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SPRT-Based Efficient Best Arm Identification
in Stochastic Bandits
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Abstract—This paper investigates the best arm identification
(BAI) problem in stochastic multi-armed bandits in the fixed
confidence setting. The general class of the exponential family of
bandits is considered. The existing algorithms for the exponen-
tial family of bandits face computational challenges. To mitigate
these challenges, the BAI problem is viewed and analyzed as a
sequential composite hypothesis testing task, and a framework is
proposed that adopts the likelihood ratio-based tests known to
be effective for sequential testing. Based on this test statistic, a
BAI algorithm is designed that leverages the canonical sequen-
tial probability ratio tests for arm selection and is amenable to
tractable analysis for the exponential family of bandits. This
algorithm has two key features: (1) its sample complexity is
asymptotically optimal, and (2) it is guaranteed to be δ−PAC.
Existing efficient approaches focus on the Gaussian setting and
require Thompson sampling for the arm deemed the best and
the challenger arm. Additionally, this paper analytically quanti-
fies the computational expense of identifying the challenger in an
existing approach. Finally, numerical experiments are provided
to support the analysis.

Index Terms—Best arm identification, sequential probability
ratio test.

I. INTRODUCTION

THIS paper considers the problem of best arm identifica-
tion (BAI) in stochastic multi-armed bandits (MABs). In

a stochastic MAB, each arm generates rewards from distribu-
tions with unknown mean values. The objective of a learner in
BAI is to identify the arm with the largest mean value, using
the fewest number of samples.

The BAI problem is broadly studied under two key settings:
the fixed budget setting and the fixed confidence setting. The
objective in the fixed budget setting is to identify the arm hav-
ing the largest mean within a pre-specified sampling budget
while minimizing the decision error probability. On the other
hand, in the fixed confidence setting, the learner identifies
the best arm while having a guarantee on the error proba-
bility, and the objective is to minimize the sample complexity.
The problem of identifying the best arm was first proposed
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in [1], where the problem was posed in the fixed budget set-
ting. More investigations in this setting can be found in [2]
and [3]. Representative studies in the fixed confidence setting
can be found in [4], [5], [6], [7], [8], [9]. Algorithms in this
setting can be further classified into two categories, namely,
non-Bayesian algorithms and Bayesian algorithms.

In the non-Bayesian setting, an optimal algorithm for para-
metric stochastic bandits was first proposed in [6] for the
single parameter exponential family, which is based on a
tracking procedure for arm selection. Specifically, in each
round, [6] computes the optimal sampling proportion at the
current mean estimates and selects an arm based on the optimal
sampling proportion. While the track and stop (TaS) algorithm
exhibits asymptotic optimality, it is computationally expen-
sive due to solving an optimization problem to compute the
optimal allocation in each iteration. To reduce the compu-
tational complexity, [10] showed that tracking the optimal
proportion in intervals with exponentially increasing gaps is
sufficient. However, this study focuses only on linear bandits
with Gaussian noise. To address the computational complexity
of track and stop, another approach to solving BAI is the gam-
ification approach [11], [12]. In this approach, BAI is posed
as an unknown two-player game in which the sampling rules
are obtained from the iterative strategies of the two players,
which converge to a saddle point. The state-of-the-art algo-
rithm for BAI in the non-Bayesian parametric setting is the
Frank-Wolfe sampling algorithm (FW) [13]. In this approach,
the sampling rule is obtained from a single iteration of the
Frank-Wolfe algorithm, which involves solving a two-player
zero-sum game in each iteration. Despite being computation-
ally efficient compared to TaS, the FW algorithm involves
solving a linear program in each round.

Some of the non-Bayesian approaches to solving BAI for
the non-parametric class of stochastic MABs (such as the
class of sub-Gaussian stochastic MABs or bounded vari-
ance stochastic MABs) include confidence interval-based
approaches (see [4], [7], [14]), successive elimination-based
approaches (see [9], [14], [15], [16], [17], [18]) and track-
ing based approaches [19]. In the confidence interval-based
approach, the learner computes the sample mean of each arm,
and a confidence interval around these empirical estimates,
within which the true mean exists with a high probability. The
rationale behind this strategy is to gather more evidence until
there is no overlap between the confidence intervals and the
learner decides the best arm based on the empirical estimates.
On the other hand, the successive elimination-based strategy
involves eliminating the potentially suboptimal arms in each
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round and continuing sampling from all other arms until only
one arm remains to be eliminated.

While non-Bayesian approaches have been investigated
extensively, the Bayesian setting is far less investigated. The
first Bayesian algorithm was investigated in [20], which intro-
duced the top-two design philosophy and designed three
Bayesian algorithms based on that. The top-two algorithmic
design mitigated the computational challenge encountered in
TaS, and provided a computationally simple alternative to the
arm selection strategy. Among them, a modification of the
Thompson sampling algorithm [21], [22], [23], called the top-
two Thompson sampling (TTTS) has received more attention
due to its simplicity and optimality properties. The sample
complexity of TTTS, however, was not analyzed in [20]. To
address the sample complexity of the top-two algorithms in
Gaussian bandits, an improved algorithm was devised in [24],
where the sample complexity was shown to be asymptoti-
cally optimal up to a constant factor. The sample complexity
of TTTS in the Gaussian setting was later analyzed in [25],
and it was shown to be asymptotically optimal. However, the
sample complexity analysis was based on a non-informative
prior, reducing it to a non-Bayesian setting. Furthermore,
despite its simplicity, TTTS faces a computational challenge
in its sampling strategy, which becomes significant in the
regime of diminishing error rates. To circumvent this, a trans-
portation cost-based sampler was adopted in designing an
efficient Thompson sampling-based BAI algorithm called the
top-two transportation cost (T3C) [25]. However, the sample
complexity of T3C is only analyzed in the Gaussian setting.

This paper leverages a sequential hypothesis testing frame-
work for formalizing and solving the BAI problem in the fixed
confidence setting. The arm selection and stopping rules are, in
spirit, similar to the sequential probability ratio test [26]. BAI
has been viewed as a hypothesis testing problem in a wide
body of literature starting from the investigation in [6], and
subsequently in [11], [13], [24], [25]. Despite that, the algo-
rithms offered generally do not adopt the statistics known to be
effective for sequential composite hypothesis testing. In con-
trast, in this investigation, the arm selection rules dynamically
update generalized likelihood ratios that compare the relative
likelihood of different arms for being among the best. We refer
to this algorithm by the top-two sequential probability ratio test
(TT-SPRT). The idea of using SPRT-based rules was first intro-
duced in [27], the key advantage of which is being amenable to
analysis in the broader class of the exponential family of ban-
dits. Specifically, the analysis for Thompson sampling-based
approaches relies on non-asymptotic concentration inequali-
ties for the convergence of the posterior mean to the ground
truth. These concentration results exist in the literature for
Gaussian bandits [25]. However, for the broader class of the
exponential family, the analysis of posterior sampling-based
approaches is contingent on tail bounds for the posterior
means, which need to be derived. Furthermore, empirically,
computing a posterior distribution may involve Monte Carlo
integration [20], in case a closed-form conjugate prior does
not exist. Both of these issues make the log-likelihood ratio-
based test statistic a more reasonable choice compared to
posterior sampling. Prior to this, the sample complexity of

top-two algorithms [20], [24], [25] has only been analyzed in
the special setting of Gaussian bandits. This investigation is
a generalization of [24], [25] in the sense that the TT-SPRT
algorithm is shown to be asymptotically optimal for the single-
parameter exponential family. Thus, we have addressed the
open question of developing an efficient BAI algorithm in the
fixed-confidence setting for the single parameter exponential
family of distributions.

We show that in the special case of Gaussian bandits,
TT-SPRT addresses a computational weakness of the TTTS
algorithm. Specifically, for dynamically identifying the top two
arms, the TTTS sampling strategy generates random samples
from the posterior distributions of arm rewards. Subsequently,
the coordinate with the largest value in the first sample is
deemed the best arm’s index. For identifying the second arm
(the challenger), TTTS keeps generating more samples until
the coordinate with the largest value is distinct from the index
already identified as the best arm. After enough explorations,
the posterior distribution converges to the true model, and the
largest coordinate of any random sample will be pointing to the
best arm. This increases the delay in encountering a challenger.
TT-SPRT does not have such a computational challenge.
Finally, we note that our arm selection strategy is, in spirit,
similar to the sequential probability ratio test [26] and [28],
which is a powerful test in a wide range of sequential testing
problems, owing to its optimality properties and computational
simplicity.

Besides this paper (and its earlier version [27]) leverag-
ing SPRT-based rules for the top-two algorithms with various
choices of the top arm and the challenger arm have also been
recently further investigated in [29], including the choice that
has been considered in this paper. While the results in [29]
confirm the findings in this paper, there are a few critical
differences in the assumptions on the bandit model consid-
ered. Specifically, for the exponential family analysis, [29]
assumes sub-Gaussian distributions and having distinguishable
arm means. However, we make no such assumption for our
analysis of the exponential family. In contrast, to account for
this assumption, our algorithm involves a forced exploration
stage.

II. BAI IN STOCHASTIC BANDITS

Consider a K-armed stochastic MAB setting with K arms
generating rewards based on probability distributions that
belong to an exponential family of distributions. Specifically,
corresponding to a convex, twice-differentiable function
b : R �→ R, we consider a single-parameter exponential family

P b �
{
νθ :

dνθ
dν
= exp(θx− b(θ)) , θ ∈ �

}
(1)

where � ⊆ R is a compact parameter space, νθ is the prob-
ability measure associated with parameter θ ∈ �, and ν is a
reference measure on R such that νθ � ν for all θ ∈ �. The
mean value of the distribution νθ ∈ P b is given by μ(θ) �
ḃ(θ), and the members of P b can be uniquely identified by
their mean values. We denote the unknown mean of arm i by μi

and denote its associated probability distribution (probability
density function for continuous and probability mass function
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for discrete distributions) from P b by ν(· | μi). Accordingly,
the vector of mean values is denoted by μ � [μ1, . . . , μK].
The exponential family bandit model associated with μ is
denoted by νμ � [ν(· | μ1), . . . , ν(· | μK)]. The best arm,
assumed to be unique, has the largest mean value and it is
denoted by

a� � arg max
i∈[K]

μi. (2)

The gap between the expected values of the best arm and arm
i ∈ [K] is denoted by �i � μa� − μi, and the smallest gap
among all possible arm pairs is captured by

�min � min
i �=j
|μi − μj|. (3)

We allow �min = 0 for the analysis of the single-parameter
exponential family. In the special case of Gaussian bandits, we
prove an implicit exploration property of our proposed algo-
rithm with the additional assumption that �min > 0. However,
such an assumption is not required in general, facilitated by the
forced exploration stage in our algorithm design presented in
Section III. The learner performs a sequence of arm selections
with the objective of identifying the best arm, i.e., a�, with
the fewest number of samples (on average). In the sequen-
tial arm selection process, at time n ∈ N the leaner selects
arm An and receives the reward Xn, generating the filtration
Fn � {(At,Xt) : t ∈ {1, . . . , n}}. Arm selection decision An+1
is assumed to be Fn−measurable. Accordingly, the sequence
of arm selections and the corresponding rewards obtained by
the learner up to time n are denoted by

An � {A1, . . . ,An} and Xn � {X1, . . . ,Xn}. (4)

The sub-sequence of the rewards from only arm i ∈ [K] up to
time n is denoted by

X i
n � {Xs : s ∈ [n] , As = i}. (5)

We use the notation DKL(ν(· | μi)‖ν(· | μj)) to denote the
Kullback-Leibler (KL) divergence from ν(· | μj) to ν(· | μi).
It can be readily verified [6] that this divergence measure can
be specified as a function of μi and μj, for which we use the
shorthand notation

dKL
(
μi‖μj

)
� DKL

(
ν(· | μi)‖ν

(· | μj
))

= b
(

ḃ−1(μj
))− b

(
ḃ−1(μi)

)

− μi

[
ḃ−1(μj

)− ḃ−1(μi)
]
. (6)

Let τ , which is Fτ -measurable, denote the stochastic stopping
time of the BAI algorithm, that is the time instant at which
the BAI algorithm terminates the search process and identi-
fies an arm as the best arm. Accordingly, define Âτ as the
arm identified as the best arm at the stopping time. In this
paper, we consider the fixed confidence setting, in which the
learner’s objective is to identify the best arm a� with a pre-
specified confidence level. We use δ−PAC and β-optimality
as the canonical notions of optimality for assessing the effi-
ciency of the BAI algorithms. These notions are formalized
next. First, we specify the δ−PAC guarantee, which evaluates
the fidelity of the terminal decision.

Definition 1 (δ−PAC): A BAI algorithm is δ−PAC if the
algorithm has a stopping time τ adapted to {Ft : t ∈ N}, and
at the stopping time it ensures

Pμ

{
τ < +∞, Âτ = a�

}
> 1− δ, (7)

where Pμ denotes the probability measure induced by the
interaction of the BAI algorithm with the bandit instance νμ.

For analyzing the sample complexity, we leverage a setting-
specific notion of problem complexity defined next. The
problem complexity characterizes the level of difficulty that
an algorithm faces for identifying the best arm with sufficient
fidelity. For this purpose, we define W (β) as the following set
of K-dimensional probability simplexes

W (β) �
{
ω � [ω1, . . . , ωK] ∈ [0, 1]K : ωa� = β,
∑
i∈[K]

ωi = 1

}
. (8)

Definition 2 (Problem Complexity): For a given bandit
model νμ, the problem complexity is defined as

�μ(β) � max
ω∈W (β)

min
i �=a�

(
β dKL

(
μa�‖μa�,i(ω)

)

+ ωi dKL
(
μi‖μa�,i(ω)

))
(9)

where we have defined

μi,j(ω) �
μi ωi + μj ωj

ωi + ωj
. (10)

Accordingly, we define the optimal sampling proportions as

ω�(β) � arg max
ω∈W (β)

min
i �=a�

(
β dKL

(
μa�‖μa�,i(ω)

)

+ ωi dKL
(
μi‖μa�,i(ω)

))
. (11)

By leveraging the notion of problem complexity, and defin-
ing Tn,i as the number of times that arm i ∈ [K] is pulled
until n, we have the following known information-theoretic
lower bound on the sample complexity of any δ−PAC BAI
algorithm.

Theorem 1 (Sample Complexity - Lower bound [25]): For
any δ−PAC algorithm that satisfies

Tn,a�

n
n→∞−−−→ β (12)

we almost surely have

lim inf
δ→0

Eμ[τ ]

log(1/δ)
≥ 1

�μ(β)
. (13)

The universal lower bound in Theorem 1 provides the min-
imum number of samples that any δ−PAC BAI algorithm
requires asymptotically, provided that β fraction of measure-
ment effort is allocated to the best arm. Accordingly, we
specify β-optimality as a measure of sample complexity.

Definition 3 (β-optimality): A δ−PAC BAI algorithm is
called asymptotically β-optimal if it satisfies

Tn,a�

n
n→∞−−−→ β a.s. and lim sup

δ→0

Eμ[τ ]

log(1/δ)
≤ 1

�μ
(14)

where Eμ denotes expectation under the measure Pμ.
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III. TT-SPRT ALGORITHM FOR BAI

Hypothesis Testing Framework: We view the BAI problem
as a collection of binary composite hypothesis testing problems
as follows. For each pair of distinct arms (i, j) ∈ [K]2, define
the following composite hypothesis, testing which discerns
which of the two arms i and j has a larger mean value:

Hi,j : μi > μj. (15)

Unlike in sequential hypothesis testing that aims to solve
problem (15), our objective is not forming decisions for
all these

(K
2

)
different hypotheses. Instead, we use them to

form relevant measures that capture the likelihood of differ-
ent hypotheses. We then use these measures to design the arm
selection and stopping rules. Specifically, we form generalized
likelihood ratios as the key ingredient for our decision rules.
To this end, at time n and corresponding to each arm pair (i, j)
we define the generalized log-likelihood ratio (GLLR)

�n(i, j) � log
supμ Pμ

(Xn | Hi,j is true
)

supμ Pμ

(Xn | Hj,i is true
) . (16)

It can be readily verified that for the exponential family of
bandits, �n(i, j) can be simplified to

�n(i, j) = log
maxμi>μj

∏
xi∈X i

n
ν(xi | μi)

∏
xj∈X j

n
ν
(
xj | μj

)
maxμj>μi

∏
xi∈X i

n
ν(xi | μi)

∏
xj∈X j

n
ν
(
xj | μj

) .
(17)

It can be readily verified (for instance see [6]) that the
GLLRs in (17) have simple closed form, specified in the next
lemma. To specify the closed form, we define the empirical
mean

μn,i �
1

Tn,i

∑
t∈[n]:at=i

Xt (18)

as an empirical estimate of μi. Accordingly, define the
weighted average terms

μn,i,j �
Tn,iμn,i + Tn,jμn,j

Tn,i + Tn,j
∀i, j ∈ [K]. (19)

Lemma 1 [6]: Under the exponential family of distri-
butions, the GLLRs defined in (17) have a closed form
given by

�n(i, j) =
[
Tn,i dKL

(
μn,i‖μn,i,j

)+ Tn,j dKL
(
μn,j‖μn,i,j

)]
× 1{μn,i>μn,j}. (20)

We note that in the Gaussian setting, the closed forms for
the GLLRs in (20) simplify to

�n(i, j) = 1

2σ 2
·
(
μn,i − μn,j

)2
T−1

n,i + T−1
n,j

· 1{μn,i>μn,j}. (21)

Based on these definitions, the detailed steps of the TT-SPRT
algorithm are specified in Algorithm 1. The decision rules
involved are discussed next.

Arm Selection Rule: At each instant n, the TT-SPRT iden-
tifies a top arm as the arm that has the largest sample mean
μn,i, denoted by

a1
n ∈ arg max

i∈[K]
μn,i. (22)

Algorithm 1: Top-Two SPRT (TT-SPRT)

1 Input: β
2 Initialize: n = 0, In = [K], μn,i = 0 ∀ i ∈ [K],
�(a1

n, a2
n) = 0, cn,δ = 0

3 while �(a1
n, a2

n) ≤ cn,δ do
4 n← n+ 1
5 Sample Dn ∼ Bern(β)
6 Play an arm an specified by (25) or (26) and obtain

reward Xn

7 Update μn,an using (18)
8 a1

n ← arg max
i∈[K]

μn,i

9 Compute �n(an, i) for every i ∈ [K] \ {a1
n} using (20)

10 a2
n ← arg min

i∈[K]\{a1
n}
�n(a1

n, i)

11 Update cn,δ using (28) or (33)
12 Update In using (24)

13 Output: Top arm a1
n

In addition to the top arm, we also define the challenger arm
as the one which is the closest competitor of the top arm for
being the best arm. The challenger arm at time n is the arm
that minimizes the log-likelihood ratio computed with respect
to the top arm a1

n. We denote the challenger arm at time n by
a2

n and it is specified by

a2
n � arg min

j∈[K]:μn,j<μn,a1
n

�n

(
a1

n, j
)
. (23)

The TT-SPRT sampling strategy consists of an explicit explo-
ration phase to ensure that each arm is pulled sufficiently
often. Specifically, the arm selection strategy works as fol-
lows. We say an arm is under-explored, if at time n it is
selected fewer than

√
n/K times. Accordingly, define the set

of under-explored arms at time n as

In �
{

i ∈ [K] : Tn,i ≤
⌈√

n/K
⌉}
. (24)

If In �= ∅, then TT-SPRT selects the arm in In that has been
explored the least. Otherwise, it randomizes between the top
arm a1

n and the challenger a2
n based on a Bernoulli random vari-

able Dn ∼ Bern(β), where β ∈ (0, 1) is a tunable parameter.
This mechanism is included to ensure sufficient exploration of
all arms. Hence, the arm action rule at time instant n + 1 is
given by

an+1 �

⎧⎨
⎩

arg mini∈In
Tn,i if In �= ∅

a1
n if Dn = 1 and In = ∅

a2
n if Dn = 0 and In = ∅

. (25)

We note that in the Gaussian bandit setting, the explicit form
of the GLLR defined in (21) automatically ensures a suffi-
cient exploration of the same order, i.e., at least

√
n/K times

for each arm. We will show this property in Section IV-B
(Lemma 5). However, this is not true in general, and the explo-
ration mechanism is necessary. For example, in the case of
Bernoulli bandits, unlike for the Gaussian bandits, the GLLRs
for some of the arms, especially the ones with low average
reward could be infinite in the early stages. Thus, TT-SPRT
without the forced exploration phase might never sample these
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arms. Hence, in the special case of the Gaussian bandit set-
ting, TT-SPRT does not require the explicit exploration phase,
and is only based on randomizing between the top-two arms.
This is formalized next.

Arm Selection Rule for Gaussian Bandits: Based on the
choices of the top and challenger arms, at time n, the TT-
SPRT sampling strategy selects one of the two arms based on
a Bernoulli random variable Dn ∼ Bern(β), where β ∈ (0, 1)
is a tunable parameter. Specifically, given Fn-measurable deci-
sions a1

n and a2
n at time n, the arm to be sampled at time n+1

is specified by the randomized rule

an+1 �
{

a1
n, if Dn = 1

a2
n, if Dn = 0

. (26)

Stopping Rule: We specify the following thresholding-based
stopping criterion, in which we select the threshold such that
the algorithm ensures the δ−PAC guarantee:

τ � inf
{

n ∈ N : �n

(
a1

n, a2
n

)
> cn,δ

}
. (27)

This stopping rule at each time n evaluates the GLLR between
the top and challenger arms, i.e., �n(a1

n, a2
n), and terminates

the sampling process as soon as this GLLR exceeds a pre-
specified threshold cn,δ . This threshold will be specified in
Section IV. We note that the stopping criterion is differ-
ent from that of the canonical SPRT’s for sequential binary
hypothesis testing, which involves two thresholds in order to
control the two types of decision errors. In contrast to hypothe-
sis testing, for BAI we have only one error event Pμ(Âτ �= a�)
to control.

IV. MAIN RESULTS

In this section, we establish the TT-SPRT algorithm’s opti-
mality for the general exponential family in Section IV-A.
Subsequently, in Section IV-B, we specialize them to the
Gaussian setting. The results in the Gaussian setting have two
main distinctions from the results for the general exponential
family. First, we show that the exploration mechanism for the
Gaussian setting is not necessary. Secondly, we provide a less
stringent stopping rule, according to which the sampling pro-
cess requires fewer samples. Based on these specialized rules,
we recover the optimality guarantees that were also established
in [24], [25]. Even though the TT-SPRT achieves the optimal-
ity guarantees similar to those in [24], [25], it has a major
computational advantage, which we discuss in Section IV-C.

A. Exponential Family of Bandits

Our main technical results are on the optimality of the
sample complexity. Specifically, we demonstrate that the sam-
ple complexity of the TT-SPRT algorithm coincides with the
known information-theoretic lower bounds on the sample com-
plexity of the algorithms that are δ−PAC. Hence, as the first
step, and for completeness, we provide the results that estab-
lish that TT-SPRT algorithm is δ−PAC. An algorithm being
δ−PAC, generally, depends only on its design of the terminal
decision rule for identifying the best arm and is independent
of the arm selection strategy. For this purpose, we leverage an

existing result for the exponential family [30], which demon-
strates that the combination of any arm selection strategy, the
stopping rule specified in (27), and a proper choices of the
threshold cn,δ ensures a δ−PAC guarantee. For completeness,
the result is provided in the following theorem.

Theorem 2 (δ−PAC – Exponential): For the exponential
family, the stopping rule in (23) with the choice of the
threshold

cn,δ � 2Cexp

(
1

2
log

K − 1

δ

)
+ 6 log

(
log

n

2
+ 1
)
, (28)

coupled with any arm selection strategy is δ−PAC, where the
function Cexp : R+ �→ R+ is defined similarly to [30], and
satisfies Cexp(x) � x+ 4 log(1+ x+√2x).

Proof: Follows similarly to [30, Th. 7].
To show the optimality of TT-SPRT algorithm, we provide

an upper bound on its sample complexity, which matches the
information-theoretic lower bound on the sample complexity
of any δ−PAC BAI algorithm. Note that the explicit explo-
ration phase incorporated in TT-SPRT ensures that each arm is
explored sufficiently often and that the sample means converge
to the true values. Before delineating the sample complexity
achieved by the TT-SPRT, we provide the key properties of the
TT-SPRT arm selection strategy. The first property pertains to
the sufficiency of exploration.

Lemma 2 (Sufficient Exploration – Exponential): Under the
TT-SPRT sampling strategy (25), for all i ∈ [K] and for any
n ∈ N, we have Tn,i ≥ √n/K − 1.

Proof: The proof follows similar arguments as in the proof
of [6, Lemma 8].

This property ensures that each arm is sampled sufficiently
often, such that the empirical estimates converge to the true
mean value if the sampling strategy is allowed to continue
drawing samples without stopping. The second property per-
tains to the convergence of the empirical mean estimates to
the true mean values. Specifically, we show that there exists
a time after which the empirical mean values are within an
ε-band of their corresponding ground truth values.

Lemma 3 (Convergence in Mean – Exponential): For any
ε > 0, define Nμε as

Nμε � inf
{
s ∈ N : |μn,i − μi| ≤ ε ∀n ≥ s, ∀i ∈ [K]

}
. (29)

Under the sampling rule in (25) for the exponential family we
have Eμ[Nμε ] < +∞.

Proof: See Appendix B.
The convergence in mean values for the case of Gaussian

bandits has been analyzed in [24], [25] under different top-two
sampling rules. The analysis mainly relies on a concentra-
tion inequality for the convergence of the sample mean to the
ground truth. Furthermore, the analysis relies on the assump-
tion that �min > 0, despite showing an implicit exploration
of the arms due to the sampling rule. In contrast, our anal-
ysis for the exponential family makes no such assumption at
the cost of an explicit exploration phase. Our analysis lever-
ages the explicit exploration phase and Chernoff’s inequality
for the convergence in mean. We refer to Appendix B for
more details. The third property is that the TT-SPRT ensures
that the ratio of the sampling resources spent on arm i up to
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time n, i.e., Tn,i/n converges to the optimal sampling pro-
portion ω∗i (β) when n is sufficiently large. This is formalized
next.

Lemma 4 (Convergence to Optimal Proportions): Under the
sampling rule in (25) for the exponential family of bandits,
there exists a stochastic time Nωε , Eμ[Nωε ] < +∞, such that

∣∣∣∣Tn,i

n
− ω�i (β)

∣∣∣∣ ≤ ε ∀n > Nωε ∀i ∈ [K]. (30)

Proof: See Appendix C.
Convergence in the sampling proportions to the β-optimal

allocation is a key step in the sample complexity analysis of
top-two algorithms, as shown in [24], [25]. The proof for the
convergence can be broken down into two steps: 1) conver-
gence of the sampling proportion of the best arm to β, and
2) convergence of the sampling proportion of the remaining
arms to the β-optimal allocation. The novelty in the analysis
of TT-SPRT comes in the second part. Specifically, TT-SPRT
uses the GLLR statistic for arm selection, which differs from
the statistic in [24], [25]. The analysis for Convergence in
sampling proportion relies on showing that, eventually, the
challenger is always contained in the set of the under-sampled
arms. For details, we refer to Appendix C. Finally, we use the
notion of β-optimality, which was first introduced in estab-
lishing optimality guarantees for the top-two algorithms for
BAI in [24], and was adopted later for establishing the opti-
mality of the TTTS algorithm [25]. Specifically, we show that
the TT-SPRT algorithm is β-optimal, i.e., its sample complex-
ity asymptotically matches the universal lower bound on the
average sample complexity provided in Theorem 1, while sat-
isfying the condition on the sampling proportion allocated to
the best arm a�. By leveraging the three properties shown
in Lemma 2-Lemma 4, we provide an upper bound on the
average sample complexity of the TT-SPRT algorithm.

Theorem 3 (Sample Complexity - Upper bound): The TT-
SPRT algorithm is δ−PAC and almost surely satisfies

Tn,a�

n
n→∞−−−→ β. (31)

Furthermore, for the exponential family of distributions, we
have

lim
δ→0

Eμ[τ ]

log(1/δ)
≤ 1

�μ(β)
(32)

Proof: See Appendix D.
Theorem 3 along with the universal lower bound in

Theorem 1 establishes the asymptotic β-optimality of TT-
SPRT for the exponential family of bandits.

B. Gaussian Bandits

Next, we specialize the properties of the TT-SPRT algorithm
to the Gaussian bandit setting. First, we leverage a tighter stop-
ping condition from [25], which ensures that in the specific
setting of Gaussian bandits, the stopping rule specified in (27)
is δ−PAC. Specifically, the threshold for the exponential fam-
ily scales as O(6 log log n), while the one for the Gaussian
setting scales as O(4 log log n).

Theorem 4 (δ−PAC – Gaussian): In the Gaussian ban-
dit setting, the stopping rule in (27) with the choice of the
threshold

cn,δ � 4 log(4+ log n)+ 2g

(
log(K − 1)− log δ)

2

)
, (33)

where we have defined g(x) � x+ log x, coupled with any arm
selection strategy is δ−PAC.

Proof: Follows similarly to [25, Th. 2].
Next, we show that the explicit exploration phase is redun-

dant in the Gaussian setting, since the TT-SPRT sampling rule
automatically ensures sufficient exploration in this setting.

Lemma 5 (Sufficient Exploration – Gaussian): The TT-
SPRT sampling strategy (26) ensures that there exists a random
variable N1 such that Eμ[N1] < +∞ and for all i ∈ [K] and
for any n > N1, we have Tn,i ≥ √n/K almost surely.

Proof: See [31, Appendix B].
Similarly to Lemma 3, we show that due to the implicit

exploration of the TT-SPRT sampling rule for Gaussian ban-
dits, we have convergence in the empirical mean values to the
ground truth.

Lemma 6 (Convergence in Mean – Gaussian): Under the
sampling rule in (26) for the Gaussian setting, there exists a
stochastic time Mμ

ε , Eμ[Mμ
ε ] < +∞, such that for all n > Mμ

ε ,
we have:

|μn,i − μi| < ε almost surely. (34)

Proof: See Appendix B.
We show that the TT-SPRT algorithm in the Gaussian set-

ting is β-optimal by providing an upper bound on the average
sample complexity of the TT-SPRT algorithm in the Gaussian
setting.

Theorem 5 (Sample Complexity - Upper bound): The TT-
SPRT algorithm is δ−PAC and almost surely satisfies

Tn,a�

n
n→∞−−−→ β. (35)

Furthermore, for the Gaussian model, we have

lim
δ→0

Eμ[τ ]

log(1/δ)
≤ 1

�μ(β)
. (36)

Proof: See Appendix D.

C. Challenger Identification in Top-Two Thompson Sampling

The TTTS algorithm [20], is a Bayesian algorithm in which
the reward mean values are assumed to have the prior dis-
tribution N (0, κ2). Based on this prior, at each time n and
based on Xn, the learner computes a posterior distribution
�n ∈ R

K → R. Specifically, for the average reward realization
μ̄ and reward realization Xn = xn:

�n(μ̄ | xn) �
K∏

i=1

1√
2πη2

n,i

exp

{
−
(
μ̄i − μ̃n,i

)2
2η2

n,i

}
, (37)

where we have defined

μ̃n,i �
1

Tn,i + σ 2/κ2

∑
x∈X i

n

x, and η2
n,i �

σ 2

Tn,i + σ 2/κ2
. (38)
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While the TTTS is devised for the setting with a Gaussian prior
distribution for the rewards, the sample complexity analysis for
the algorithm holds for the asymptotic regime of κ → +∞.
This assumption renders the prior distributions uninformative,
and the setting becomes equivalent to that of the non-Bayesian
counterpart, i.e., when the means corresponding to each arm
is unknown, and we have no prior distribution over the arm
means. Thus, the posterior mean corresponding to each arm
i ∈ [K] defined in (38) reduces to that of the sample mean,
i.e., μ̃n,i = μn,i, and the settings for both TTTS as well as TT-
SPRT become equivalent. As a result, �n denotes the product
of the K Gaussian posteriors, N (μn,i, σ

2
n,i) for all i ∈ [K],

where we have defined σ 2
n,i � σ 2/Tn,i. Let us denote the

expectation operator with respect to �n by En.
The arm selection strategy of the TTTS algorithm works

as follows. At each time n, a random K-dimensional sample
θn � (θn

1 , . . . , θ
n
K) is drawn from the posterior distribution

�n. The coordinate with the largest value is defined as the
index of the top arm, denoted by b1

n � arg maxi∈[K] θ
n
i . In

order to find a challenger (the closest competitor to b1
n), the

algorithm continues sampling the posterior �n until a real-
ization from �n is encountered such that the index of its
largest coordinate is distinct from b1

n. This is considered the
challenger arm and its index is denoted by b2

n. Encountering
a challenger arm requires generating enough samples from
�n. As n increases and the posterior distribution �n points
to more confidence about the best arm, the number of sam-
ples required to encounter a challenger increases. We denote
a sample s generated from �n by θn

s � (θn
s,1, . . . , θ

n
s,K). By

design, clearly, b2
n � arg maxi∈[K] θ

n
s,i, and b2

n �= b1
n. Once b1

n
and b2

n are identified, the TTTS selects one of them based on
a Bernoulli random variable parameterized by β ∈ (0, 1). As
mentioned earlier, as n increases and �n converges, the num-
ber of samples required for encountering a challenger also
increases, and this imposes a computational challenge, espe-
cially for large n. In the next theorem, we show that the number
of samples required for encountering a challenger scales at
least exponentially in

√
n. For this purpose, we define

Tn
TTTS � inf

{
s ∈ N : ∃i ∈ [K] , θn

s,i > θn
s,b1

n

}
(39)

as the number of posterior samples required for finding a
challenger at time n.

Theorem 6 (Challenger’s Sample Complexity): In the
TTTS algorithm [20], there exists a random variable N0 such
that for any n > N0, the average number of posterior samples
required in order to find a challenger is lower-bounded as

En
[
Tn

TTTS

] ≥ min
i∈[K]\{a�} 2 exp

(√ n
K Ci,L

)
. (40)

Furthermore, for all n > max{N0, 32σ 2/9�2
min}, we have

En
[
Tn

TTTS

] ≤ max
i∈[K]\{a�}

√
2πe exp

(
n Ci,U

)
(41)

where we have defined

Ci,L � (�i −�min/2)2

4σ 2
and Ci,U � (�i +�min/2)2

2σ 2
.

Proof: See Appendix E.

Fig. 1. Average number of posterior samples versus n.

We observe that the lower bound increases exponentially in√
n, and thus, diverges for large values of n, i.e., when the con-

fidence required on the decision quality is large. Furthermore,
note that for a sufficiently small δ, the TTTS stopping time
always exceeds N0. Specifically, we show in Appendix E that
there exists δ(N0) > 0 such that for any δ ∈ (0, δ(N0), the
TTTS algorithm almost surely stops after N0 time instants.
This implies that for a large enough decision confidence, the
TTTS algorithm requires a large number of posterior samples
to identify a challenger, which has an exponential growth of
the order of at least

√
n.

V. NUMERICAL EXPERIMENTS

In this section, we conduct numerical experiments to com-
pare the performance of TT-SPRT against state-of-the-art algo-
rithms. Specifically, we provide experiments for empirically
depicting the computational difficulty of the TTTS algorithm
in identifying a challenger arm. Furthermore, we compare
the performance of TT-SPRT against existing BAI strategies
under three different bandit models, namely, Gaussian ban-
dits, Bernoulli bandits, and exponential bandits. While β is a
tunable parameter of TT-SPRT, and its optimal choice depend
on instance-specific parameters, a choice of β = 0.5 exhibits
good empirical performance over several bandit instances.
Specifically, the average sample complexity with β = 0.5 is
at most twice the asymptotically optimal sample complexity,
shown in [20, Lemma 3]. Unless otherwise stated, we have
used β = 0.5 for simulations involving the top-two sampling
strategies.

A. Computational Difficulty of TTTS

First, to show the computational difficulty of obtaining a
challenger in TTTS, in Figure 1 we evaluate the average
number of posterior samples required by TTTS to iden-
tify a challenger. As shown analytically in Theorem 6, the
expected number of samples required for encountering a chal-
lenger scales at least exponentially in

√
n. It is observed from

Figure 1 that as n increases, such average number of pos-
terior samples increases drastically. We also plot the lower
bound on the average number of posterior samples obtained
in Theorem 6, which matches the scaling behavior of the
actual number of samples. Furthermore, Figure 2 illustrates the
scaling behavior of the number of posterior samples against
various levels of the minimum gap compared to the best arm,

Authorized licensed use limited to: The Libraries at Rensselaer Polytechnic Institute. Downloaded on November 09,2023 at 20:00:05 UTC from IEEE Xplore.  Restrictions apply. 



MUKHERJEE AND TAJER: SPRT-BASED EFFICIENT BEST ARM IDENTIFICATION IN STOCHASTIC BANDITS 135

Fig. 2. Average number of posterior samples versus gaps.

i.e., mini �=a� �i. For this experiment, we have set n = 500.
It can be readily verified from Theorem 6 that as the mini-
mum gap between the means of the best arm and any other
arm increases, it becomes more challenging to obtain a chal-
lenger from the posterior distribution after it has converged
sufficiently. This can be observed in Figure 2. Specifically,
the number of posterior samples increases at least exponen-
tially at a rate of mini �=a� �

2
i , and it can become extremely

large when the gap is large.

B. Gaussian Bandits

Next, we compare the empirical performance of the TT-
SPRT algorithm to existing strategies for BAI in the Gaussian
bandit setting. Specifically, we compare against four existing
BAI algorithms, which are DKM [11], LUCB [5], T3C [25],
and FW [13]. Note that we have not compared our algorithm
with TTTS, since TTTS requires an enormous computation
time to identify a challenger in our experimental setting. T3C
is a computationally efficient alternative to the TTTS algo-
rithm, which has been proposed in [25]. Specifically, T3C is
based on posterior sampling for identifying the top arm and
replaces the resampling procedure for identifying a challenger
in TTTS by defining the challenger based on the minimum
transportation cost compared to the best arm. Despite its com-
putational efficiency in selecting a challenger, T3C computes a
posterior distribution at each time for identifying the top arm,
which may involve Monte Carlo integration without conjugate
priors [20]. The DKM algorithm is based on a gamification
principle for algorithm design, which involves a w player
who plays a sampling distribution and a λ player who plays
an alternate bandit instance. We have implemented a best-
response (zero-regret) λ player with the Adahedge w player,
as described in [11]. The LUCB algorithm is based on iden-
tifying two arms, a top arm and a challenger, based on the
current confidence intervals of the mean estimates. At each
iteration, the LUCB algorithm samples both arms and updates
their corresponding mean estimates. Finally, the FW algorithm
is based on a single iteration of a Frank-Wolfe update step to
compute a sampling proportion in each round.

We have considered two Gaussian bandit instances, one with
�min = 0, and the other with �min > 0. These instances are
characterized by the mean values μ1 = [5, 4.5, 1, 1, 1], and
μ2 = [1, 0.85, 0.8, 0.7]. For both instances, we set σ = 1,
and μ2 is a bandit instance from the experiments in [11]. The

Fig. 3. Sensitivity to β (Gaussian): μ = [5, 4.5, 1, 1, 1], δ = 10−15.

Fig. 4. Sample complexity (Gaussian): μ = [5, 4.5, 1, 1, 1], δ = 10−15.

Fig. 5. Sensitivity to β (Gaussian): μ = [1, 0.85, 0.8, 0.7], δ = 0.1.

Fig. 6. Sample complexity (Gaussian): μ = [1, 0.85, 0.8, 0.7], δ = 0.1.

experiment with μ1 is plotted in Figure 3 and Figure 4, which
confirms the superior performance of TT-SPRT over the FW
sampling strategy for 0.45 ≤ β ≤ 0.55. Note that we have
not plotted DKM and LUCB for this experiment due to their
large empirical sample complexities, 3317.8 and 10, 335 for
LUCB and DKM, respectively. The plot corresponding to ban-
dit instance μ2 can be found in Figure 5 and Figure 6. In this
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Fig. 7. Sensitivity to β: (Bernoulli).

Fig. 8. Sample complexity (Bernoulli).

experiment, we observe that the empirical sample complexity
of the T3C and FW algorithms is slightly better than TT-
SPRT. However, this comes at an increased computational cost
for the FW sampling strategy for solving a linear program in
each iteration. For our implementations in MATLAB, we have
used the simplex method for this purpose, which has a worst-
case complexity of the order of O(2K) [32]. Furthermore, the
T3C algorithm requires computing a posterior distribution in
each iteration, which may involve Monte Carlo integration
if a conjugate prior does not exist [20]. Note that the TT-
SPRT algorithm uses explicit exploration for the instance μ1,
since it has �min = 0. The effect of explicit exploration (as
present in TT-SPRT) versus implicit exploration (as in algo-
rithms such as T3C) is observed to vary, depending on the
bandit instance. For example, in μ1, T3C is observed to have
a comparable performance as TT-SPRT. On the other hand,
in μ2, we observe that T3C performs slightly better than TT-
SPRT. Overall, the necessity of explicit exploration depends
on the algorithm design and the bandit instance, and whether
or not it improves (or hurts) the sample complexity seems to
be unclear.

C. Bernoulli Bandits

Next, we compare the sample complexity of TT-SPRT in the
Bernoulli bandit setting. For comparison, we use a state-of-the-
art FW sampling strategy [13], along with existing approaches
such as DKM [11] and LUCB [5]. For this experiment, we
have used the Bernoulli bandit instance from [6], [11], with
mean values μ = [0.3, 0.21, 0.2, 0.19, 0.18]. We have set
δ = 0.1, and the performance comparison has been plotted in
Figure 7 and Figure 8. Note that there is a difference between

Fig. 9. Sensitivity to β: (Exponential).

Fig. 10. Sample complexity (Exponential).

the simulations with DKM in [11], even though we use the
same bandit instance and value of δ. This is because [11]
uses a “stylized threshold” of cn,δ = log((1+ log n)/δ), which
is disallowed by theory. In contrast, we use the theoretically
grounded stopping thresholds [30]. Figure 8 clearly shows
that TT-SPRT outperforms the state-of-the-art algorithms.
Furthermore, we observe a significantly worse performance
of the LUCB algorithm, which is due to the loose confidence
bound on the mean estimates prescribed in [5].

D. Exponential Bandits

Finally, since TT-SPRT generalizes to any member of
the single parameter exponential family, we provide an
example with an exponential bandit instance with μ =
[0.9, 0.7, 0.5, 0.3, 0.1]. We have set δ = 0.1, and the
performance of TT-SPRT is compared against that of
LUCB [5], DKM [11] and FW [13] in Figure 9 and Figure 10.
We can observe that TT-SPRT outperforms DKM and LUCB
by a significant margin. Furthermore, its performance is com-
parable to the FW sampling strategy for a wide range of β,
including the choice of β = 0.5, which has been used to
obtain the box plot. Specifically, at β = 0.5, TT-SPRT has an
empirical sample complexity of 1982.5, while that of the FW
sampling strategy is 2016.5. Thus, TT-SPRT has a low empir-
ical sample complexity in the example of exponential bandits,
despite having a significantly lower computational cost com-
pared to the state-of-the-art FW sampling rule. Furthermore,
in order to highlight the computational burden incurred by the
FW sampling rule, we tabulate the computation times required
by TT-SPRT and other existing BAI strategies in Table I.
These simulations are performed in MATLAB R2022a, on
an Apple M1 pro processor equipped with 16 gigabytes of
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TABLE I
AVERAGE COMPUTATION TIME (IN SECONDS)

RAM. Clearly, TT-SPRT outperforms the FW sampling rule
in terms of computational time by a wide margin. Note that
we have not compared the computation times for TaS, since
it is significantly worse (as much as 10 times that of the FW
algorithm [33, Appendix G.1]).

VI. CONCLUSION

In this paper, we have investigated the problem of best arm
identification (BAI) in stochastic multi-armed bandits (MABs).
Arm selection and terminal decision rules are characterized
based on generalized likelihood ratio tests with similarities
to the conventional sequential probability ratio tests. The
decisions rules (dynamic arm selection and stopping time)
have two main properties: (1) they achieve optimality in
the probably approximately correct learning framework, and,
(2) they asymptotically achieve the optimal sample complexity.
We have analytically characterized the optimality properties,
and comparisons with the state-of-the-art are shown both
analytically and numerically. We have also analyzed the com-
putational challenges in an existing top-two sampling strategy
for BAI.

APPENDIX A
RELEVANT LEMMAS

Lemma 7 [24, Lemma 5]: In the Gaussian bandit setting,
there exists a random variable W1 such that for all i ∈ [K] and
for all n ∈ N, we almost surely have

|μn,i − μi| ≤ σW1

√
log
(
e+ Tn,i

)
1+ Tn,i

. (42)

and Eμ[esW1 ] < +∞ for all s ∈ R
+.

Lemma 8 (Cramér-Chernoff Inequality for the Exponential
Family): Consider the sequence of i.i.d. random variables
{Xi : i ∈ [n]} distributed according to P ∈ P b with mean
μ. Then, for any ζ ∈ R+ and X̄n � 1

n

∑n
i=1 Xi we have

P
(
X̄n − μ ≥ ζ

) ≤ exp(−ndKL(μ+ ζ‖μ)), (43)

and P
(
X̄n − μ ≤ −ζ

) ≤ exp(−ndKL(μ− ζ‖μ)). (44)

Proof: Let us define Sn �
∑n

i=1 Xi and denote the moment
generating function associated with P by φ(λ) � EP[eλX],
which for the single parameter exponential P b is given by

φ(λ) = exp
(

b
(

ḃ−1(μ)+ λ
)
− b
(

ḃ−1(μ)
))
. (45)

Hence,

P
(
X̄n − μ ≥ ζ

) = P

(
eλSn ≥ enλ(μ+ζ )) (46)

≤ Eμ

[
eλSn
]

en(λ+ζ ) (47)

=
n∏

i=1

(
Eμ

[
eλXi
]

eλ(μ+ζ )

)
(48)

=
(
φ(λ)

eλ(μ+ζ )

)n

, (49)

where (47) is holds due to Markov’s inequality and (48) holds
due to independence. Since (49) is valid for any λ ∈ R+, we
have

P
(
X̄n − μ ≥ ζ

) ≤
(

inf
λ∈R+

φ(λ)

eλ(μ+ζ )

)n

. (50)

It can be readily verified that the infimum of the right-hand-
side in (50) is obtained at

arg inf
λ∈R+

φ(λ)

eλ(μ+ζ )
= ḃ−1(μ+ ζ )− ḃ−1(μ). (51)

Using (51), we can rewrite (50) as

P
(
X̄n − μ ≥ ζ

) ≤ exp

(
− n

[
b
(

ḃ−1(μ)
)
− b
(

ḃ−1(μ+ ζ )
)

− (μ+ ζ )
(

ḃ−1(μ)− ḃ−1(μ+ ζ )
)])

(52)

= exp(−nDKL(μ+ ζ‖μ)). (53)

where (53) holds due to (6). The proof of (44) follows a similar
line of arguments.

Lemma 9: For any pair of distributions P,P′ ∈ P b with
mean values μ,μ′, for any ε ∈ R+,

dKL
(
μ+ ε‖μ′)− dKL

(
μ‖μ′) = O(ε), (54)

and dKL
(
μ− ε‖μ′)− dKL

(
μ‖μ′) = O(ε). (55)

Proof: Note that b : � �→ R is a convex, twice-differentiable
function over a compact space �, and hence it is Lipschitz
continuous. Let us define a Lipschitz constant, based on
which

|b(θ)− b
(
θ ′
)| ≤ L1|θ − θ ′|, ∀θ, θ ′ ∈ �. (56)

Corresponding to any θ ∈ �, b̈(θ) is the variance of the
distribution Pθ ∈P b, and hence, b̈(θ) > 0. Let us define

L2 �
(

min
θ∈� b̈(θ)

)−1

. (57)

Using the mean value theorem, for any pair θ, θ ′ ∈ �, there
exists a λ ∈ � for which we have:

ḃ(θ)− ḃ
(
θ ′
)

θ − θ ′ = b̈(λ) ≥ 1
L2
. (58)

Using (58), for any pair z, z′ ∈ R, we have

|ḃ−1(z)− ḃ−1(z′)| ≤ L2|z− z′|. (59)

This indicates that for any ε ∈ R+, we have

dKL
(
μ+ ε‖μ′)− dKL

(
μ‖μ′)

(6)= b
(

ḃ−1(μ)
)
− b
(

ḃ−1(μ+ ε)
)

+ μ
[
ḃ−1(μ+ ε)− ḃ−1(μ)

]
+ O(ε) (60)
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(56)≤ L1

∣∣∣ḃ−1(μ)− ḃ−1(μ+ ε)
∣∣∣

+ μ
[
ḃ−1(μ+ ε)− ḃ−1(μ)

]
+ O(ε) (61)

(59)≤ (L1 + μ)L2ε + O(ε) (62)

= O(ε). (63)

Proving (55) follows similar steps.

APPENDIX B
PROOF OF LEMMA 3 AND LEMMA 6

A. Exponential Family of Bandits

For any t ∈ N, for a given ε ∈ R+ and any bandit realization
with mean μ we have

Pμ

(
Nμε > t

)

=
∞∑

s=t+1

Pμ

(
Nμε = s

)
(64)

=
∞∑

s=t+1

Pμ

(
∃i ∈ [K] : |μs−1,i − μi| > ε, and,

∀u ≥ s,∀i ∈ [K], |μu,i − μi| ≤ ε
)

(65)

≤
∞∑
s=t

Pμ

(∃i ∈ [K] : |μs,i − μi| > ε
)

(66)

≤
∑
i∈[K]

∞∑
s=t

Pμ

(|μs,i − μi| > ε
)

(67)

=
∑
i∈[K]

∞∑
s=t

Pμ

(
|μs,i − μi| > ε , Ts,i ≥

√
s

K
− 1

)

+
∑
i∈[K]

∞∑
s=t

Pμ

(
|μs,i − μi| > ε , Ts,i <

√
s

K
− 1

)

︸ ︷︷ ︸
=0

(68)

=
∑
i∈[K]

∞∑
s=t

∞∑
�=√s/K−1

Pμ

(|μs,i − μi| > ε , Ts,i = �
)

(69)

≤
∑
i∈[K]

∞∑
s=t

∞∑
�=√s/K−1

(
exp
(− �dKL(μi + ε‖μi)

)

+ exp
(− �dKL(μi − ε‖μi)

))
(70)

≤
∑
i∈[K]

∞∑
s=t

∫ ∞
√

s/K−2
exp{−�dKL(μi + ε‖μi)} d�

︸ ︷︷ ︸
�A1

+
∑
i∈[K]

∞∑
s=t

∫ ∞
√

s/K−2
exp{−�dKL(μi − ε‖μi)} d�

︸ ︷︷ ︸
�A2

, (71)

where (67) is obtained by the union bound, (68) and (69)
use total probability and (70) is a result of using Lemma 8.

Furthermore, for A1 we have

A1 =
∑
i∈[K]

∞∑
s=t

∫ ∞
√

s/K−2
exp{−�dKL(μi + ε‖μi)} d�

=
∑
i∈[K]

1

dKL(μi + ε‖μi)

×
∞∑
s=t

exp

(
−
(√

s

K
− 2

)
dKL(μi + ε‖μi)

)
(72)

≤
∑
i∈[K]

exp(2dKL(μi + ε‖μi))

dKL(μi + ε‖μi)

×
∫ ∞

t
exp

(
−
√

s

K
dKL(μi + ε‖μi)

)
ds (73)

=
∑
i∈[K]

2K
exp(2dKL(μi + ε‖μi))

(dKL(μi + ε‖μi))
3

×
(

dKL(μi + ε‖μi)√
K

√
t + 1

)

× exp

{
−dKL(μi + ε‖μi)√

K

√
t

}
, (74)

where (73) is obtained by upper-bounding the summation over
the index s by its integration. Consequently,

∑
t∈N

A1 ≤
∑
i∈[K]

2K
exp(2dKL(μi + ε‖μi))

(dKL(μi + ε‖μi))
3

×
∫ ∞

0

(
dKL(μi + ε‖μi)√

K

√
t + 1

)

× exp

{
−dKL(μi + ε‖μi)√

K

√
t

}
dt (75)

= 12K2
∑
i∈[K]

exp(2dKL(μi + ε‖μi))

(dKL(μi + ε‖μi))
5

< +∞. (76)

Similarly, we can show that
∑
t∈N

A2 ≤ 12K2
∑
i∈[K]

exp(2dKL(μi − ε‖μi))

(dKL(μi − ε‖μi))
5

< +∞. (77)

Finally, using (76) and (77), we obtain

Eμ

[
Nμε
] =∑

t∈N
Pμ

(
Nμε > t

) ≤∑
t∈N
(A1 + A2) < +∞. (78)

B. Gaussian Bandits

For the case of Gaussian bandits, by invoking the estima-
tor concentration specified in Lemma 7 and the sufficiency
of exploration established in Lemma 5, for all i ∈ [K] and
∀n > N1, where N1 is specified in Lemma 7, we almost surely
have

|μn,i − μi|
(42)≤ σW1

√
log
(
e+ Tn,i

)
1+ Tn,i

(79)

≤ σW1

√
log
(
e+√n/K

)
1+√n/K

(80)

≤ σW1

√
2(n/K)1/4

1+√n/K
, (81)
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where (80) is a result of Lemma 5, noting that n > N1,
and monotonicity of log(e+x)

1+x , and (81) holds since log(e +√
n/K) ≤ 2(n/K)1/4 for n > K. Furthermore, owing to x1/4

(1+√x)
being a decreasing function in x, corresponding to any real-
ization of W1 there exists Lμε , which is a function of W1 and
an instance-dependent parameter, such that it satisfies√√√√ 2

(
Lμε /K

)1/4
1+
√

Lμε /K
<

ε

σW1
. (82)

By defining Mμ
ε � max{N1,Lμε }, from (81) and (82), we obtain

that for all n > Mμ
ε

|μn,i − μi| ≤ ε, ∀i ∈ [K]. (83)

Since both N1 and Lμε are a function of W1 and instance depen-
dent parameters, we have Eμ[N1] < +∞ and Eμ[Lμε ] < +∞,
since, by Lemma 7, Eμ[W1] < +∞. Finally, since Mμ

ε <

N1 + Lμε , we have Eμ[Mμ
ε ] < Eμ[N1]+ Eμ[Lμε ] < +∞.

APPENDIX C
PROOF OF LEMMA 4

The analysis for the convergence of the sampling propor-
tions to the optimal allocation has two main steps.

Step 1 Convergence in allocation for a�: First, we show the
convergence of the selection proportions allocated to the best
arm a� to the β-optimal allocation β. For this, using Lemma 3,
we have that for all n > Nμ�min/2

, a1
n = a�. To show this, let

us assume that a1
n �= a� for some n > Nμ�min/2

. We obtain,

μn,a1
n
− μn,a� ≤ μa1

n
− μa� +�min ≤ 0 (84)

where the first inequality holds since n > Nμ�min/2
, and the sec-

ond one follows by noting that μa1
n
−μa� ≤ −�min. Since (84)

contradicts the definition of a1
n, we have that a1

n = a� for all
n > Nμ�min/2

. Following the same line of arguments as in [24,
Lemma 12] and [24, Lemma 13], the above property means
that there exists a random variable Nε2 , which is a function of
W1, such that for all n > Nε2 , we have |Tn,a�/n− β| ≤ ε.

Step 2 Convergence in allocation for any i ∈ [K] \ {a�}:
The other step is to show the convergence of the sampling
probabilities of the other arms i ∈ [K] \ {a�} to the optimal
proportions {ω�i (β) : i ∈ [K] \ {a�}}. We begin by defining
the set of over-sampled arms as follows. For any ε ∈ R+ we
define

On(ε) �
{

i ∈ [K] \ {a�} : Tn,i/n > ω�i (β)+ ε
}
. (85)

Furthermore, we use the notation Ōn(ε) � [K] \ On(ε) to
denote the set of arms that are not over-sampled. The key
idea for showing the convergence of the arms i ∈ [K] \ {a�}
is to show that after some time, the challenger is never con-
tained in the over-sampled set. This implies that when the
means of all the arms and the proportion of the best arm have
converged sufficiently, the TT-SPRT sampling strategy never
samples from the over-sampled set of arms. This, in turn, leads
to the convergence in allocation of the arms i ∈ [K] \ {a�}.
This idea is formalized in the following lemma, which has
been proved in [24].

Lemma 10 [24]: For any ε > 0, for any top-two sampling
strategy, assume that the following conditions are satisfied:

1) There exists a stochastic time Nε2 , such that for all
n > Nε2 , we have convergence in allocation for the best
arm, i.e., ∣∣∣∣Tn,a�

n
− β
∣∣∣∣ ≤ ε ∀n > Nε2 . (86)

2) There exists Nε3 such that for all n > Nε3 , the challenger
a2

n /∈ On(ε/2).
Then, there exists Nε4 such that Eμ[Nε4] < +∞, and On(ε) =
∅ for all n > Nε4 . Furthermore, for all n > Nε/K4 , we have
convergence in allocation of every arm i ∈ [K] \ {a�}, i.e.,∣∣∣∣Tn,a�

n
− β
∣∣∣∣ ≤ ε ∀n > Nε/K4 , ∀i ∈ [K]. (87)

Leveraging Lemma 10, the proof is concluded by setting
Nωε � Nε/K4 . We have already shown that condition 1 in
Lemma 10 is satisfied by TT-SPRT for all n > Nε2 . Next,
we will show that condition 2 is also satisfied. Specifically,
we will show that there exists Nε3 such that for all n > Nε3 ,
for any i ∈ On(ε/2) and any j ∈ Ōn(0) we have

�n

(
a1

n, i
)
> �n

(
a1

n, j
)
. (88)

By the definition of a2
n, this implies that a2

n /∈ On(ε/2). Next,
we will show that (88) holds. For any i ∈ [K] \ {a�}, let us
define

Ci
(
β, ω�i (β)

)
� βdKL

(
μa�‖μa�,i

)+ ω�i (β)dKL
(
μi‖μa�,i

)
, (89)

where μa�,i � (βμa� +ω�i (β)μi)/(β +ω�i (β)). Next, we state
a proposition characterizing the optimal allocation.

Proposition 1 [25, Proposition 1]: There exists a unique
optimal allocation ω�(β) to the optimization problem in (9),
such that for any i, j ∈ [K]\{a�}, Ci(β, ω

�
i (β)) = Cj(β, ω

�
j (β)).

Furthermore,

Ci
(
β, ω�i (β)

) = min
x∈[μi,μa� ]

βdKL(μa�‖x)+ ω�i (β)dKL(μi‖x).
(90)

Let us set ζ = ε/2. Leveraging Lemma 3, we obtain that
for all n > Nμ

ζ 2 , |μn,i − μi| < ζ 2 for all i ∈ [K]. Next,

for all n > Nζ
2

2 , we have |Tn,a�/n − β| < ζ 2. Let us define

Nζ3 � max{Nμ
ζ 2 ,Nζ

2

2 ,Nμ�min/2
}. Thus, for all n > Nζ3 , for any

i ∈ On(ζ ) and for any j ∈ Ōn(0):

1

n

(
�n

(
a1

n, i
)
−�n

(
a1

n, j
))

= 1

n

(
�n
(
a�, i
)−�n

(
a�, j
))

(91)

= 1

n
�n
(
a�, i
)− Ci

(
β, ω�i (β)

)
︸ ︷︷ ︸

�A3

+Cj

(
β, ω�j (β)

)
− 1

n
�n

(
a1

n, j
)

︸ ︷︷ ︸
�A4

, (92)

where (91) holds since a1
n = a� for all n > Nζ3 , and (92) is

obtained by leveraging Proposition 1. Expanding A3, we obtain
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A3 = 1

n
�n
(
a�, i
)− Ci

(
β, ω�i (β)

)
≥
(
β − ζ 2

)
dKL
(
μn,a�‖μn,a�,i

)− βdKL
(
μa�‖μa�,i

)
+ (ω�i (β)+ ζ )dKL

(
μn,i‖μn,a�,i

)− ω�i (β)dKL
(
μi‖μa�,i

)
,

(93)

where (93) holds due to the definition of Nζ3 , along with the
fact that i ∈ On(ζ ) and j ∈ Ōn(0). Now, (93) can be lower-
bounded as
(
β − ζ 2

)
dKL
(
μn,a�‖μn,a�,i

)− βdKL
(
μa�‖μa�,i

)
+ (ω�i (β)+ ζ )dKL

(
μn,i‖μn,a�,i

)− ω�i (β)dKL
(
μi‖μa�,i

)
(94)

≥
(
β − ζ 2

)
dKL

(
μa� − ζ 2‖μn,a�,i

)
− βdKL

(
μa�‖μa�,i

)
+ (ω�i (β)+ ζ )dKL

(
μi + ζ 2‖μn,a�,i

)
− ω�i (β)dKL

(
μi‖μa�,i

)
(95)

≥
(
β − ζ 2

)
dKL

(
μa� − ζ 2‖μn,a�,i

)
− βdKL

(
μa�‖μn,a�,i

)
+ (ω�i (β)+ ζ )dKL

(
μi + ζ 2‖μn,a�,i

)
− ω�i (β)dKL

(
μi‖μn,a�,i

)
(96)

=
(
β − ζ 2

)[
dKL
(
μa�‖μn,a�,i

)+ O
(
ζ 2
)]
− βdKL

(
μa�‖μn,a�,i

)
+ (ω�i (β)+ ζ )

[
dKL
(
μi‖μn,a�,i

)+ O
(
ζ 2
)]

− ω�i (β)dKL
(
μi‖μn,a�,i

)
(97)

= ζdKL
(
μi‖μn,a�,i

)+ O
(
ζ 2
)

(98)

where (95) follows from the facts that μn,a�,i ∈
[μn,i, μn,a� ] and |μn,i − μi| ≤ ζ 2 for every
n > Nζ3 , (96) follows from Proposition 1 by not-
ing that βdKL(μa�‖μn,a�,i) + ω�i (β)DKL(μi‖μn,a�,i) ≥
βdKL(μa�‖μa�,i) + ω�i (β)DKL(μi‖μa�,i), and (97) is a result
of Lemma 9. Similarly, expanding A4, we obtain

A4 = 1

n
�n

(
a1

n, j
)
− Cj

(
β,ψ

β
j

)

= Tn,a�

n
dKL
(
μn,a�‖μn,a�,j

)

+ Tn,j

n
dKL
(
μn,j‖μn,a� , j

)− Cj

(
β, ω�j (β)

)
(99)

≤ Tn,a�

n
dKL
(
μn,a�‖μa�,j

)

+ Tn,j

n
dKL
(
μn,j‖μa� , j

)− Cj

(
β, ω�j (β)

)
(100)

≤
(
β + ζ 2

)
dKL
(
μn,a�‖μa�,j

)− βdKL
(
μ�a‖μa�,j

)
+ ω�j (β)dKL

(
μn,j‖μa�,j

)− ω�j (β)dKL
(
μj‖μa�,j

)
(101)

≤
(
β + ζ 2

)
dKL

(
μa� + ζ 2‖μa�,j

)
− βdKL

(
μa�‖μa�,j

)
+ ω�j (β)dKL

(
μj − ζ 2‖μa�,j

)
− ω�j (β)dKL

(
μj‖μa�,j

)
(102)

≤
(
β + ζ 2

)[
dKL
(
μa�‖μa�,j

)+ O
(
ζ 2
)]
− βdKL

(
μa�‖μa�,j

)
+ ω�j (β)

[
dKL
(
μj‖μa�,j

)+ O
(
ζ 2
)]

− ω�j (β)dKL
(
μj‖μa�,j

)
(103)

= O
(
ζ 2
)

(104)

where (100) holds due to the fact that [6]

μn,a�,i � arg min
x∈[μn,i,μn,a�

]
Tn,a�

n
dKL
(
μn,a�‖x

)

+ Tn,j

n
dKL
(
μn,j‖x

)
(105)

Equation (101)–(102) holds due to the fact that n > Nζ3 ,
and (103) is obtained by leveraging Lemma 9. Finally,
using (98) and (104), (92) can be rewritten as

1

n

(
�n

(
a1

n, i
)
−�n

(
a1

n, j
))

≥ ζdKL
(
μi‖μn,a�,i

)+ O
(
ζ 2
)
> 0. (106)

APPENDIX D
PROOF OF THEOREM 3 AND THEOREM 5

In this section, we start by providing the proof of Theorem 3
for the case of the exponential family of bandits. We begin by
defining the function Cexp used in characterizing the stopping
threshold in Theorem 2. For this purpose, for any u ≥ 1, let
us define the function h(u) � u − log u. Furthermore, let us
define the function h̃z(x) : R+ �→ R+ for any z ∈ [1, e] as

hz(x) �
{

e
1

h−1(x) h−1(x), if x ≥ h(1/ log z)
z(x− log log z), otherwise

. (107)

The function Cexp : R+ �→ R+ is defined as

Cexp(x) � 2h̃3/2

(
h−1(1+ x)+ log(2ζ(2))

2

)
(108)

where ζ(s) �
∑∞

n=1 n−s. Let us define the stochastic time Tεβ ,
which marks the convergence of the arm means and the
sampling proportions,

Tεβ � inf
{

n0 ∈ N : |μn,i − μi| ≤ ε,
|Tn,i/n− ω�i (β)| ≤ ε ∀i ∈ [K], ∀n > n0

}
. (109)

Leveraging Lemma 3, we have Eμ[Nμε ] < +∞, and |μn,i−μi|
≤ ε for all n > Nμε and for every i ∈ [K]. Furthermore, in
Lemma 4 we showed that for any ε > 0, there exists Nωε ,
Eμ[Nωε ] <∞ and for all n > Nωε and i ∈ [K] we have |Tn,i/n−
ω�i (β)| < ε. Furthermore, by the definition of Tεβ in (109),
Tεβ = max{Nμε ,Nωε }, and thus Eμ[Tεβ ] < +∞. Finally, the
theorem is proved by leveraging Lemma 11 stated below.

Lemma 11: For the combination of any arm selection rule
that satisfies Eμ[Tεβ ] < +∞ for any ε > 0, and the stopping
rule specified in (27), we have

lim
δ→0

Eμ[τ ]

log(1/δ)
≤ 1

�μ(β)
. (110)

Proof: Note that by the definition of Tβε , using the same
argument as in (84), we have a1

n = a� for all n ≥ T�min/2
β .

Thus, for all n ≥ T�min/2
β , we have

1

n
�n

(
a1

n, a2
n

)
(20)= min

j∈[K]\{a�}
Tn,a�

n
dKL
(
μn,a�‖μn,a�,j

)

+ Tn,j

n
dKL
(
μn,j‖μn,a�,j

)
. (111)
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Furthermore, recall the definition of �μ(β),

�μ(β) � min
i∈[K]\a� βdKL

(
μa�‖μa�,i

)
+ ω�i (β)dKL

(
μi‖μa�,i

)
, (112)

based on which, given ε > 0, there exist ε′ ∈ (0,�min/2] and
Tε � Tε

′
β , such that for all we have n > Tε , |μn,i − μi| ≤ ε′,

|Tn,i/n−ω�i (β)| ≤ ε′, and |�(a1
n, a2

n)/n−�μ(β)| < ε [6], [24].
Furthermore, Eμ[Tε] = Eμ[Tε

′
β ] < +∞. Furthermore, for all

t > 3× 107, we have

6 log
(

log
t

2
+ 1
)
≤ log t. (113)

Let us define Tε0 � max{Tε, 3 × 107}. Next, expanding the
time instant right before stopping, we have

τ − 1 = (τ − 1)1{τ−1≤Tε0} + (τ − 1)1{τ−1>Tε0} (114)

≤ Tε0 + (τ − 1)1{τ−1>Tε0}. (115)

Now, due to the choice of our stopping rule in (23) along with
the choice of threshold defined in Theorem 2, at (τ − 1), we
have

�τ−1

(
aτ−1

1 , aτ−1
2

)

≤ log
K − 1

δ
+ 8 log

(
1+ 1

2
log

K − 1

δ
+
√

log
K − 1

δ

)

+ 6 log

(
log

τ − 1

2
+ 1

)
. (116)

Furthermore, when τ − 1 > Tε0 ,

�τ−1

(
aτ−1

1 , aτ−1
2

)
≥ (τ − 1)

(
�μ(β)− ε

)
. (117)

Combining (116) and (117), when τ − 1 > Tε0 , we have

(τ − 1)
(
�μ(β)− ε

)

≤ log
K − 1

δ
+ 8 log

(
1+ 1

2
log

K − 1

δ
+
√

log
K − 1

δ

)

+ 6 log

(
log

τ − 1

2
+ 1

)
(118)

≤ log
K − 1

δ
+ 8 log

(
1+ 1

2
log

K − 1

δ
+
√

log
K − 1

δ

)

+ log(τ − 1). (119)

Furthermore, note that f (x) � x − 1
D1

log D2x is a monoton-
ically increasing function in x for D1,D2 ∈ R+. Thus, there
exists xmax such that for all x ≥ xmax, f (x) ≥ 0. Next, we
will find an x̄ such that f (x̄) ≥ 0. In our case, we have
D1 = (�μ(β) − ε), and D2 = ((K − 1)g(δ))/δ, where we
have defined

g(δ) �
(

1+ 1

2
log

K − 1

δ
+
√

log
K − 1

δ

)8

. (120)

We leverage [6, Lemma 18], which yields that

τ − 1 ≤ 1

�μ(β)− ε
[

log

{
g(δ)(K − 1)e(
�μ(β)− ε

)
δ

}

+ log log

{
g(δ)(K − 1)(
�μ(β)− ε

)
δ

}]
. (121)

Thus, combining (115) and (121), we obtain

τ ≤ Tε0 +
1

�μ(β)− ε
[

log

{
g(δ)(K − 1)e(
�μ(β)− ε

)
δ

}

+ log log

{
g(δ)(K − 1)(
�μ(β)− ε

)
δ

}]
+ 1. (122)

Finally, taking the expectation on both sides of (122), dividing
by log(1/δ), and taking the limit of δ→ 0, we obtain

lim
δ→0

Eμ[τ ]

log(1/δ)
≤ 1

�μ(β)− ε , (123)

where (123) is obtained by noting that
limδ→0 log g(δ)/ log(1/δ) = 0, and we have used the
fact that Eμ[Tε0 ] < +∞. The proof for the exponential family
of bandits is completed by taking an infimum with respect to
ε in (123).

The proof for the Gaussian setting involves a counterpart
of Lemma 11, which has been proved in [25, Lemma 1].
Specifically, [25, Lemma 1] states that for Gaussian ban-
dits, the combination of any arm selection rule that
satisfies Eμ[Tεβ ] < +∞, where we have defined Tεβ
in (109), along with the stopping rule specified in (33),
satisfies

lim sup
δ→0

Eμ[τ ]

log(1/δ)
≤ 1

�μ(β)
. (124)

The proof is concluded by leveraging Lemma 3 and Lemma 4,
ensuring Eμ[Tεβ ] < +∞.

APPENDIX E
PROOF OF THEOREM 6

Let us define

Tn
i � inf

{
s ∈ N: θn

s,i > θn
s,b1

s

}
(125)

based on which Tn
TTTS = mini∈[K]\{b1

n} T
n
i . Note that using

[25, Lemma 12], there exists a random variable M0, such
that for all n > M0, we have b1

n = a�. Similarly, based on
[25, Sec. C.2] there exists a random variable M�min /4 such
that for all n > M�min /4 , we almost surely have

|μn,i − μi| ≤ �min

4
∀i ∈ [K]. (126)

Defining N0 � max(M0,M�min /4), for all n > N0, s ∈ N, and
for any i ∈ [K] \ {a�} we have

P

(
θn

s,i > θn
s,a�

)

≤ 1

2
exp

(
−
(
μn,a� − μn,i

)2
2σ 2

(
1

Tn,i
+ 1

Tn,a�

)−1)
(127)
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≤ 1

2
exp

(
− (μa� − μi −�min/2)2

2σ 2

(
1

Tn,i
+ 1

Tn,a�

)−1)

(128)

≤ 1

2
exp

(
−
√

n

K

(μa� − μi −�min/2)2

4σ 2

)
(129)

where (127) is obtained by leveraging [24, Lemma 1] while
noting that for any two arms i, j ∈ [K] and n ∈ N, (θn

s,i − θn
s,j)

∼ N (μn,i − μn,j, σ
i,j
n ), where we have defined σ

i,j
n �√

σ 2(1/Tn,i + 1/Tn,j), (128) is a result of (126), and (129)
is a result of [25, Lemma 5], which states that under TTTS,
there exists a random variable M1 such that for all n > M1, we
have Tn,i ≥ √n/K for every i ∈ [K]. Furthermore, using [24,
Lemma 1], we also obtain that

P

(
θn

s,i > θn
s,a�

)
≥ 1√

2π
exp

(
−
(
σ a�,i

n + μn,a� − μn,i

)2

2σ 2

×
(

1

Tn,i
+ 1

Tn,a�

)−1)
. (130)

Following the same line of arguments as in (127)-(129), and
noting that Tn,i ≤ n for every i ∈ [K], from (130) we obtain

P

(
θn

s,i > θn
s,a�

)
≥ 1√

2πe
exp

(
−√n

(
μa� − μi + �min

2

)

×
(√

n
μa� − μi +�min/2

4σ 2
+ 1√

2σ

))
.

(131)

Next, note that for any n > N0, we have

P
(
Tn

i > s
)

= 1− P
(
Tn

i ≤ s
)

(132)

= 1−
s∑
�=1

P
(∀m < � , θn

m,i ≤ θn
m,a� , θ

n
�,i > θn

�,a�
)

(133)

= 1−
s∑
�=1

P
(
θn
�,i > θn

�,a�
) �∏

m=1

P
(
θn

m,i ≤ θn
m,a�
)

(134)

where (133) follows from the definition of Tn
i in (125),

and (134) holds since the samples are drawn independently
from the posterior �n. For any m ∈ N, let us define
pn,i � P(θn

m,i ≤ θn
m,a� ). Subsequently, (134) can be simplified

as follows

P
(
Tn

i > s
) = 1− (1− pn,i

) s∑
�=1

(
pn,i
)�−1 (135)

= 1− (1− (pn,i
)s) (136)

≥ (1− εn,i
)s (137)

where we have defined

εn,i �
1

2
exp

(
−
√

n

K

(μa� − μi −�min/2)2

4σ 2

)
(138)

and (137) is a result of (129). Finally, we have

En
[
Tn

i

] = ∞∑
s=0

P
(
Tn

i > s
) (137)≥

∞∑
s=0

(
1− εn,i

)s = 1
εn,i
.

(139)

Similarly, an upper bound on Eμ[Tn
i ] can be obtained by

following the same line of arguments as (132)-(136), and
subsequently, upper-bounding P(Tn

i > s) by (1− ε′n,i)s, where

ε′n,i �
1√
2πe

exp

(
−√n

(
μa� − μi + �min

2

)

×
(√

n
μa� − μi +�min/2

4σ 2
+ 1√

2σ

))
, (140)

which follows from (131). This yields

En
[
Tn

i

] ≤ √2πe exp

(√
n

(
μa� − μi + �min

2

)

×
(√

n
μa� − μ+�min/2

4σ 2
+ 1√

2σ

))
. (141)

Note that for all n > 32/(9�2
min), we have

n(μa� − μi +�min/2)2

4σ 2
>

√
n(μa� − μi +�min/2)√

2σ
. (142)

Combining (141) and (142), we obtain the upper-bound in
Theorem 6. Next, we prove that there exists δ(N0) > 0 such
that for any δ ∈ (0, δ(N0)), the stopping time of the TTTS
algorithm, denoted by τTTTS, almost surely satisfies τTTTS >

N0. Note that τTTTS is defined as

τTTTS � inf
{
n ∈ N:�n

(
bn

1, bn
2

)
> cn,δ

}
(143)

where cn,δ has been defined in (33). Let us set

δ(N0) � (K − 1) exp

(
−
(

N0(�max +�min/2)

8σ 2

− 2 log(4+ log N0)

))
. (144)

For any δ ∈ (0, δ(N0)), the GLLR almost surely satisfies

∀n ∈ {1, . . . ,N0} �n
(
bn

1, bn
2

)
< cn,δ. (145)

Combining (143) and (145), for any δ ∈ (0, δ(N0)), we almost
surely have τTTTS > N0.
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