, and control disrup-
tions. For instance, in a report by the North American Electric
Reliability Corporation [1], it was concluded that inadvertent
tripping of a power line led to a series of failures causing the
2003 blackout in North America. Therefore, forming real-time
and accurate situational awareness in power systems has a
pivotal role in ensuring a secure and reliable power system
operation.
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In this paper, we formalize a graphical framework for dynami-
cally predicting the chains of risky faults a power system faces. A
fault chain (FC) is a sequence of consecutive component outages
that captures the temporal evolution of a cascading outage pro-
cess. Due to the combinatorially extensive number of possible
failures, which grows with the system size and failure horizon,
finding critical failure sequences is computationally challeng-
ing. Since a FC captures the high-impact and rear-occurrence
characteristic of cascading failures in any dynamically-changing
power system partly, timely identification of the riskiest FCs to
system operators for any given system state is instrumental to
predicting failures and preventing cascading failures.

Predicting FCs and assessing their risks can be formalized by
(i) creating an exhaustive list of all possible failure scenarios up
to a specific time horizon, (ii) evaluating the disruption (e.g.,
load loss) caused by each, and (iii) evaluating the likelihood
of each scenario. Accomplishing these three tasks faces the
following two key challenges. First, the space of scenarios grows
exponentially fast with the power system size and time horizon,
rendering listing all scenarios computationally prohibitive even
for moderate network sizes and target horizons. Secondly, the
system changes dynamically with high unpredictability, which
necessitates constantly updating the scenario space. Before spec-
ifying our approach, we review the existing literature relevant
to this paper’s scope.

A. Literature Review

In this subsection, we provide an overview of the literature
most closely related to the scope of this paper. The study in [2]
aims to identify and quantify all the vulnerable sections of the
power system that can potentially lead to cascading failures.
Specifically, it develops a FC framework for risky FC identi-
fication to address this. In [3], a rapid stochastic procedure is
proposed to yield large collections of high-risk FCs. Despite the
effectiveness of [3], such a method faces a computational bottle-
neck addressed by the study in [4], which proposes eliminating a
large number of redundant constraints to make the contingency
screening more efficient. With similar motivation, [5] formulates
a bi-level optimization problem to gain a higher evaluation
efficiency for risky FC search and [6] employs a sequential
importance sampling algorithm to acquire critical FCs from
cascading outage simulations. Due to a variety of other benefits
associated with identifying a collection of risky FCs, FC search
algorithms are employed for risk-assessment [7], [8], [9], risk
mitigation [10], and vulnerable component identification [11],
[12] and others [13].

There exist a number of machine learning (ML) approaches
that aim to enhance the efficiency of risky FC search. Broadly,
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these models quantify the vulnerability of each power system
component from simulated power system operational data by
learning data-driven models. For instance, the study in [14]
formulates the search for risky FCs in a Markov decision process
(MDP) environment and employs reinforcement learning (RL)
algorithms to find risky FCs. The investigation in [15] employs
deep neural networks to obtain critical states during cascad-
ing outages, and [16] employs convolutional neural networks
for faster contingency screening. The study in [12] proposes
a transition-extension approach that builds upon the RL ap-
proach in [14] to make it amenable to real-time implementation.
This is facilitated by exploiting the similarity between adjacent
power-flow snapshots. Finally, [17] proposes to employ graph
convolutional neural networks that leverage the grid’s topology
to identify cascading failure paths.

In parallel to ML-based approaches, there also exist model-
based approaches that quantitatively and qualitatively model,
analyze and simulate large-scale cascading outage processes.
This is done by developing simulation models that capture the
power system physics. The first category of studies aims to
develop high-level statistical models to facilitate faster computa-
tion and quick inference. Generally, these are data-driven models
such as CASCADE [18], the branching process model [19],
the interaction model [20], and models based on influence
graphs [21], [22]. While these approaches are quick in reveal-
ing important quantitative properties of cascading outages and
often lead to interpretable conclusions due to their ability to
capture the non-local behavior of the cascading outage process,
such models cannot accommodate the time-varying interactions
among components at different stages of a cascade. To tackle
this challenge, detailed failure models such as the OPA [23], im-
proved OPA [24], random chemistry model [3] and others [25],
[26] are studied that precisely model the AC power-flow and
power dispatch constraints of the components in the grid while
simulating the cascading outage process. Despite their detailed
modeling and effectiveness, these models are computationally
intensive, a major impediment to their adoption for real-time
implementation.

B. Contribution

Despite the effectiveness of the aforementioned models, these
models broadly face the following challenges: (i) The models fail
to capture the concurrent spatio-temporal dependencies across
the time horizon among the components of the power system
under dynamically changing network topologies. (ii) The cas-
cading outage process is assumed to follow Markov property.
While this simplification can render reasonable approximations
during the earlier stages of the cascading failure, the later stages
of the failure process typically exhibit temporal dependencies
beyond the previous stage, making the Markovian assumptions
inadequate. (iii) These models become prohibitive even for
moderate grid sizes due to the combinatorial growth in either
the computational or storage requirements with the number of
components in the grid.

We propose a data-driven graphical framework for efficiently
identifying risky cascading FCs to address the aforementioned
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challenges associated with the ML approaches. The proposed
framework designs a graph recurrent neural network (GRNN)
to circumvent the computational complexities of the real-time
search of FCs. The search process is formalized as a partially
observable Markov decision process (POMDP), which is sub-
sequently solved via a time-varying GRNN that judiciously
accounts for the inherent temporal and spatial structures of the
data generated by the system. The key features of this structure
include (i) leveraging the spatial structure of the data induced by
the system topology, (ii) leveraging the temporal structure of data
induced by system dynamics, and (iii) efficiently summarizing
the system’s history in the latent space of the GRNN, rendering
the modeling assumptions realistic and the approach amenable
to real-time implementation.

Finally, we highlight the difference between our proposed
approach and the graph neural network (GNN)-based approach
investigated in [17]. The goal in [17] is to detect all cascading
failure paths that lead to load-shedding in a limited number of
search attempts. Such a decision is binary since a cascading
failure path may either lead to load shedding or not. In contrast,
our approach aims to identify cascading failure paths with max-
imum risk (FCs with maximum load-shed) in a limited number
of search attempts where, ideally, the most critical cascading
failure paths should be identified earlier than the relatively less
critical ones. While related, the problem descriptions and the
attendant solutions are distinct.

II. PROBLEM FORMULATION
A. System Model

Consider a power system consisting of N buses. To cap-
ture the interconnectivity of the system, we represent it by
an undirected graph G = (V,E), where the set of vertices
V =|[N] ={1,..., N} represents the buses and the edge set
E C V x V represents the transmission lines. We denote the bi-
nary adjacency matrix of G by B € {0, 1}N*" such thatb,, , =
[B].,» = 1 indicates there exists at least one transmission line
between buses v and v (e.g., in the case of parallel transmission
lines). We define X € RV *!" as the system state matrix of the
grid, which compactly represents F' system state parameters
(e.g., voltage angles, injected real power) for all the N buses
and we refer to any system state parameter f € {1,...,F} of

bus u € [N] by 2yt = [X]u.s.

B. Modeling Fault Chains

Depending on an array of internal (e.g., system instabilities)
and external (e.g., weather) conditions, the system faces a degree
of risk in disruptions that may lead to component outages. We
focus on transformers and transmission lines as the components
of interest. When the outages are substantial enough, they can
lead to more outages, resulting in a FC. Our objective is to
dynamically identify the FCs that the system faces and assess
their associated risks (e.g., load losses). In this subsection, we
formalize a model for FCs and their risks based on an objective
formalized in the next subsection.
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Consider the topology of a generic outage-free system that
precedes an FC given by G, and denote the associated system
state by X. A generic FC that the system might be facing is
specified as a sequence of consecutive component outages that
represents a cascading outage process. Consider a FC model that
consists of at most P stages, where P can be selected based on
the horizon of interest for risk assessment, and denote the set
of all components in the system by /. It is noteworthy that the
number of stages in different FCs can be distinct. In cases that
a fault chain terminates before P < P stages, it means that the
sets {Up, 1, ---,Up} will be empty sets.

In each stage ¢ € [P], anumber of additional components fail.
We define U; as the set of components that fail in stage ¢ € [P].
We note that the set U/; could consist of more than one component
failures in any stage i, i.e., [U;| > 1. We also note that when a
transmission line fails and it has parallel channels, only the failed
line will be included in U/, and its parallel lines will be retained
as functioning components. Clearly, U; C U \{Ué;llb{j }, and the
sequence of components that fail in P stages is specified by a
FC sequence V

V = U, Us, ... Up). (1)

Additionally, we denote the healthy components in any stage ¢
of the FC by £; € U\{U’_U;}. We note that when the failure
process is slow (e.g., in the earlier stages of a cascading failure),
the sets U; have fewer components, and when the process is
fast (e.g., last stages of a cascading failure), these sets are
more populated since component outages are usually grouped
depending on their time of occurrence [8], [9], [21].

Due to component outages in each stage ¢, the system’s
topology alters to G; = (Vi, E;) with an associated adjacency
matrix B; and an underlying system state X ;. Consecutive fail-
ures lead to compounding stress on the remaining components,
which need to ensure minimal load shedding in the network.
Nevertheless, when the failures are severe enough, they can lead
to load losses. We denote the load loss (LL) imposed by the
component failures in U; in stage ¢ by LL(lf;), i.e.,

LL(U;) = load(G; 1) — load(G;) 2)

where load(G;) is the total load (in MWs) when the system’s
state in stage 7 is associated with the topology G;. Accordingly,
we define the total load loss (TLL) imposed by the FC V by

P
TLL(V) =) LL@y). (3)
=1

C. Problem Statement

Due to the re-distribution of power across transmission lines
after each stage of the FC, some FC sequences particularly lead
to substantial risks and owing to the continuously time-varying
system’s state, different loading and topological conditions face
different risks. Hence, it is important for system operators to
find, efficiently and in real-time, the set of FCs with the largest
TLL associated with any given initial system state X.

Our objective is to identify .S number of FC sequences, each
consisting of P stages, that impose the largest TLL. To formalize
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this, we define F as the set of all possible FCs with a target
horizon of P, and our objective is to identify S members of F
with the largest associated losses. We denote these S members
by {Vi,...,V§}. Identifying the sets of interest can be formally
cast as solving

s

A

P V..., V5 = argmax
V1, Vs ) VieF S

TLL(V;).

Problem P aims to maximize the accumulated TLL due to the S
number of FC sequences. Without loss of generality, we assume
that the TLLs of the set of sequences {Vj,...,Vi} are in the
descending order, i.e., TLL(VY) > TLL(V3) > --- > TLL(VY).
Solving P faces a significant computational challenge since the
cardinality of F grows exponentially with the system size N,
the number of components |2{|, and the risk assessment horizon
P.

ITI. SEQUENTIAL SEARCH VIA POMDPs
A. Sequential Search

To circumvent the complexity of solving P in (4), we design
an agent-based learning algorithm that sequentially constructs
the set of FCs {V}, ..., V%}. Specifically, the agent starts with

constructing V7 = (Ur1,...,Us1 p) such that it sequentially
identifies the sets {Uf11,...,Us p} in each stage i € [P] as
follows. The agent admits the topology and the system state as
its initial baseline inputs, denoted by G, and X, respectively.
In the first stage, the agent identifies the components in U
removing which is expected to impose the most intense TLL. To
control the complexity and reflect the reality of FCs, in which
failures occur component-by-component, we are interested in
identifying only one component in each stage. Nevertheless,
due to the physical constraints, removing one component can
possibly cause outages in one or more other components in the
same stage. We denote the set of all components to be removed
in the first stage by the set {/; ;.

The risk associated with each candidate set /;; has two,
possibility opposing, impacts. The first pertains to the immediate
loss due to component failures in /) 1, and the second captures
the losses associated with the future possible failures driven by
the failures in 41 ;. Hence, identifying the sets U{; ; involves
look-ahead decision-making and cannot be carried out greedily
based on only the immediate LLs. Once the set i, ; is identified
(via our proposed Algorithm 1 the details of which we discuss
in Section IV-C), the agent removes all the components in this
set to update the grid topology to Gy, and uses simulations (by
solving a power-flow or an optimal power-flow, if necessary) to
determine the associated system state X;.

Subsequently, G; and X; are leveraged to identify the set
Uy 2 by removing the components from the set U\{U; 1}, and
this process continues recursively for a total of P stages, at the
end of which the set V7 is constructed. Subsequently, a similar
process is repeated to construct V5 and the algorithm repeats
this process S times to identify S sequences of interest. While
repeating the search process, it is important that the agent avoids
finding the same FC sequences over and over again that were
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Fig. 1.

An agent decision process rendering a FC Vi = (¢1, 43, ¢1).

discovered previously. Accordingly, as discussed in detail in
Section IV-D, we alter the agent decision process to take into
account the number of times any given component was removed.
Fig. 1 illustrates a search process where an agent constructs a
FC sequence Vi = (¢}, ¢3, (1) by leveraging the current system
state (G;, X;) in each stage 7 € [3].

B. Modeling Search as a POMDP

The cascading outage process renders temporal dependencies
across outage stages, typically spanning more than two stages.
The full extent of such dependencies might be hidden in the
observed (time) domain. We leverage the hidden dependencies
in the latent (hidden) space of the fault chain generation process.
Since the observation at each stage provides only partial infor-
mation for decision making, we formalize the agent decision
process at every stage of the search process by a partially
observed Markov decision process (POMDP). In our search
process, to control the computational complexity, we determine
the system state in stage (¢ + 1), i.e., (G;+1, X;+1) by leveraging
the system state (G;, X;) in stage 7. Nevertheless, the load loss
at stage (i + 1) depends on all the past i stages and the set of
components removed in those system states. In this subsection,
we characterize the POMDP of interest, and address solving it
in Section IV.

We denote the partial observation that the agent uses at stage @
to determine the system state at stage i + 1 by O; = (G;, X;).
Accordingly, we define the sequence

S; =(0q,...,0), (5)
which we refer to as the POMDP state at stage ¢, and it char-
acterizes the entire past sequence of observations that render
O,41. As stated earlier, at stage ¢ only O; is known to the agent.
At stage i, upon receiving the observation O;, the agent aims to
choose a component from the set of available components to be
removed in the next stage. To formalize this process, we define
the agents action as its choice of the component of interest. We
denote the action at stage 7 by a,. Accordingly, we define the
action space A; as the set of all remaining components, i.e.,
A =U \{u;l;lluj}. Once the agent takes an action a; € A; in
stage 7, the underlying POMDP state in next stage is randomly

937

drawn from a transition probability distribution P
S,j+1 ~ ]P(S | Si,ai). (6)

Probability distribution PP captures the randomness due to the
power system dynamics, and it is determined by the generator
re-dispatch strategy in each stage of the FC. To quantify the
risk associated with taking action a; in POMDP state S; when
transitioning to S; 1, we define an instant reward r;

T é T(Si_;,_l | Si, CL,L') é Ioad(gz) — |Oad(g,‘+1). (7)

Hence, for any generic action selection strategy m, the aggregate
reward collected by the agent starting from the baseline POMDP
state can be characterized by a value function

P-1
Va(So) = Z 7 r(Siy1 | Si, m(05)) (®)
i=0

where the discount factor v € R, decides how much future
rewards are favored over instant rewards, and 7(O;) denotes
the action selected by the agent given an observation O; in stage
i € [P]. Therefore, finding an optimal action selection strategy
7* for the agent can be formally cast as solving

Q: 7 =argmax E[V,(So)]. 9)

IV. GRNN-BASED APPROACH TO SOLVING POMDPs
A. Motivation

An optimal strategy 7 (9) in a POMDP environment can
be found by leveraging classical dynamic programming algo-
rithms. Such traditional solutions, however, not only require
the knowledge of the transition probability model P and the
reward function dynamics but also pose a significant compu-
tational challenge when solving for 7*. Under such unknown
model settings, Q-learning serves as an effective model-free
value-based RL algorithm [27] that can find optimal strategies,
although only in an MDP environment. In particular, the al-
gorithm focuses on implicitly estimating the MDP state value
function (8), from each state S;, associated with every action
a; € A;. These estimates are widely referred to as @-values,
denoted by Q(S;,a;) € R, where a higher Q(S;, a;) indicates
that taking an action a; from a MDP state S; yields better
aggregate future rewards [27].

Note that, however, when solving Q in a POMDP environ-
ment, the ordinary Q-learning algorithm is ineffective as partial
observations O; are typically not reflective of the underlying
POMDP state S;. As a result, Q(O;,a;) # Q(S;, a;). There-
fore, designing real-time FC search algorithms critically hinges
on finding an accurate and efficient solution to Q in (9). To this
end, we aim to design an approach that judiciously exploits the
underlying structure of each POMDP state S,. In particular, we
develop a graph recurrent @Q-network (GRQN) architecture that
exploits the following three key elements:

1) Neural Networks for Q-Value Prediction: Implementing
the ordinary ()-learning algorithm relies on building )-tables
that store (Q-values for each POMDP state-action pair. However,
storing such a ()-table imposes a significant storage challenge
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even for moderate system sizes since the number of state-action
pairs scales combinatorially with the system size N. Further-
more, such an algorithm fails to incorporate continuous POMDP
state spaces S;. As a remedy, we employ universal function
approximators such as NNs to predict Q(S;, a;) values as ap-
proximate surrogates for each estimated POMDP state-action
element in the (Q-Table [28].

2) Spatial Correlation: The data streams generated by mea-
surement units across the network have strong spatial correlation
induced due to the inherent meshed topology of transmission
networks. Specifically, the coordinates of X, in each stage 1,
are statistically correlated, and hence, data streams are typically
jointly modeled via probabilistic graphical models [29], [30].
Therefore, it is important to judiciously leverage the spatial
structure of X; when solving Q.

3) Temporal Correlation: Besides the spatial correlation,
there exists a strong temporal structure induced due to the ob-
servational dependencies across the successive stages of any FC
sequence. In particular, the load loss incurred due to a component
failure in stage ¢ depends on the set of components that have
failed in all the preceding (i — 1) stages.

To this end, in order to exploit the spatio-temporal correla-
tion among the coordinates of a sequence of system states X
to predict Q(S;, a;) values accurately, we leverage the output
of a time-varying GRNN to incorporate the spatial structure
and leverage its recurrency to effectively integrate observational
dependencies through time to account for the temporal structure.
Subsequently, the GRNN output then acts as an input to a NN
that predicts Q-values for each POMDP state-action pair, alto-
gether assembling into an GRQN architecture. Next, we discuss
the various components of the time-varying GRNN, and discuss
designing a learning algorithm to search for FC sequences of
interest in Section IV-C.

B. Development of a Time-Varying GRNN Model

GRNNs are a family of GNN architectures specialized for
processing sequential graph structured data streams [31]. These
architectures exploit the /ocal connectivity structure of the un-
derlying network topology G; to efficiently extract features from
each bus by sequentially processing time-varying system states
X; that evolve on a sequence of graphs G;. More broadly,
these architectures generalize recurrent neural networks [32]
to graphs. To lay the context for discussions, we first discuss
time-varying graph convolutional neural networks (GCNNs),
the components of which serve as an essential building block
to motivate time-varying GRNNSs.

1) Time-Varying GCNNs: Consider the i*" stage of a FC
sequence V,; where an agent receives an observation O; =
(Gi,X;) on graph G; associated with an adjacency matrix B;.
Central to the development of GCNNs is the concept of a graph-
shift operation that relates an input system state X; € R to

an output system state F; € R™V*F
F, =B, X,. (10)

Clearly, the output system state F; is a locally shifted version
of the input system state X; since each element [F;], ¢, for
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any bus u € V; and parameter f, is a linear combination of
input system states in its 1-hop neighborhood. Local operations,
such as (10) capture the 1-hop structural information from X;
by estimating another system state F'; and are important because
of the strong spatial correlation that exists between [X;], f
and its network neighborhood determined by G;. Alternative
transformations such as thatemployed in [33] quantify the merits
of estimating system states that capture the spatial structure of
X,;. In order to capture the structural information from a broader
K-hop neighborhood instead, (10) can be readily extended
by defining a time-varying graph convolutional filter function
H: RV*F 5 RV that operates on an input system state X;
to estimate an output system state H(G;, X; ; H)

K
H(G:, Xi: H) =) [BF'-X;]-Hy,
k=1

(1)

where H denotes the number of output features estimated on
eachbusand # = {H; € RI"*H . | € [K]} denotes the set of
filter coefficients parameterized by matrices Hy, learned from
simulations where each coordinate of Hj, suitably weighs the
aggregated system state obtained after & repeated 1-hop graph-
shift operations performed on X;. Note that (11) belongs to a
broad family of graph-time filters [34] that are polynomials in
time-varying adjacency matrices B;. There exists many types
of graph-time filters [35]. We employ (11) due to its simplic-
ity. Nevertheless, (11) only captures simple linear dependen-
cies within X,. To capture non-linear relationships within X,
time-varying GCNNs compose multiple layers of graph-time
filters (11) and non-linearities such that the output system state
of each GCNN layer is given by

(G, X3 H) =0 (HGi, X ; H))

where 0 : R — Ris commonly known as the activation function
(applied element-wise) such that ®(G;, X, ; H) € RNV*H

2) Time-Varying GRNNs: GCNNs can only extract spatial
features from each system state X; independently (12). For
this reason, we add recurrency to our GCNN model (12) in
order to capture the temporal observational dependencies across
the various stages of a FC sequence to construct a GRNN. A
time-varying GRNN extracts temporal features from an input
sequence (O; : i € [P]) by estimating a sequence of hidden sys-
tem states (Z; : i € [P]) where each system state Z; € R™*# is
latent that facilitates in summarizing the entire past observational
history, that is both redundant and difficult to store, until stage <.
This is done by judiciously parameterizing each hidden system
state Z; that is a function of the graph-time filter output (11)
operated on both the current input system state X,; and previous
hidden system state Z;_; independently to obtain

Z; =0 (H (G, Xi; H1) + Ho(Gi1,Zi_1 ; Ha)) (13)

where Hy : RVF 5 RV*H and Hy : RV¥XH 5 RV*H gre fil-
ters (11) each parameterized by a distinct set of filter co-
efficients H; = {H} € RF>*# vk € [K]} and Hy = {H? €
RA*H v/ I € [K]}, respectively. Subsequently, similar to (12),
to capture the non-linear relationships from each hidden system
state Z; to facilitate dynamic decision-making on graphs G;,

12)
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the estimated output system state Y; € R xG

Y, =p(H3(Gi,Zi ; H3)) Vi€ P

where the graph-time filter Hs : RV*H — RN*C in (11) is
parameterized by the filter coefficient set Hs, GG denotes the
number of estimated output features on each bus u € V;, and p
is a pointwise non-linearity applied element-wise to output Hs.
Note that H, K, G, o and p are hyper-parameters for a GRNN.
Additionally, the number of learnable parameters H; Vi € [3]
is independent of the system size N and the horizon P of the
FC sequence due to parameter sharing across the stages of the
FC, providing the model with flexibility to learn from input
sequences (O : ¢ € [P]) of different and long risk assessment
horizons without a combinatorial growth in the number of learn-
able parameters, ensuring tractability. Next, we leverage the
sequence of GRNN output system states (Y, : i € [P]) to learn
a strategy ™ ~ 7" (9) to efficiently solve (4).

(14)

C. Finding a Strategy via Graph Recurrent ()-Learning

As discussed in Section IV, estimating Q(S;, a;) via tradi-
tional RL algorithms is intractable. Hence, we choose to predict
Q(S;, a;) viaNNs. However, since the agent is no longer privy to
the true underlying POMDP state S;, inspired by the approach
of [36], we develop a GRQN architecture to estimate Y; (14) in
order to predict Q(Y;, a;) as a proxy to approximate Q(S;, a;).
Additionally, since for any given initial system state (Gy, Xg),
it is of interest to find S number of FC sequences (4) with the
maximum TLL, it is not enough to predict Q(Y;, a;) but rather
to guide the search of subsequent FCs with the next highest TLL
by leveraging Q(Y;, a;). Therefore, we design a graph recurrent
(Q-learning algorithm to discover the S number of FC sequences
of interest {V5, ..., V&} one after the other while concurrently
training the GRQN. Next, we discuss the GRQN architecture
and the designed training algorithm.

1) GRQN Architecture: The architecture consists of a time-
varying GRNN, parameterized by Ogrun = {H; : i € [3]}, that
sequentially processes observations at each stage of the FC and a
fully-connected NN, parameterized by Onn, to predict Q(Y ;, a;)
for each action a; € A;. Accordingly, we parameterize the
GRQN by 6 2 {OGrNN, Onn - For any FC sequence Vg, an
input data stream of observations O; € RY*¥ obtained at each
stage 7 of the FC acts as an input to the GRNN using which
an output system state Y; € RY @ is estimated. Subsequently,
a fully connected NN of input and output dimension N x GG
and |U|, respectively, is leveraged to output a Q(Y;, -|9) € R
vector consisting of ()-values for each action. Overall, at each
stage 4, a GRQN takes O; and Z; ; as it’s baseline inputs,
concisely denoted by GRQN(O;, Z,_1|6), and outputs a vector
Q(Y;,:|0) and the next hidden system state Z; (13), crucial
to carry forward to guide the search of FCs during the training
of the GRQN. Note that we initialize Zo by 0 € RV *H  Fig. 2
illustrates the end-to-end GRQN architecture.

2) Sequential Experience Buffer: In order to deal with the
issue of catastrophic forgetting [28], we employ a sequential
experience buffer that stores FC sequences discovered during
training of the GRQN from which batches of random sequences
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Fig. 2.  Graph recurrent @-network (GRQN) architecture.

are sampled to facilitate the learning of parameters 8. While
there exists various ways to implement such a buffer, we employ
an ordered list that stores all the visited transition tuples as
asequence ((O;, a;,r;, O;41,end(0;41)) : @ € [P]) where we
have defined end(O;1) as a boolean value, if true, indicating
that the observation O, is associated with a last stage of the
risk assessment horizon P.

3) Training the GRQN : For stability in the training of the
GRQN, we employ the standard trick [28] of splitting the
task of predicting and evaluating (Q-values via two separate
GRQNs, a target network GRQN(-,-|@) and a behavior net-
work GRQN(-,-|@) each parameterized by a distinct set of
parameters 6~ and 6, respectively. For every training itera-
tion n of the graph recurrent (-learning algorithm, the agent
samples B random batches of FC sequences, each of type
((0j,a;,7;,0j41,end(0j41)) : j € [P]), from the sequential
experience buffer on which the target GRQN is unrolled to
estimate Y; (14) using which B batches of Q(Y,-|607) are
predicted with respect to the target network. Subsequently, the
agent computes a look-ahead target output for each batch where
each target ¢; Vj € [P] is given by

tj =Ty + - (]. - end(OjH)) . m(?XQ(YjJrl; a|07). (15)

Accordingly, the parameters of the behavior network is updated
via gradient descent with respect to a quadratic loss

071,+1 = On — Q- VG (tj - Q(Yjv a’j|0))2 (16)

where « denotes the learning rate and n denotes the current
training iteration. The update (16) is preformed x times for
every action taken by the agent in any stage i € [P)] of the FC
and additionally, serves as a means to control the computational
complexity of our learning algorithm. In this paper, we employ
the Adam optimizer [37] to perform the gradient update (16)
and update the target network parameters 8~ = 6 at the end of
every FC sequence discovered.

4) Graph Recurrent Hidden System State Updates: As the
agent gains more experience and continues to store visited
transition sequences of tuples in the experience buffer, the hidden
system state Z; of the GRNN may either zeroed or carried
forward after every newly discovered FC. Our experiments
suggest that sequential updates where the hidden system state
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Algorithm 1: Graph Recurrent (Q-Learning (GRQN).

1: procedure Graph Recurrent ()-learning
2: Initialize behaviour network with random @

GRQN(-,-|0)
3: Initialize target network with weights 8~ = 6
GRQN(-,-|67)
4: [Initialize Buffer < ()
5: [Initialize Zg < 0 € RV*H
6: for Episode s =1,...,5do
7:  Episode < ()
8 Vi« ()
9: Reset power-flow according to initial state Sp, Og
10: for Stagei =1,..., P do
11: _ Zz — GRQN(O“Zl,ﬂe)
12: o explolre if rand(.O, 1) <e
exploit otherwise
13: Take action a; and determine /;
14: Vs Vs UU;
15: Update power-flow and obtain O; 1
16: Calculate load loss r; from (7)
17: Episode <
Episode U (()z7 a;, i, 041, end(OiH))
18: if s > Explore then
19: count(S;, a;) < count(S;,a;) + 1
20: for trainingn =1,...,x do
21: Sample B FC sequences from Buffer
22: tj,__ < GRQN(O;;1,0|07) from (15)
23: Q(Y;,a10), _ < GRQN(O,,06)
24: Calculate Vg (t; — Q(Y;,a;]0))?
25: Update 0 as in (16)
26: Update € as in (19)
27: end for
28: end if
29: Update availability of actions backwards
30: end for

31: Buffer <— Buffer U Episode
32: Zo+— Zp
33: if TLL(V;) > M then

34: Store risky FC
35: end if

36: 0 =6

37: end for

38: end procedure
39: Find the accumulated risk due to all the S FCs

V1., Vs).

Z; (13) is carried forward from the previous stages throughout
the parameter update (16) leads to learning of better FC search
strategies. Hence, we choose to carry forward the previously
learned hidden system state during the training of our GRQN.
5) Outline of Algorithm 1: Algorithm 1 outlines the graph
recurrent (J-learning algorithm used to learn the parameters
6 of the behaviour GRQN(-, -|@) to facilitate the discovery of
the S number of FC sequences of interest. During the ini-
tial few iterations, since the sequential experience buffer is
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empty, we allow the agent to explore and fill the buffer with
FC sequences for Explore number of iterations offline (more
details in Section V-Al). Subsequently, the real-time algorithm
is initiated. Initially, the agent lacks any information about
the cascading failure dynamics. Hence, it relies on the prior
knowledge to construct U ;, for any fault chain j in each stage
i € [P], as the agent is unable to evaluate the LL associated
with removing an arbitrary component ¢; € U;\{UL U 1.}
in any stage of the FC V;. Gradually, Algorithm 1 learns to
construct the sets I/; ; by leveraging the learned latent graphical
feature representations. These representations are obtained by
optimizing the look-ahead target function (15) characterized
by the behavior network GRQN(-, -|@) since the parameters 6
of this network determine the ()-values influencing the actions
a; € A; taken by the agent. Therefore, when choosing actions
a; € A;, the agent should make a trade-off between exploration
and exploitation throughout the training of the GRQNs. Next,
we discuss an exploration-exploitation search strategy that the
agent employs to make the real-time search of FCs of interest
more efficient.

D. Fault Chain Search Strategy

We employ the standard e-greedy search strategy with an
adaptive exploration schedule. Initially, the agent is compelled
to take actions based on prior knowledge to find FCs with
maximum expected TLL. Typically, since an outage of a com-
ponent carrying higher power makes the remaining components
vulnerable to overloading, a reasonable exploration strategy
of the agent would be to remove components carrying maxi-
mum power-flow. Therefore, we follow a power-flow weighted
(PFW) exploration strategy (also adopted in [12]) such that,
in any stage 4 of the FC, the agent chooses the 4 available
component ¢/ € A; according to the rule

PF (¢]) /\/count (si.60) +1
a; = arg max

p L PR (5) //eount(S;, 0F) + 1

A7)

with probability ¢ where we denote PF(@? ) as the absolute
value of the power flowing through component E{ and denote
count(S;,#?) as the number of times the component ¢ was
chosen when the agent was in POMDP state S; in the past.
On the other hand, as the agent gains more experience, the
agent should choose actions based on the ()-values learned via
the behaviour network GRQN(-, -|@). Accordingly, a strategy
based on -values learned by the agent is designed. Specifically,
actions are chosen proportional to the (Q-values normalized by
each POMDP state-action visit count to avoid repetitions of FC
sequences discovered earlier. Accordingly, the agent chooses
action a;

a; = arg max @ (Yi7 €i|9)

(18)
& \/count (SiJ{) +1

with probability 1 — e.
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In order to balance the exploration-exploitation trade-off be-
tween (17) and (18) during the training of the GRQN, it is
important to dynamically alter the probability € so that, with
more experience, the agent chooses actions based on (18).
Appropriately, we follow the exploration schedule given by

Si PR / V count(So. ) + 1
2 PR

€ = max , €0

19)

where €y ensures a minimum level of exploration.

V. CASE STUDIES AND DISCUSSION

In this section, extensive simulations are performed to validate
the proposed graphical framework to find FCs that incur large
TLLs. While we employ the DC power-flow model to simulate
FCs, other models such as the AC power-flow can be easily
integrated within our framework. In order to generate FCs, we
employ PYPOWER a port of MATPOWER [38] to Python and
leverage PyTorch [39] to train the behavior and target GRQNSs.

A. Algorithm Initialization and Evaluation Criteria

1) Offline Sequential Buffer Initialization: To initiate the pa-
rameter update of the behavior GRQN via gradient descent (16),
there must exist at least B FC sequences in the experience
buffer. However, unlike in the case of (17), the buffer can be
populated offline for any loading condition. Therefore, the agent
can afford to take actions greedily with respect to components
conducting maximum power and, accordingly, backtrack to up-
date the availability of actions to avoid repeating FCs discovered
previously. Hence, prior to the start of our real-time FC search
Algorithm 1, we let the agent explore offline for Explore itera-
tions where the agent, in any stage ¢, chooses actions according
to the rule

PF(£))
a; = arg max

—_— (20)
ez; A PR(E)

with probability 1 to fill the sequential experience buffer. Note
that this needs to be done only once offline for any loading
condition. This is important since the quality of the sequences
in the buffer greatly affects the efficiency of the search.

2) Accuracy Metrics and Evaluation Criteria: We aim to
identify FCs with the largest TLLs. Hence, one natural eval-
uation metric is the accumulated TLL due to the set of FCs
{V1,...,Vs}. Besides that, we also consider the total number
of risky FCs discovered as a function of FC sequence iterations
s € [S], as considered in [12], to further perform comparisons.
A FCsequence V; is deemed risky if it’s associated TLL exceeds
a pre-specified level M, i.e., TLL(Vs) > M. These two metrics
are useful for evaluating the relative performance of Algorithm 1
compared to alternative approaches. For evaluating the accuracy
of Algorithm 1, we adopt the following two metrics that quantify
the accuracy in load loss and risky fault chain discovery rates.

a) Load Loss Accuracy: We define a regret term that
quantifies the gap between the accumulated TLL discovered by
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Algorithm 1 and the optimal accumulated TLLs of the ground
truth FCs with the maximum TLL given by the set { V7, ..., V¢}.
Specifically, for s € [S] we define

S s
Regret(s) = TLL(V)) =Y TLL(V:). (@D
=1 1=1

A lower regret value indicates a higher accuracy.

b) Risky F'C Discovery Rate: We define a precision metric
that quantifies the fraction of FCs that are deemed risky in the
set of discovered FC. Specifically, for s € [S] we define

Precision(s) = %Z 1(TLL(V;) > M) (22)
i=1

where 1(-) denotes the indicator function. A higher precision
value indicates higher accuracy.

B. IEEE-39 New England Test System

This test system comprises of N = 39 buses and |U/| = 46
components, including 12 transformers and 34 lines. We con-
sider a loading condition of 0.55 x base_load, where base_load
denotes the standard load data for the New England test case
in PYPOWER after generation-load balance to quantify the
performance of our approach. These loading conditions were
chosen since it is relatively difficult to discover FCs with large
TLLs in a lightly loaded power system as there are fewer such
FCs in comparison to the space of all FC sequences | F|.

1) Parameters  and  Hyper-Parameters: The  hyper-
parameters of the GRQNs are chosen by performing
hyper-parameter tuning. Accordingly, we choose H = G = 12
hidden and output number of features when computing both the
hidden system state (13) and the output system state (14). We
use K = 3 graph-shift operations for the graph-filter (11) that
is used to compute (13) and (14). We use both p and o as the
hyperbolic tangent non-linearity o = p = tanh and the RelLU
non-linearity for the fully-connected NN that approximates the
(2-values. For other parameters, we choose F' =1 since we
employ voltage phase angles as the only input system state
parameter f, choose v = 0.99 since large LLs mostly occur in
the last few stages of the FC sequence, an ¢y = 0.01 to ensure
a minimum level of exploration during the FC search process,
a batch size B = 32, Explore = 250, a risk assessment horizon
P = 3, FC sequence iteration S = 1200 (excluding the initial
Explore iterations), learning rate o = 0.005, and x € [3] that
controls the frequency of the learning update (16) and also
governs the computational complexity of the graph recurrent
2-learning algorithm.

We consider M equal to 5% of total load (where the total
load is 0.55 x base_load). To quantify the regret (21), we need
to compute the TLL associated with the .S’ most critical FC se-
quences (ground truth) V*, Vs € [S]. Thisis carried out by gener-
ating all possible FC sequences (i.e., set F) with a target horizon
of P = 3 for the considered total load of 0.55 X base_load. By
leveraging the pre-computed set 7, we observe a total of 3738
risky FCs for the loading condition 0.55 x base_load using our
developed FC simulator.



942

TABLE I
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PERFORMANCE COMPARISON FOR THE IEEE-39 NEW ENGLAND TEST SYSTEM

Evaluation Metrics

Accuracy Metrics

Range for Accumulative TLL Range for the No. of Risky
Algorithm f:l TLL(V;) (in MWs) FCs f’:l 1(TLL(V;) > M) | Range for Regret(S) (in MWs) | Range for Precision(S)
Algorithm 1 (k = 3) 110.42 x 10° + 37% 199 + 71 765.33 x 10° £ 5.3% 0.169 + 35%
Algorithm 1 (k = 2) 96.18 x 10° £ 38% 173 + 59 779.57 x 10° £ 4.7% 0.144 + 34%
Algorithm 1 (k = 1) 86.43 x 10° £ 35% 161 £ 48 789.32 x 10° + 3.87% 0.134 + 29%
PFW + RL + TE [12] 60.63 x 103 + 3.4% 109 + 5 815.12 x 10% + 0.26% 0.0909 + 4.8%
PFW + RL [12] 57.18 x 10° + 3.1% 101 + 9 818.57 x 10° £ 0.22% 0.084 + 3.7%
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Fig.3. Regret(s) versus s for the IEEE-39 bus system. Fig. 4. Precision(s) versus s for the IEEE-39 bus system.

2) Accuracy and Efficiency - Performance Results: Prior to
the start of Algorithm 1, we let the agent fill the experience
buffer for Explore iterations following the strategy (20) and
subsequently, initiate Algorithm 1. Table I illustrates the results
obtained. The first column specifies the algorithm employed
for evaluation. The second and third columns show the mean
and standard deviation of the evaluation metrics and the forth
and fifth columns show the mean and standard deviation of
the accuracy metrics defined in (21) and (22) for S = 1200.
It is observed that Algorithm 1 with a greater  discovers FC
sequences that incur larger accumulated TLL and also discovers
more number of risky FCs, on average. This indicates that
the accuracy metrics improve as « increases. This is expected
since the weights of the behaviour GRQN are updated more
frequently resulting in a more accurate prediction of the Q-
values associated with each POMDP state S;. For instance,
the average regret of Algorithm 1 for £ = 3 is 765.33 x 103
MWs, which is 3.04% lower than the average regret when x = 1.
Similarly, the average precision for £ = 3 is 0.169, which is
26% higher than the average precision when x = 1. To further
assess how the accuracy metrics scale with s € [S], Figs. 3
and 4 illustrate the accuracy versus s € [S]. The observations
are consistent with Table I, where it is observed that a higher x
results in a lower average regret and greater average precision.
It is noteworthy that the advantage of the setting x = 3 is viable
at the expense of incurring a higher computational cost. This
is due to more frequent weight updates rendering an inevitable
accuracy-complexity trade-off.

3) Comparison With Baselines: To further illustrate the mer-
its of the proposed graphical framework, we compare it with
two state-of-the-art baseline approaches proposed in [12]. We

label the first approach in [12] based on the ordinary ()-learning
algorithm without prior knowledge as PFW + RL and label
their best performing approach based on transition and exten-
sion of prior knowledge from other power system snapshots
by PFW + RL + TE. To ensure a fair comparison, we employ
the same exploration schedule for € discussed in Section IV-D
with the same parameters and the same discount factor y for all
the approaches. Note that, in the PFW + RL + TE approach,
we first run their proposed Q-learning based approach offline,
for a loading condition of 0.6 x base_load (bringing in the
prior knowledge). This is run for .S = 5000 iterations to ensure
the convergence of their ()-learning algorithm. Subsequently,
we store its extensive ()-table to run its PFW + RL + TE ap-
proach in real-time for the considered loading condition of
0.55 x base_load, signifying a transition from the power sys-
tem snapshot loaded at 0.6 x base_load and an extension to
the current power system snapshot loaded at 0.55 x base_load.
Note that, when performing comparisons, we set the parameters
and hyper-parameters associated with Algorithm 1 the same as
that described in Section V-B1.

a) Comparison under Unbounded Computational Bud-
get: In parallel to Algorithm 1, we simultaneously run the
@-learning update discussed in [12] for both the PFW + RL and
PFW + RL + TE approaches to perform comparisons. Table I
compares the accuracy metrics for S = 1200, showing that
Algorithm 1 consistently outperforms both the other baseline
approaches by a wide margin. For instance, Algorithm 1 with
k = 3 renders an average regret that is 6.2% smaller than the
regret associated with the best preforming baseline PFW + RL
+ TE approach. Furthermore, we have two more key observa-
tions. First, Algorithm 1 with £ = 3 finds FC sequences whose
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TABLE II
PERFORMANCE COMPARISON FOR A COMPUTATIONAL TIME OF 5 MINUTES FOR THE IEEE-39 NEW ENGLAND TEST SYSTEM
Evaluation Metrics Accuracy Metrics
Average No. of FC Range for Accumulative TLL Range for the No. of Risky
Algorithm Sequences S Discovered Zil TLL(V;) (in MWs) FCs le 1(TLL(V;) > M) | Range for Regret(S) (in MWs) | Range for Precision(S)
Algorithm 1 (k = 3) 575 63.484 x 10° + 36.7% 104 + 33 457.09 x 10> £ 5.9% 0.1791 + 31%
Algorithm 1 (k = 2) 700 79.792 x 10° + 39% 123 + 38 521.47 x 10> + 7.5% 0.1752 + 31.5%
Algorithm 1 (k = 1) 937 70.848 x 10° £ 33.3% 117 £ 34 673.56 x 103 £+ 4.76% 0.1249 + 29.1%
PFW + RL + TE [12] 1608 68.74 x 10° £ 3.4% 112 + 4 965.41 x 10° + 1.61% 0.0698 + 2.91%
PFW + RL [12] 1611 65.35 x 105 £ 3.9% 105 £ 5 969.78 x 103 £+ 2.27% 0.0653 + 5.07%

accumulated TLL is almost double than that of the two baseline
approaches.

Secondly, even though our approach is designed to optimize
the accumulated TLLs (4) that is quantified via regret (21), it
also finds a larger number of risky FCs (on average). This is
reflected in Table I and Fig. 4. It is noteworthy that the baseline
approach PFW + RL + TE outperforms Algorithm 1 for the first
fifty search iterations as shown in Fig. 4. This is expected since
our approach does not assume any prior knowledge of the failure
dynamics while the PFW + RL + TE approach brings in prior
knowledge via the extensive ()-table computed offline for the
power system snapshot loaded at 0.6 x base_load. However,
as S increases, Algorithm 1 learns the failure dynamics more
accurately, resulting in improved accuracy metrics than that
of baseline approaches. For example, the average precision of
Algorithm 1 with k = 3 is roughly 86% more than that of PFW
+ RL + TE and 99% more than PFW + RL.

b) Comparison Under Bounded Computational Budget:
The previous subsection focused on the performance, sans the
computational complexity of performing each FC sequence iter-
ation s € [S]. For real-time implementation, the computational
complexity of the FC search should be within the period of a
dispatch cycle. Hence, we evaluate all the above approaches
considering a given computational budget. Specifically, we con-
sider the same evaluation and accuracy metrics as discussed in
Section V-A2 and evaluate them considering a strict run-time of
five minutes for the algorithms, averaged over 50 Monte Carlo
iterations. Table II illustrates the relative performance of differ-
ent algorithms under budget. There are three main observations.
First, within the 5 minute computational time budget, for K = 3,
the number of FC sequences discovered is considerably smaller
than other algorithms. This is reflected in the second column of
Table II. This observation is expected since a large value of s
necessitates a larger computation time per FC search iteration
due to the gradient update (16), and hence, affords fewer search
iterations. Secondly, when comparing the evaluation metrics,
Algorithm 1 with x = 2 finds the greatest accumulated TLL
and also the largest number of risky FCs, on average. Although
both PFW + RL and PFW + RL + TE approaches find the most
number of FC sequences, S = 1608 and .S = 1611, respectively,
the quality of the FCs found are inferior compare to Algorithm 1
with k = 2 since their accumulative TLL and the number of risky
FCs are smaller. Third, when comparing the accuracy metrics,
the average regret and precision for Algorithm 1 with k =3
outperform other algorithms. Although this approach only finds

S = 575 FCs on average, it yields the most quality FC sequences
since the frequent update of the behavior GRQN weights results
in amore accurate (Q-value prediction that optimize (4) better per
search iteration s € [S]. Compared to non-graphical algorithm
counterparts, although it can find fewer FC sequences .9, it has
been able to identify the more relevant sequences of interest.

It is noteworthy that we have evaluated all the algorithms on a
standard computer with no Graphics Processing Units (GPUs).
By leveraging GPUs, our approach can accelerate the risky FC
search process even further as GPUs are designed to facilitate
the operations involving matrix and vectors for efficient training
of the GRQNSs, as opposed to other two baselines approaches
that, cannot be accelerated for a given computation time.

C. IEEE-118 Test System

This test system consists of N = 118 buses and |U| =
179 components. We consider a loading condition of 0.6 x
base_load, where base_load denotes the standard load data for
the IEEE-118 test case in PYPOWER after generation-load
balance to quantify the performance of our approach.

1) Parameters and Hyper-Parameters: We choose H =
G = 48 hidden and output number of features when comput-
ing both the hidden system state (13) and the output sys-
tem state (14). We use K = 3 graph-shift operations for the
graph-filter (11), use both p and o as the hyperbolic tangent
non-linearity o = p = tanh and the ReLU non-linearity for the
fully-connected NN to approximate (-values. For other param-
eters, we choose F' = 1 since we employ voltage phase angles
as the only input system state parameter f, choose v = 0.99,
€0 = 0.01, a batch size B = 32, Explore = 250, a risk assess-
ment horizon P = 3, FC sequence iteration .S = 1600 (exclud-
ing the initial Explore iterations), learning rate o = 0.0005, and
k € [3]. We set M to 5% of total load (where the total load is
0.6 X base_load).

2) Accuracy and Efficiency — Performance Results: Algo-
rithm 1 is initiated after the experience buffer is filled for Explore
search iterations. Table III illustrates the results obtained. Sim-
ilar to 39-bus system, we observe that Algorithm 1 with a
greater « discovers FC sequences with larger accumulated TLLs
and discovers more number of risky FCs leading to superior
accuracy metrics for larger «. For instance the average regret of
Algorithm 1 with £ = 3 is 321.90 x 10®> MWs and it is 0.4%
lower the average regret when x = 1. Similarly, the average
precision when x = 3 is 11.7% higher that of x = 1. Figs. 5
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TABLE III
PERFORMANCE COMPARISON FOR THE IEEE-118 TEST SYSTEM

Evaluation Metrics

Accuracy Metrics

Range for Accumulative TLL Range for the No. of Risky
Algorithm 3 TLL(V;) (in MWs) FCs % | 1(TLL(V;) > M) | Range for Regret(S) (in MWs) | Range for Precision(S)
Algorithm 1 (k = 3) 45.73 x 10 + 16% 302 £ 49 321.90 x 10 £ 2.3% 0.19 + 17%
Algorithm 1 (k = 2) 40.42 x 10 £ 17% 254 + 39 327.22 x 105 + 2.4% 0.16 + 15%
Algorithm 1 (k = 1) 44.62 x 103 + 12% 274 + 28 323.02 x 10° £ 1.7% 0.17 + 10%
PFW + RL + TE [12] 34.23 x 10° £ 2.7% 208 + 6 333.40 x 10 + 0.28% 0.13 + 3%
PFW + RL [12] 35.50 x 10° £ 2.4% 174 £ 8 332,14 x 10° £ 0.25% 0.11 £ 5%
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Fig. 5. Regret(s) versus s for the IEEE-118 bus system.
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Fig. 6. Precision(s) versus s for the IEEE-118 bus system.

and 6 illustrate the average accuracy metrics for Algorithm 1 as
a function of s € [S].

3) Comparison With Baselines: We perform comparisons
with the two baselines approaches in [12], i.e., the PFW +
RL and PFW + RL 4 TE. For the PFW + RL + TE approach,
we first run their proposed Q-learning-based approach offline,
for a loading condition of 1.0 x base_load (bringing in the
prior knowledge) for S = 5000 iterations and store its extensive
Q@-table to run the PFW + RL + TE approach in real-time for
the considered loading condition of 0.6 x base_load, signifying
a transition from 1.0 x base_load to an extension to the current
system loaded at 0.6 x base_load. We set the parameters and
hyper-parameters as described in Section V-C1.

a) Comparison Under Unbounded Computational Bud-
get: Table III compares the accuracy metrics for S = 1600,

showing that Algorithm 1 consistently outperforms both the
other baseline approaches. Fig. 5 shows how the average regret
scales as a function of search iterations s € [S]. Furthermore,
even though our approach is designed to optimize the accumu-
lated TLLs (4) that is quantified via regret (21), it also finds a
larger number of risky FCs.

b) Comparison Under Bounded Computational Budget:
We next evaluate all the above approaches considering a run-
time computational budget of five minutes, averaged over 25
MC iterations, and Table IV illustrates the relative performance.
All the observations corroborate those observed for the 39-bus
system.

D. Discussion

1) Performance Comparisons: The ordinary (Q-learning al-
gorithm performs only one ()-value update for every action
taken by the agent due to the intrinsic design of the algo-
rithm illustrated in [12]. On the other hand, the graph recurrent
Q-learning algorithm discussed in Section IV-C can perform
multiple gradient updates (x in the inner loop in Algorithm 1)
that directly influence the -values learned by the agent, via the
GRQN. This is possible due to the availability of a sequential
experience buffer. This, in turn, facilitates learning more efficient
strategies in fewer search trials. We also emphasize the approach
in [12] models each permutation of component outages as a
unique MDP state, and as a result, it stores the ()-values for a
combinatorial number of resulting MDP state-action pairs in an
extensive (-table, rendering it not scalable. However, by judi-
ciously leveraging the graphical structure of each POMDP state
and appropriately modeling the dependencies across the various
stages of the FC, we have bypassed the storage challenge with
fewer modeling assumptions while, at the same time, achieving
better performance.

2) Scalability: For large networks, we can further leverage
the structure of our GRNN by following an approach based on
distributed processing. Specifically, we partition the system into
smaller subsystems following the conventional approaches for
other monitoring purposes (e.g., state estimation). The size of
subsystems can be decided based on the computational com-
plexity the system operator can afford. The FCs are subsequently
identified within each subsystem. The identified risky FCs can
be subsequently concatenated to form the FCs for the entire
system. This approach, of course, might induce suboptimality
in the overall performance of identifying the risky fault chains.
Nevertheless, the level of suboptimality induced is expected to
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TABLE IV
PERFORMANCE COMPARISON FOR A COMPUTATIONAL TIME OF 5 MINUTES FOR THE IEEE-118 BUS TEST SYSTEM
Evaluation Metrics Accuracy Metrics
Average No. of FC Range for Accumulative TLL Range for the No. of Risky
Algorithm Sequences S Discovered le TLL(V;) (in MWs) FCs Ele L(TLL(V;) > M) | Range for Regret(S) (in MWs) | Range for Precision(S)
Algorithm 1 (k = 3) 186 11.46 x 10° + 16.2% 92 + 10 175.63 x 10° + 3.4% 0.201 *+ 15%
Algorithm 1 (k = 2) 239 18.32 x 10° £ 18% 101 + 12 21222 x 10° + 4.1% 0.17 £ 14%
Algorithm 1 (r = 1) 301 19.86 x 10° + 13% 115 £ 7 256.75 x 10° + 2.6% 0.18 + 13%
PFW + RL + TE [12] 527 18.56 x 103 £+ 3% 102 £ 3 436.22 x 10 + 0.98% 0.096 + 5%
PFW + RL [12] 522 17.98 x 10° + 3% 97 + 4 439.13 x 10° £ 1.1% 0.092 + 6%

be negligible by noting that a fault with a high probability will
lead to other faults in its locality.

3) Model Adaptation: The computational complexity of
learning the failure dynamics can vary across different cascading
failure models. The agent’s role is to learn the underlying failure
dynamics via repeated interactions with the cascading failure
simulator. Under different models (e.g., DC power flow model,
AC power flow model, transient stability model), the complexity
of the learning environment changes. As expected, the transient
stability-related models are more challenging to learn than DC
power flow-based models under the same number of search
iterations S. When S is small, the difference in accuracies
can be considerable, and the simpler models (e.g., DC power
flow-based) will exhibit better performance. Nevertheless, the
performance gap diminishes as the S increases, and the complex
models also get a chance to be learned accurately. When predic-
tion accuracies are compared over an arbitrary number of search
iterations S (each model can have different search iterations .S),
then we expect all the models to render similar performance
since the latent feature representation of the GRNN will be able
to better learn the underlying failure dynamics.

4) Robustness to Different Cascade Triggers: This paper
focuses on triggering mechanisms that fall within the general
framework of topological changes, i.e., component failures and
their subsequent failures. However, other types of triggering
mechanisms such as inappropriate power system control deci-
sions and hidden failures in protection systems, to name a couple,
also influence the final load loss. As a result, the type of trigger-
ing mechanism directly influences the complexity of the learning
problem and the agent decision process. One commonality,
however, across the different types of triggering mechanisms is
that the underlying topology of the network is bound to change
as the cascading failure evolves. Therefore, our framework
(which explicitly takes into account the topological changes)
can be readily customized to accommodate other triggers. For
instance, in cases where power system control decisions trigger
the initial failures, the actions space A; can be modeled as
continuous, resulting in a more complex agent learning problem.
In such cases, an obvious modification would be to augment
the input system state X; to include more nodal features (e.g.,
net power injection and voltage magnitudes). This results in
a greater amount of information propagated across the hidden
layers Z;. Subsequently, this results in a more complex objective
that is a function of the output Y; of the time-varying GRNN
architecture, and the action space .4;. Optimizing this objective
can potentially incur failure paths resulting in maximum load

shed. This way, the proposed framework can be robust to the
initial fault event type by appropriate re-formulation.

VI. CONCLUSION

In this paper, we have considered the problem of real-time
risky fault chain identification in a limited number of search
trials. We have proposed a data-driven graphical framework that
can dynamically predict the chains of risky faults a power system
faces. First, the search for risky fault chains is modeled as a par-
tially observed Markov decision process. Then a graph recurrent
Q@-learning algorithm is designed to leverage the grid’s topology
to discover new risky fault chains efficiently. Test results on
the IEEE standard systems demonstrate the effectiveness and
efficiency of the proposed approach.

REFERENCES

[1] “Blackout: NERC actions to prevent and mitigate the impacts of future cas-
cading blackouts,” Feb. 2014. Accessed: Aug. 14, 2003. [Online]. Avail-
able: https://www.nerc.com/docs/docs/blackout/NERC_Final_Blackout_
Report_07_13_04.pdf

[2] A. Wang, Y. Luo, G. Tu, and P. Liu, “Vulnerability assessment scheme
for power system transmission networks based on the fault chain theory,”
IEEE Trans. Power Syst., vol. 26, no. 1, pp. 442-450, Feb. 2011.

[3] M. J. Eppstein and P. D. H. Hines, “A “random chemistry” algorithm
for identifying collections of multiple contingencies that initiate cascad-
ing failure,” IEEE Trans. Power Syst., vol. 27, no. 3, pp. 1698-1705,
Aug. 2012.

[4] Y. Yang, X. Guan, and Q. Zhai, “Fast grid security assessment with N -
k contingencies,” I[EEE Trans. Power Syst., vol. 32, no. 3, pp. 2193-2203,
May 2017.

[5] T.Ding,C.Li,C. Yan, F. Li, and Z. Bie, “A bilevel optimization model for
risk assessment and contingency ranking in transmission system reliability
evaluation,” IEEE Trans. Power Syst., vol. 32, no. 5, pp. 3803-3813,
Sep. 2017.

[6] J. Guo, F. Liu, J. Wang, J. Lin, and S. Mei, “Toward efficient cascading

outage simulation and probability analysis in power systems,” IEEE Trans.

Power Syst., vol. 33, no. 3, pp. 2370-2382, May 2018.

P.Rezaei, P. D. H. Hines, and M. J. Eppstein, “Estimating cascading failure

risk with random chemistry,” IEEE Trans. Power Syst., vol. 30, no. 5,

pp. 2726-2735, Sep. 2015.

[8] P. Henneaux, P.-E. Labeau, J.-C. Maun, and L. Haarla, “A two-level

probabilistic risk assessment of cascading outages,” IEEE Trans. Power

Syst., vol. 31, no. 3, pp. 2393-2403, May 2016.

R. Yaoet al., “Risk assessment of multi-timescale cascading outages based

on Markovian tree search,” IEEE Trans. Power Syst., vol. 32, no. 4,

pp- 2887-2900, Jul. 2017.

R. Yao, K. Sun, F. Liu, and S. Mei, “Management of cascading outage risk

based on risk gradient and Markovian tree search,” IEEE Trans. Power

Syst., vol. 33, no. 4, pp. 4050-4060, Jul. 2018.

X. Wei, J. Zhao, T. Huang, and E. Bompard, “A novel cascad-

ing faults graph based transmission network vulnerability assessment

method,” IEEE Trans. Power Syst., vol. 33, no. 3, pp.2995-3000,

May 2018.

[7

—

[9

—

[10]

(1]

Authorized licensed use limited to: The Libraries at Rensselaer Polytechnic Institute. Downloaded on June 11,2024 at 14:34:17 UTC from IEEE Xplore. Restrictions apply.


https://www.nerc.com/docs/docs/blackout/NERC_Final_Blackout_Report_07_13_04.pdf
https://www.nerc.com/docs/docs/blackout/NERC_Final_Blackout_Report_07_13_04.pdf

946

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

Z. Zhang, R. Yao, S. Huang, Y. Chen, S. Mei, and K. Sun, “An online
search method for representative risky fault chains based on reinforcement
learning and knowledge transfer,” IEEE Trans. Power Syst., vol. 35, no. 3,
pp. 1856-1867, May 2020.

L.Liu, H. Wu, L. Li, D. Shen, F. Qian, and J. Liu, “Cascading failure pattern
identification in power systems based on sequential pattern mining,” /EEE
Trans. Power Syst., vol. 36, no. 3, pp. 1856-1866, May 2021.

J. Yan, H. He, X. Zhong, and Y. Tang, “Q-learning-based vulnerability
analysis of smart grid against sequential topology attacks,” IEEE Trans.
Inf. Forensics Secur., vol. 12, no. 1, pp. 200-210, Jan. 2017.

F. Liand Y. Du, “From AlphaGo to power system Al: What engineers can
learn from solving the most complex board game,” IEEE Power Energy
Mag., vol. 16, no. 2, pp. 76-84, Mar./Apr. 2018.

Y. Du, F. Li, J. Li, and T. Zheng, “Achieving 100x acceleration for N — 1
contingency screening with uncertain scenarios using deep convolutional
neural network,” IEEE Trans. Power Syst., vol. 34, no. 4, pp. 3303-3305,
Jul. 2019.

Y. Liu, N. Zhang, D. Wu, A. Botterud, R. Yao, and C. Kang, “Searching
for critical power system cascading failures with graph convolutional
network,” IEEE Trans. Control Netw. Syst., vol. 8, no. 3, pp. 1304-1313,
Sep. 2021.

I. Dobson, B. Carreras, and D. Newman, “A probabilistic loading-
dependent model of cascading failure and possible implications for black-
outs,” in Proc. IEEE Annu. Hawaii Int. Conf. Syst. Sci., Big Island, HI,
2003.

1. Dobson, B. Carreras, and D. Newman, “A branching process approxi-
mation to cascading load-dependent system failure,” in Proc. IEEE Annu.
Hawaii Int. Conf. Syst. Sci., Big Island, HI, 2004.

J. Qi, K. Sun, and S. Mei, “An interaction model for simulation and
mitigation of cascading failures,” IEEE Trans. Power Syst., vol. 30, no. 2,
pp. 804-819, Mar. 2015.

P. D. H.I. H.Dobson, and P. Rezaei, “Cascading power outages propagate
locally in an influence graph that is not the actual grid topology,” IEEE
Trans. Power Syst., vol. 32, no. 2, pp. 958-967, Mar. 2017.

X. Wu, D. Wu, and E. Modiano, “Predicting failure cascades in large scale
power systems via the influence model framework,” IEEE Trans. Power
Syst., vol. 36, no. 5, pp. 4778-4790, Sep. 2021.

1. Dobson, B. Carreras, V. Lynch, and D. Newman, “An initial model for
complex dynamics in electric power system blackouts,” in Proc. Annu.
Hawaii Int. Conf. Syst. Sci., Maui, HI, 2001, pp. 710-718.

S. Mei, F. He, X. Zhang, S. Wu, and G. Wang, “An improved OPA model
and blackout risk assessment,” IEEE Trans. Power Syst., vol. 24, no. 2,
pp- 814-823, May 2009.

S. Soltan, D. Mazauric, and G. Zussman, “Analysis of failures in power
grids,” IEEE Trans. Control Netw. Syst., vol. 4, no. 2, pp. 288-300,
Jun. 2017.

H. Cetinay, S. Soltan, F. A. Kuipers, G. Zussman, and P. V. Mieghem,
“Comparing the effects of failures in power grids under the AC and
DC power flow models,” IEEE Trans. Netw. Sci. Eng., vol. 5, no. 4,
pp. 301-312, Oct./Dec. 2018.

R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 2018.

V.Mnih et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, pp. 529-533, 2015.

M. He and J. Zhang, “A dependency graph approach for fault detection and
localization towards secure smart grid,” IEEE Trans. Smart Grid, vol. 2,
no. 2, pp. 342-351, Jun. 2011.

J. Heydari and A. Tajer, “Quickest localization of anomalies in power
grids: A stochastic graphical framework,” IEEE Trans. Smart Grid, vol. 9,
no. 5, pp. 4679-4688, Sep. 2018.

L.Ruiz, F. Gama, and A. Ribeiro, “Gated graph recurrent neural networks,”
IEEE Trans. Signal Process., vol. 68, pp. 6303-6318, 2020.

D. Mandic and J. Chambers, Recurrent Neural Networks for Prediction:
Learning Algorithms, Architectures and Stability. Hoboken, NJ, USA:
Wiley, 2001.

IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 39, NO. 1, JANUARY 2024

[33]

[34]

[35]

[36]
[37]

[38]

[39]

A. Dwivedi and A. Tajer, “Scalable quickest line outage detection and
localization via graph spectral analysis,” IEEE Trans. Power Syst., vol. 37,
no. 1, pp. 590-602, Jan. 2022.

E. Isufi, A. Loukas, A. Simonetto, and G. Leus, “Filtering random graph
processes over random time-varying graphs,” I[EEE Trans. Signal Process.,
vol. 65, no. 16, pp. 44064421, Aug. 2017.

F. Gama, Q. Li, E. Tolstaya, A. Prorok, and A. R. Ribeiro, “Synthesiz-
ing decentralized controllers with graph neural networks and imitation
learning,” IEEE Trans. Signal Process., vol. 70, pp. 1932-1946, 2022.
M. Hausknecht and P. Stone, “Deep recurrent ()-learning for partially
observable MDPs,” in Proc. AAAI Fall Symp. Ser., Arlington, VA, 2015.
D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proc. Int. Conf. Learn. Representations, San Diego, CA, 2015.

R. D. Zimmerman, C. E. Murillo-Sanchez, and R. J. Thomas, “MAT-
POWER: Steady-state operations, planning, and analysis tools for power
systems research and education,” IEEE Trans. Power Syst., vol. 26, no. 1,
pp. 12-19, Feb. 2011.

A. Paszke et al., “PyTorch: An imperative style, high-performance deep
learning library,” in Proc. Adv. Neural Inf. Process. Syst., Vancouver,
Canada, 2019.

Anmol Dwivedi received the B.Tech. degree in elec-
trical engineering from the National Institute of Tech-
nology, Tiruchirappalli, India, in2019. He is currently
working toward the Ph.D. degree in electrical engi-
neering with Rensselaer Polytechnic Institute, Troy,
NY, USA.

Ali Tajer (Senior Member, IEEE) received the B.Sc.
and M.Sc. degrees in electrical engineering from the
Sharif University of Technology, Tehran, Iran, and
the M.A. degree in statistics and the Ph.D. degree
in electrical engineering from Columbia University,
New York, NY, USA. He is currently an Associate
Professor of Electrical, Computer, and Systems En-
gineering with Rensselaer Polytechnic Institute, Troy,
NY, USA. His research interests include mathemat-
ical statistics, statistical signal processing, and net-
work information theory, with applications in wire-

\

less communications and power grids. His recent publications include an edited
book titled Advanced Data Analytics for Power Systems (Cambridge University
Press, 2021). He was the recipient of the NSF CAREER Award in 2016
and AFRL Faculty Fellowship in 2019. He is currently an Associate Editor
for the IEEE TRANSACTIONS ON INFORMATION THEORY and for the IEEE
TRANSACTIONS ON SIGNAL PROCESSING. In the past he was the Editor of the
IEEE TRANSACTIONS ON COMMUNICATIONS, Guest Editor for the /EEE Signal
Processing Magazine, the Editor of the IEEE TRANSACTIONS ON SMART GRID,
Editor of the IET Transactions on Smart Grid, and the Guest Editor-in-Chief
for the IEEE TRANSACTIONS ON SMART GRID — Special Issue on Theory of
Complex Systems with Applications to Smart Grid Operations.

Authorized licensed use limited to: The Libraries at Rensselaer Polytechnic Institute. Downloaded on June 11,2024 at 14:34:17 UTC from IEEE Xplore. Restrictions apply.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


