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Abstract— This paper considers the problem of secure parame-
ter estimation when an estimation algorithm is prone to causative
attacks. Causative attacks, in general, target decision-making
algorithms (e.g., inference or learning algorithm) to alter their
decisions in specific scenarios (e.g., distort parameter estimates
for specific ranges of the parameter of interest). Such attacks
influence the decisions via tampering with the mechanisms
through which an algorithm acquires the statistical model of
the population about which it aims to form a decision. Such
attacks are viable, for instance, by contaminating the historical
or training data, or by compromising an expert who provides the
statistical model. In the presence of causative attacks, inference
algorithms operate under a distorted statistical model for the data
samples. This paper introduces a notion of secure parameter
estimation and formalizes a framework under which secure
estimation can be formulated and analyzed. The central premise
underlying the secure estimation framework is that forming
secure estimates introduces a new dimension to the estimation
objective, pertaining to detecting attacks and isolating the true
model. Since detection and isolation decisions themselves are
imperfect, their inclusion induces an inherent coupling between
the desired secure estimation objective and the auxiliary detection
and isolation decisions that need to be formed in conjunction with
the estimates. This paper establishes the fundamental interplay
among these decisions, and characterizes the general decision
rules in closed-forms for any desired estimation cost function.
Furthermore, to circumvent the computational complexity asso-
ciated with growing parameter dimension or attack complexity,
a scalable estimation algorithm is provided, which is shown to
enjoy certain optimality guarantees. Finally, the theory developed
is applied to secure parameter estimation in sensor networks.

Index Terms— Estimation, security, tradeoffs.

I. INTRODUCTION

A. Motivation

STATISTICAL inference offers mechanisms for deducing
the statistical properties of a population based on the data

sampled from the population. Inference problems, broadly,
focus on discerning the statistical model of the population or
forming estimates about an unknown parameter that specifies
the statistical model of the population.

The sampled data can be corrupted or compromised due
to a variety of reasons such as failures in data acquisi-
tion systems or adversarial attacks. In such cases, anomaly
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detection constitutes a major class of inference problems the
objective of which is raising alarms when the data patterns
deviate significantly from their expected patterns. Effective
detection of anomalies hinges on having reliable rules that
can distinguish normal and abnormal patterns in the data.
These rules, for instance, can be specified by an expert or
by leveraging the historical data, depending on the context of
the application.

While detecting anomalies in data patterns is studied exten-
sively, the vulnerability of the inference algorithms to being
compromised is far less-investigated. The nature of security
vulnerabilities that inference algorithms are exposed to is
fundamentally different from those that the data is exposed
to. To highlight the distinction, note that for inferring a latent
aspect of a population from sampled data (i) the inference
algorithms (rules) are designed based on the data model,
and (ii) the decisions (algorithms outputs) are determined
based on the data (algorithm inputs). In this context, when the
data (algorithm input) is compromised, the algorithm remains
intact, borrowing its design from the assumed statistical model.
In such situations, a measure for countering the compromised
data generally involves winnowing out the compromised data
samples and forming decisions based on the filtered data.
In contrast, an attack on the algorithm can be exerted by
providing the algorithm with an incorrect statistical model
for the data. This is viable by, for instance, contaminating
the historical data or by confusing the expert that produces
a model, which are critical for furnishing the true model for
the statistical model of the data. Therefore, when the data
is compromised, an inference algorithm produces decisions
based on an un-compromised known model for the data, while
the data that it receives and processes is compromised. On the
other hand, when the model is compromised, an inference
algorithm functions based on an incorrect model for the data,
in which case even un-compromised data produces unreliable
decisions.

The aforementioned security vulnerabilities for the infer-
ence algorithms can be capitalized on by adversaries in
order to force an inference algorithm to deviate from its
optimal structure and produce decisions in ways that serve
an adversary’s purposes. Such attacks on decision algorithms
are often referred to as causative attacks, through which an
adversary aims to (i) make the inference algorithms oblivious
to specific attacks, or (ii) degrade the performance of the
inference algorithm in the presence of such an attack [1].

While the notion of secure decision-making in adjacent
domains (e.g., machine learning and data mining) is heavily
investigated in recent years, the fundamental limits of secure
statistical inference are not well-investigated, and all the
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limited existing studies remain rather ad-hoc. In this paper,
we provide a framework for secure parameter estimation
under the potential presence of causative attacks. We establish
the fundamental tradeoffs involved in decision-making under
causative attacks and characterize the optimal decision rules
for securely estimating the parameters and concurrently detect-
ing the presence of the attackers. Furthermore, we provide a
scalable algorithm for addressing settings in which the dimen-
sion or the size of the attacks grow, and provide optimality
guarantees on the performance of this algorithm. A summary
of the content and the contributions is provided in Section I-B,
and the relevant literature on secure statistical inference is
reviewed in Section I-C.

B. Overview and Contributions

Consider the canonical parameter estimation problem in
which we have a collection of probability distributions
{PX : X ∈ X} defined over a common measurable space. The
objective is to estimate X , which lies in a known set X ⊆ R

p,
from data samples Y � [Y1, . . . , Yn], where the sample Yr is
distributed according to PX and lies in a known set Y ⊆ R

m.
We denote the probability density functions (pdfs) that the
statistician assumes about the underlying distributions of X
and Yr by π and f(· | X), respectively, i.e.,

Yr ∼ f(· | X), with X ∼ π. (1)

For clarity in notations, we will assume that the pdfs do not
have any non-zero probability masses over lower-dimensional
manifolds. The objective of the statistician is formalizing a
reliable estimator

X̂(Y) : Yn �→ X . (2)

Causative Attacks: In an adversarial environment, a malicious
attacker might launch a causative attack to influence (degrade)
the quality of X̂(Y). The purpose of such an attack is to
compromise the process that underlies acquiring the statistical
models. We emphasize that such an attack is different from
those that aim to compromise the data, e.g., false data injection
attacks that aim to distort the data samples Y. Consequently,
the effect of a causative attack is misleading the statistician
about the true model f(· | X) that it assumes about the data.
Such attacks are possible by compromising the historical (or
training) data that is used for defining a model for the data.
Depending on the specificity and the extent of a causative
attack, e.g., the fraction of the historical or training data that
is compromised, the true model f(· | X) can deviate to
alternative forms, the space of which we denote by F . The
attack can affect the statistical distribution of any number
of the m coordinates of Y. There are two major aspects to
selecting F as a viable model space.

• An attack is effective if the compromised model is
sufficiently distinct from the model assumed by the
statistician. Hence, even though in general F can be any
representation of possible kernels f(· | X) mapping Y to
R

m, only a subset of such mappings suffices to describe
the set of effective attacks.

• There exists a tradeoff between the complexity of the
model space and its expressiveness. Specifically, if it is
overly expressive, it can represent the possible compro-
mised models with a more refined accuracy at the expense
of having more complex inferential rules.

The specifics of the attack model will be discussed in
Section II. Next, we provide a definition that is central to the
proposed secure estimation framework.
(q, β)-Security: The potential presence of an adversary intro-
duces a new dimension to the estimation problem in (2).
Specifically, the stochastic model of the data can be altered
by an attack and detecting whether the data model is compro-
mised becomes an additional inference task. Hence, designing
an optimal estimation rule strongly hinges on successfully
isolating the true model. Hence, there exists an inherent cou-
pling between the original estimation problem of interest and
the introduced auxiliary problem (i.e., detecting the presence
of an attacker and isolating the true model). Based on this
observation, in an adversarial setting, there exists uncertainty
about the true model, based on which the quality of the
estimator is expected to degrade with respect to an attack-free
setting. We are interested in establishing the fundamental
interplay between the quality of discerning the true model and
the degradation level in the estimation quality. To establish
this interplay, we say that an estimator is (q, β)-secure if its
estimation cost is weaker than that of the attack-free setting by
a factor q ∈ [1,∞), while missing at most β ∈ (0, 1] fraction
of the attacks.1

In this paper, we pursue three intertwined objectives. First,
we characterize the fundamental tradeoffs between q and β and
delineate the associated tradeoff curve. Secondly, we charac-
terize the inference rules in closed-forms and provide a secure
estimation algorithm that achieves the optimal tradeoffs for
any desired point on the tradeoff curve. Finally, to circumvent
the computational complexity as the the dimension of the data,
(p) grows, or the complexity of the attacks scales up (e.g.,
the number of coordinates compromised grows), we provide
a scalable algorithm that has low computational complexity
with guaranteed optimality in the asymptote of large data
dimension p.

Note that in general, the specificity of the models available
to the statistician has different natures in the attack-free and
the attacked instances. In the attack-free setting, the model can
either be fully specified, specified up to a level of uncertainty,
or completely unspecified. Our model under the attack-free
setting belongs to the category of fully specified models,
which is apt for the scenarios when there is ample training
or historical data available to learn the model. On the other
hand, a partly specified model or an unspecified model are
studied broadly under the domains of robust inference and
non-parametric inference, respectively, which are different in
scope from the parametric estimation problem studied in this
paper. In the attacked setting, the specificity of the attack
is characterized by the space F . Similar to the attack-free
scenarios, the space F may or may not be fully specified in

1Estimation costs and the associated estimation degradation factor q will be
defined in Section II-C.
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general. However, for an attack to be effective, F should be
constrained. This follows from the fact that for the attacks to
not be easily detectable, the attack models in F should not
be too distinct from the attack-free model. At the same time,
for the attacks to be successful in their objectives, the attack
models in F must not be too similar to the attack-free model.
Clearly, determining a reasonable choice for F hinges on the
context.

C. Related Studies

The problem of secure inference is studied primarily in the
context of sensor networks. The study in [2], in particular,
considers parameter estimation in a two-sensor network in
which one sensor is known to be secured, and one sensor
is vulnerable to attacks. The objective is forming an esti-
mate based on the mean-squared error criterion, for which
a heuristic detection-driven estimator is designed. According
to this design, first a decision is formed about whether the
unsecured sensor is attacked. If it is deemed to be attacked,
then the estimator will rely only on the secured sensor, and
otherwise, it uses the data from both sensors. Unlike in [2],
we consider a model with arbitrary size, assume that all data
coordinates are vulnerable to the attack, and characterize the
optimal decision structure, which turns out to be different from
being a detection-driven design studied in [2]. Through a case
study, we will also show a rather significant improvement in
the estimation quality when using the optimal rules, compared
to the rules specified in [2].

The adversarial setting defined in this paper is also simi-
lar to the widely-studied Byzantine attack models in sensor
networks, in which the data generated by the compromised
sensors are modified arbitrarily by the adversaries in order
to degrade or the inference quality. An overview of the
impact of Byzantine attacks on inference quality in sen-
sor networks and relevant mitigation strategies are discussed
in [3]. Detection-driven estimation strategies (i.e., when attack
detection precedes the estimation routine) when the effects
of the Byzantine attacks characterized by randomly flipping
of the information bits generated by the sensors are dis-
cussed in [4]–[7]. Furthermore, attack-resilient target local-
ization strategies are investigated in [4] and [8], where it is
assumed that the attacker adopts a fixed strategy for maximum
disruption to the inference. In these studies, an attacker may
deviate from the worst-case strategy of incurring the maximum
damage in order to launch a less powerful but sustainable
attack, which may not be detected perfectly. Finally, strategies
for isolating the compromised nodes in sensor networks are
investigated in [9]–[11]. The emphasis of these studies is
primarily focused on detecting attacks, or isolating the attacked
sensors, which is different from the focus of our paper on
parameter estimation.

The problem of secure estimation in linear dynamical
systems has been studied extensively in the recent
years [12]–[18]. The studies that are more relevant to the
scope of this paper include [13], [17], and [18], which
focus on the robust estimation of the states in dynamic
systems. Specifically, a coding-theoretic interplay between the

number of sensors compromised and the guarantees on perfect
state recovery is characterized in [13], a Kalman filter-based
approach for identifying the most reliable set of sensors to
make an inference from is investigated in [17], and designing
estimators that are robust against dynamical model uncertainty
is studied in [18]. The degradation in estimation performance
in a dynamical system consisting of a single sensor network
is studied from the adversary’s perspective in [19], where the
bounds on the degradation in estimation performance with
degrees of stealthiness of the attacker are characterized.

All the aforementioned studies that involve secure esti-
mation, irrespectively of their focus or objective, conform
in their design principle. They decouple the estimation
decisions from all other decisions involved (e.g., attack
detection or attacked sensor isolation), and produce either
detection-driven estimators or estimation-driven detection rou-
tines. In the detection-driven estimation routines, an initial
decision regarding the presence of an adversary (e.g., based
on Neyman-Pearson theory) is followed by an optimal esti-
mator based on the detection decision (e.g., Bayesian esti-
mation). Such approaches to estimation implicitly assume
that the detection decision has been perfect. Similarly, in an
estimation-driven approach, the unknown parameter is first
estimated, and then a detection decision is made (e.g.,
the generalized likelihood ratio test). Such approaches achieve
optimality only asymptotically, i.e., when having an infi-
nite number of samples. The premise that decoupling such
intertwined estimation and detection problems into inde-
pendent estimation and detection routines is sub-optimal is
well-investigated [20]–[23].

Secure estimation is also related to robust
estimation [24]–[29]. While sharing some assumptions
(e.g., data model uncertainty), these two problems pursue
two different inference objectives. Specifically, besides the
estimation objective, both problems also face resolving
uncertainties about the data model. Their main distinction
is that they resolve model uncertainties differently, and this
leads to significant differences in the formulation of the
problems and the designs of the optimal decision rules.
Specifically, in robust estimation, the emphasis is on forming
the most reliable estimates and resolving model uncertainties
is an intermediate task. Resolving model uncertainties can
be carried by a wide range of approaches, spanning from
averaging out the effect of the model to isolating or estimating
the model. Irrespectively of how this intermediate task is
performed, the ultimate interest of robust estimation is
optimizing the estimation quality, and it generally does not
have any regards for the quality of the decisions pertinent to
resolving model uncertainty, i.e., the quality of that decision is
not part of the design, and it will be dictated by the decision
rules optimized for producing the best estimates. These robust
methods are also often investigated under detection-driven
estimation approaches. In contrast, in secure estimation,
we are interested in the qualities of both decisions: estimating
the desired parameter and detecting the unknown model.
Hence, unlike robust estimation, we face combined estimation
and detection decisions. The natural coupling between the two
inference tasks is reflected in how the problem is formulated
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Fig. 1. The effect of the adversary on the data model, and the inferential decisions involved.

(in (17)), which requires that the decisions are optimized
jointly. We remark that the secure estimation approach
subsumes a relevant class of robust estimation problems
(i.e., minimax robust estimation with model a discrete model
uncertainty space) as its special case.

II. DATA MODEL AND DEFINITIONS

A. Attack Model

Our focus is on the canonical estimation problem in (2).
The objective is to form an optimal estimate X̂(Y) (under the
general cost functions specified later) in the potential presence
of a causative attack. Under the attack-free setting, the data is
assumed to be generated according to the known distribution

Yr ∼ f(· | X), with X ∼ π, for r ∈ {1, . . . n}. (3)

In an adversarial setting, an adversary, depending on its
strength and preference, can launch an attack that can com-
promise the underlying process that the statistician uses for
acquiring f(· | X). An attack will be carried out for the
ultimate purpose of degrading the estimation quality of X .
We assume that the adversary can corrupt the data model of
up to K ∈ {1, . . . ,m} coordinates of Y. Hence, for a givenK ,
there exists T =

∑K
i=1

(
m
i

)
number of attack scenarios

under which the compromised data models are distinct. Define
S � {S1, . . . , ST } as the set of all possible combinations of
attack scenarios, where Si ⊆ {1, . . . ,m} describes the set
of coordinates the models of which are compromised under
scenario i ∈ {1, . . . , T}.

Under the attack scenario i ∈ {1, . . . , T}, the joint distribu-
tion of Yr deviates from f and changes to a model in the space
Fi. As discussed earlier, there exists a tradeoff between the
expressiveness of this space and the complexity of the ensuing
inferential rules. Specifically, a larger space Fi can distinguish
different attack strategies with a more accurate resolution at the
expense of high complexity in the analysis and the resulting
decision rules. Furthermore, the model can be effective if
it encompasses sufficiently distinct models. Throughout the
analysis of the paper, we assume that Fi � {fi(· | X)}, i.e., Fi

consists of one alternative distribution. Based on this model,
when the data models in the coordinates contained in Si are
compromised, the joint distribution changes from f(· | X)
to fi(· | X). It is noteworthy that the assumption that Fi

is a singleton is for the convenience in analysis, and all the
results presented can be readily generalized to any arbitrary
space with countable elements. Specifically, our analysis for

characterizing the optimal decision rules depends on the char-
acteristics of the T statistical models {f1, . . . , fT}. If we have
multiple models per attack scenario, the only difference is that
the total number of models T increases. This can potentially
render characterizing the models {f1, . . . , fT} more compli-
cated, but once these models are specified, the analysis remains
intact.

Different attack scenarios might occur with different like-
lihoods. For instance, compromising one coordinate is easier
than compromising two, and it might turn out to be more
likely. To distinguish such likelihoods we adopt a Bayesian
framework in which we define ε0 as the prior probability
of having an attack-free scenario and define εi as the prior
probability of the event that the attacker compromises the
model under the coordinates specified by Si. A block diagram
of the attack model and the inferential goals to be charac-
terized, which are discussed in the remainder of this section,
is depicted in Fig. 1. Finally, we define the marginal pdf of
the data at coordinate l ∈ {1, . . . ,m} under the attack-free
setting and when the coordinate is compromised by g0

l and g1
l ,

respectively.

B. Compound Decisions

The estimation objective constantly faces the uncertainty
about whether an adversary exists. Furthermore, when one
is deemed to exist, there is additional uncertainty pertain-
ing to the number and the identity of the coordinates in
which the data is being compromised. Hence, forming the
estimate X̂(Y) is inherently entwined with discerning the
true model of the data. Decoupling the decisions for isolating
the model and estimating the parameter under the isolated
model does not generally render optimal performance. In fact,
there exist extensive studies on formalizing and analyzing
such compound decisions, which generally aim to decouple
the inferential decisions. In [21], it is shown that the gen-
eralized likelihood ratio test (GLRT) is not always optimal,
and necessary and sufficient conditions for its asymptotic
optimality are provided. Moreover, note that GLRT utilizes
maximum likelihood estimates of unknown parameters in its
decision rule and thus, it is primarily focused on the detection
performance. In [20], the problem of signal detection and
estimation in noise is investigated under the Bayes criterion.
In [22] and [23], non-asymptotic frameworks for optimal joint
detection and estimation are developed. Specifically, in [22],
a binary hypothesis testing problem is investigated in which
one hypothesis is composite and consists of an unknown
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parameter to be estimated. In [23], the theory in [22] is
extended to a composite binary hypothesis testing problem
in which both hypotheses correspond to composite models.
We use similar principles as established in [22] and [23] to
formulate the problem of secure estimation that incorporates
the estimation objective with the decision on the true model.
Therefore, unlike the strategies that decouple the detection
and estimation routines, our secure estimation framework is
characterized by optimal estimation rules and detection rules
that are formed in parallel.

C. Decision Cost Functions

1) Attack Detection Costs: The possibility of having mul-
tiple alternatives to the attack-free model renders the model
detection problem as the following (T+1)−composite hypoth-
esis testing problem.

H0 :Y ∼ f(Y | X), with X ∼ π(X)
Hi :Y ∼ fi(Y | X), with X ∼ π(X), (4)

for i ∈ {1, . . . , T}, where H0 is the hypothesis corresponding
to the attack-free setting, and Hi is the hypothesis correspond-
ing to an attack launched at the coordinates in Si ∈ S.
Throughout the rest of the paper we denote the attack-free
data model by f0(· | X), i.e., f0(· | X) = f(· | X).
We define D ∈ {H0, . . . ,HT } as the decision on the hypothesis
testing problem in (4), and T ∈ {H0, . . . ,HT } as the true
hypothesis. We adopt a general randomized test δ(Y) �
[δ0(Y), . . . , δT (Y)] for discerning the true hypothesis, where
δi(Y) ∈ [0, 1] denotes the probability of deciding in favor
of Hi. Clearly,

T∑
i=0

δi(Y) = 1. (5)

Hence, the likelihood of deciding in favor of Hj while the true
model is Hi is given by

P(D=Hj |T=Hi) =
∫
Y

δj(Y)fi(Y) dY. (6)

We define Pmd as the aggregate probability of incorrectly
identifying the true model under the presence of compromised
coordinates, i.e.,

Pmd(δ) � P(D �= T | T �= H0)

=
1

P(T �= H0)

T∑
i=1

P(D �= Hi | T = Hi)P(T = Hi)

(7)

=
T∑

i=1

εi
1− ε0 · P(D �= Hi | T = Hi). (8)

Furthermore, we define Pfa as the aggregate probability of
erroneously declaring that a set of coordinates are compro-
mised, while operating in an attack-free scenario. We have

Pfa(δ) � P(D �= H0 | T = H0) =
T∑

i=1

P(D=Hi |T=H0).

(9)

2) Secure Estimation Costs: Next, we define two estimation
cost functions for capturing the fidelity of the estimate X̂(Y)
that we aim to form for X . For this purpose, we adopt
a generic and non-negative cost function C(X,U(Y)) to
quantify the discrepancy between the ground truth X and a
generic estimator U(Y).

Due to having distinct data models under different attack
models, we consider having possibly distinct estimators under
different models. We denote the estimate of X under model
Hi by X̂i(Y), and accordingly, we define

X̂(Y) � [X̂0(Y), . . . , X̂T (Y)]. (10)

Considering such distinct estimators, the estimation cost
C(X, X̂i(Y)) is relevant only if the decision is Hi. Hence, for
any generic estimator Ui(Y) of X under model Hi, we define
the decision-specific average cost function for i ∈ {0, . . . , T}
as

Ji(δi, Ui(Y)) � Ei[C(X,Ui(Y)) | D = Hi], (11)

where the conditional expectation is with respect to X and Y.
Accordingly, we define an aggregate average estimation cost
according to

J(δ,U) � max
i∈{0,...,T}

Ji(δi, Ui(Y)), (12)

where we have defined U � [U0(Y), . . . , UT (Y)]. Finally,
corresponding to the attack-free scenario, in which the only
possible data model is the assumed model f , corresponding to
any generic estimator V (Y) we define the average estimation
cost according to

J0(V ) = E[C(X,V (Y))], (13)

where the expectation is with respect to X and Y under
model f . It is noteworthy that J0 defined in (13) is funda-
mentally different from J(δ,U) defined in (12), since the
former is the estimation cost when there is no alternative
to f (i.e., the attack-free scenario), while the latter is the
estimation cost in an adversarial setting in which we have
decided that the attacker has compromised the data. Clearly,
this decision is never perfect and can be inaccurate with a
non-zero probability. The role of J0(V ) in our analysis is
furnishing a baseline for the estimation quality in order to
assess the impact of the potential presence of an adversary on
the estimation quality.

Remark 1: We note that another possible choice for the esti-
mation cost J(δ,U) can be a weighted sum of the individual
cost functions Ji(δi, Ui(Y)). Adopting such a cost function
leads to a classical problem on combined estimation and detec-
tion, for which characterizing closed-form optimal decision
rules is still an open problem. Asymptotically optimal decision
rules, in the asymptote of large data size, are investigated
in [20] and [30].

III. SECURE PARAMETER ESTIMATION

In this section, we formalize the secure estimation problem.
The core premise underlying the notion of secure estimation
presented is that there exists an inherent interplay between
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the quality of estimating X and the quality of isolating the
true model governing the data. Specifically, perfect detection
of an adversary’s attack model is impossible. At the same
time, the estimation quality strongly relies on the successful
isolation of the true data model. Lack of a perfect decision
about the data model is expected to degrade the estimation
quality compared to the attack-free scenario. To quantify
such an interplay as well as the degradation in estimation
quality with respect to the attack-free scenario, we provide
the following definition.

Definition 1 (Estimation Degradation Factor): For a given
estimator V in the attack-free scenario, and a secure estimation
procedure specified by the detection and estimation rules
(δ,U) in the adversarial scenario, we define the estimation
degradation factor (EDF) as

q(δ,U, V ) � J(δ,U)
J0(V )

. (14)

Based on Definition 1, next we define the performance
region, which encompasses all the pairs of decision qualities
q(δ,U, V ) and Pmd(δ) over the space of all possible decision
rules (δ,U, V ).

Definition 2 (Performance Region): We define the perfor-
mance region as the region of all simultaneously achiev-
able estimation quality q(δ,U, V ) and detection performance
Pmd(δ).

Remark 2: We remark that, in principle, the EDF
q(δ,U, V ) lies in the range [0,+∞), i.e., it can fall below 1.
When q(δ,U, V ) ∈ [0, 1), it indicates that the adversary is
in fact improving the estimate. While theoretically viable,
in reality, for an adversary to be able to launch such attacks
we need to impose often unrealistic assumptions. For instance,
consider the widely studied scenario of bad data injection
attacks, according to which the attack-free data Y is related
to the unknown parameter X according to

Y = h(X) + N,

where h accounts for the sensing process, and N is a random
variable accounting for the additive noise. When the adversary
is active, the data model changes to

Y = h(X) + N + Z,

where Z represents the adversary’s injection. For the attack
model to have a better estimation performance than the nom-
inal model, the adversary must counter or even nullify the
noise. That means that the attacker should be aware of the
the instantaneous realization of the noise term N. In this
paper, we focus on the attacks that adhere to the commonly
studied characteristics of the adversarial behavior, where the
objective of the adversary is to degrade the performance of
statistical inference with respect to that in the attack-free
model. Therefore, q(δ,U, V ) measures the degradation in
estimation quality in comparison to the attack-free scenario
and we assume q(δ,U, V ) ∈ [1,∞).

By leveraging the characteristics of the performance region,
next we define the notion of (q, β)-security, which is instru-
mental in defining the secure estimation problem of interest.
For this purpose, note that EDF normalizes the estimation cost

Fig. 2. Performance region.

in the adversarial setting by that of the attack-free scenario.
The two estimation cost functions involved in q(δ,U, V ) can
be computed independently, and as a result, determining their
attendant decision rules can be carried out independently. For
this purpose, we define V ∗ as the optimal decision rule under
the attack-free setting, and J∗

0 as the corresponding estimation
cost, i.e.,

V ∗ � argmin
V

J0(V ), and J∗
0 � min

V
J0(V ). (15)

Definition 3 ((q, β)-Security): An estimation procedure
specified by (δ,U, V ∗) for the adversarial scenario is said
to be (q, β)-secure if the decision rules (δ,U) yield the
minimal EDF among all the decision rules corresponding to
which the average rate of missing the attacks does not exceed
β ∈ (0, 1], i.e.,

q � min
δ,U

q(δ,U, V ∗), s.t. Pmd(δ) ≤ β. (16)

The performance region, and its boundary, which specifies
the interplay between q and β, are illustrated in Fig. 2. Based
on these definitions, we aim to characterize:

1) The region of all simultaneously achievable values of
q(δ,U, V ∗) and Pmd(δ), which is illustrated by the
dashed region in Fig. 2.

2) The (q, β)-secure decision rules (δ,U, V ∗) that
solve (16), and specify the boundary of the performance
region, which is illustrated by a solid line as the bound-
ary of the performance region in Fig. 2.

By noting that q(δ,U, V ∗) = J(δ,U)
J∗
0

, where J∗
0 is a constant,

the performance region and the (q, β)-secure decision rules
are found as the solutions to

Q(β) �
{

minδ,U J(δ,U)
s.t. Pmd(δ) ≤ β . (17)

Solving Q(β) ensures that the likelihood of missing an attack
is confined below β. However, it is insensitive to the rate of
the false alarms that the decision rules generate. In case the
statistician wishes to also control the rate of false alarms, that
is the rate of erroneously declaring an attack while there is no
attack, we can further extend the notion of (q, β)-security as
follows.

Definition 4: An estimation procedure is (q, α, β)-secure if
it is (q, β)-secure and the likelihood of false alarms does not
exceed α ∈ (0, 1].
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The optimal decision rules that yield (q, α, β)-secure deci-
sions can be found as the solution to

P(α, β) =

⎧⎪⎨
⎪⎩

minδ,U J(δ,U)
s.t. Pmd(δ) ≤ β

Pfa(δ) ≤ α
. (18)

Remark 3: It can be easily verified that Q(β) = P(1, β).
Remark 4 (Feasibility): The probabilities Pmd(δ) and

Pfa(δ) cannot be made arbitrarily small simultaneously.
Specifically, from the Neyman-Pearson theory [31], it can
be readily verified that for any given α, there exists a value
β∗(α), which specifies the smallest feasible value for β.
Throughout the paper we assume that the pair (α, β) in (18)
are selected such that P(α, β) has a feasible solution.

We characterize the optimal solution to problems P(α, β)
and Q(β) in closed-forms in Section IV. Close scrutiny of
the optimal decision rules indicates that the complexity of
the rules grows exponentially with the dimension of X , and
the number of coordinates that an adversary can compromise.
We address the scalability issue in Section V. Specifically,
we provide alternative low-complexity decision rules and show
that despite their simple structures, they satisfy asymptotic
optimality guarantees.

Remark 5 (Tradeoff): Note that the inherent tradeoff
between q and β arises from how the combined inference
objectives are formulated in (18). Such interplay often does
not exist in other approaches that face both estimation and
detection decisions. For instance, in the detection-driven esti-
mation approaches, we first form a detection decision. Once
the decision is made, it is treated as a perfectly correct detec-
tion decision, based on which, subsequently, the estimation
decisions are formed. In such approaches, the problem is
decoupled into a detection problem, the objective of which
is classifying the model, followed by an optimal estimation
on the decided model. In these strategies, the estimation
performance is guided by the performance of the detection
rules. Hence, as the quality of detection decisions improve,
the quality of the estimates improves as well, indicating
that the two decision qualities improve simultaneously. In a
sharp contrast, in our approach we form the detection and
estimation decisions in parallel in order to achieve a jointly
optimal performance. Since we do not have a pre-specified
order in making the two decisions, we are not observing that
simultaneous improvements of the decision qualities.

IV. SECURE PARAMETER ESTIMATION:
OPTIMAL DECISION RULES

In this section, we characterize an optimal solution
to the more general problem P(α, β), i.e., the
estimators {X̂i(Y) : i ∈ {0, . . . , T}} and the detectors
{δi(Y) : i ∈ {0, . . . , T}}. We will also specify how these
decision rules can be simplified to characterize the solution
to the problem Q(β) = P(1, β). In order to proceed, we start
by providing the expansion of the decision error probability
terms Pmd(δ) and Pfa(δ) in terms of the data models and

decision rules. By noting (6) and leveraging (7), we have

Pmd(δ) =
T∑

i=1

εi
1− ε0

T∑
j=0
j �=i

∫
Y

δj(Y)fi(Y) dY. (19)

Similarly, by noting (6) and based on (9), we have

Pfa(δ) =
T∑

i=1

∫
Y

δi(Y)f0(Y) dY. (20)

By using the expansions in (19) and (20), the problem of
interest in (18) can be equivalently cast as

P(α, β) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

min
(δ,U)

J(δ,U)

s.t.
T∑

i=1

εi

1−ε0

T∑
j=0
j �=i

∫
Y

δj(Y)fi(Y) dY ≤ β

T∑
i=1

∫
Y

δi(Y)f0(Y) dY ≤ α

.

(21)

The roles of the estimators {Ui(Y) : i ∈ {0, . . . , T}} appear
only in the utility function J(δ,U). This allows for decoupling
the optimization problem P(α, β) into two sub-problems,
as formalized in Theorem 1.

Theorem 1: The optimal secure estimators of X under
different models, i.e., X̂ = [X̂0, . . . , X̂T ] is the solution to

X̂ = argmin
U

J(δ,U). (22)

Furthermore, the solution of P(α, β), and subsequently the
design of the attack detectors, can be found by equivalently
solving

P(α, β) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

min
δ

J(δ, X̂)

s.t.
T∑

i=1

εi

1−ε0

T∑
j=0,j �=i

∫
Y

δj(Y)fi(Y) dY ≤ β
T∑

i=1

∫
Y

δi(Y)f0(Y) dY ≤ α

.

(23)

By leveraging the property that this theorem establishes for
the optimal estimator in (22), and also taking into account the
decoupled structure of the problem P(α, β) in (23), in the
following theorem we provide optimal designs for the secure
estimators. Interestingly, it is shown that the optimal estimator
under each model can be specified by optimizing a relevant
cost function defined exclusively for that model.

Theorem 2 ((q, α, β)-Secure Estimators): For the optimal
secure estimators X̂ we have

1) The minimizer of the estimation cost Ji(δi, Ui(Y)) is
given by

U∗
i (Y) � arg inf

Ui(Y)
Cp,i(Ui(Y) | Y), (24)

in which Cp,i(U(Y) | Y) is the average posterior cost
function defined as

Cp,i(U(Y) | Y) � Ei [C(X,U(Y)) | Y] , (25)
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where the conditional expectation in (25) is with respect
to X under the model Hi.

2) The optimal estimator X̂ = [X̂0, . . . , X̂T ], specified
in (22), is given by

X̂i(Y) = U∗
i (Y). (26)

3) The cost function J(δ, X̂) is given by

J(δ, X̂) = max
i

⎧⎪⎪⎨
⎪⎪⎩

∫
Y

δi(Y)C∗
p,i(Y)fi(Y)dY∫

Y

δi(Y)fi(Y)dY

⎫⎪⎪⎬
⎪⎪⎭ ,

(27)

where we have defined

C∗
p,i(Y) � inf

Ui(Y)
Cp,i(Ui(Y) | Y). (28)

Proof: See Appendix A.
For illustration purposes, in the next corollary, we provide

the closed-forms of these decision rules when the distributions
{fi(· | X) : i ∈ {0, . . . , T}} are all Gaussian.

Corollary 1 [(q, α, β)-Secure Estimators in Gaussian Mod-
els]: When the data models are Gaussian such that

fi(· | X) ∼ N (θi, X), for θi ∈ R , (29)

where the mean values {θi : i ∈ {0, . . . , T}} are distinct, and

X ∼ X−1(ζ, φ), (30)

where X−1(ζ, φ) denotes the inverse chi-squared distribution
with parameters ζ and φ, such that ζ + n > 4, and the cost
C(X,U(Y)) is

C(X,U(Y)) = ‖X − U(Y )‖2, (31)

for the optimal secure estimators X̂ , we have:
1) The minimizer of the estimation cost J(δi, Ui(Y)),

i.e., the estimation cost function under model Hi,
is given by

U∗
i (Y) =

ζφ+
∑n

r=1 ‖Yr − θi‖22
ζ + n− 2

. (32)

2) The optimal estimator X̂ = [X̂0, . . . , X̂T ], specified
in (22), is given by

X̂i(Y) = U∗
i (Y). (33)

3) The cost function J(δ, X̂) is given by

J(δ, X̂) = max
i

⎧⎪⎪⎨
⎪⎪⎩

∫
Y

δi(Y)C∗
p,i(Y)fi(Y)dY∫

Y

δi(Y)fi(Y)dY

⎫⎪⎪⎬
⎪⎪⎭ ,

(34)

where we have

C∗
p,i(Y) =

2
(
ζφ+

∑n
r=1 ‖Yr − θ1‖2

)2
(ζi + n− 2)2(ζ + n− 4)

. (35)

Next, given the optimal estimators X̂, we characterize
the optimal detection rules. The main observation is that
even though we started by considering general randomized
decision rules, these rules in their optimal forms reduce to
deterministic ones. Furthermore, the decisions rules depend on
the estimation costs that are computed based on the optimal
estimation costs. These estimation costs make the decisions
coupled. In order to proceed, we first show that problem
P(α, β) in (23) can be solved by leveraging the result of
the following theorem, which specifies an auxiliary convex
problem in a variational form.

Theorem 3: For any arbitrary u ∈ R+, we have P(α, β) ≤
u if and only if R(α, β, u) ≤ 0, where we have defined

R(α, β, u) �⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minδ η

s.t.
∫
Y

δi(Y)fi(Y)[C∗
p,i(Y)− u] dY ≤ η, ∀i

T∑
i=1

εi
1− ε0

T∑
j=0
j �=i

∫
Y

δj(Y)fi(Y) dY ≤ β + η

T∑
i=1

∫
Y

δi(Y)f0(Y) dY ≤ α+ η

.

(36)

Furthermore, R(α, β, u) is convex, and R(α, β, u) = 0 has a
unique solution in u, which we denote by u∗.

Proof: See Appendix B.
The point u∗ has a pivotal role in specifying the

optimal detection decision rules. We define the constants
{�i : i ∈ {0, . . . , T + 2}} as the dual variables in the Lagrange
function associated with the convex problem R(α, β, u∗).
Given u∗ and {�i : i ∈ {0, . . . , T + 2}}, the optimal detection
rules can be characterized in closed-forms, as specified in the
following theorem.

Theorem 4 ((q, α, β)-Secure Detection Rules): The
optimal decision rule for isolating the compromised
coordinates is given by

δi(Y) =

{
1, if i = i∗

0, if i �= i∗
, (37)

where we have defined

i∗ � argmin
i∈{0,...,T}

Ai. (38)

Constants {A0, . . . , AT } are specified by the data
models, u∗, and its associated Langrangian multipliers
{�i : i ∈ {0, . . . , T + 2}}. Specifically, we have

A0 � �0f0(Y)[C∗
p,0(Y) − u∗] + �T+1

T∑
i=1

εi
1− ε0 fi(Y),

(39)

and for i ∈ {1, . . . , T}, we have

Ai � �ifi(Y)[C∗
p,i(Y) − u∗]

+ �T+1

T∑
j=1,j �=i

εj
1− ε0 fj(Y) + �T+2f0(Y). (40)
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Proof: See Appendix C.
In the next corollary, we provide the closed-forms of

these decision rules when the distributions {fi(· | X) :
i ∈ {0, . . . , T}} are all Gaussian.

Corollary 2 ((q, α, β)-Secure Detection Rules in Gaussian
Models): When the data models {fi(· | X) : i ∈ {0, . . . , T}}
have the following Gaussian distributions

fi(· | X) ∼ N (θi, X), for θi ∈ R, (41)

where the mean values are distinct, and

X ∼ X−1(ζ, φ), (42)

the optimal decision rule for isolating the compromised coor-
dinates is given by

δi(Y) =

{
1, if i = i∗

0, if i �= i∗
, (43)

where we have defined

i∗ � argmin
i∈{0,...,T}

Ai. (44)

Constants {A0, . . . , AT } are specified by the data
models, u∗, and its associated Langrangian multipliers
{�i : i ∈ {0, . . . , T + 2}}. Specifically, we have

A0 � �0f0(Y)(C∗
p,0(Y)− u∗) + �T+1

T∑
i=1

εi
1− ε0 fi(Y),

(45)

and for i ∈ {1, . . . , T} we have

Ai � �ifi(Y)(C∗
p,i(Y)− u∗)

+ �T+1

T∑
j=1
j �=i

εj
1− ε0 fj(Y) + �T+2f0(Y). (46)

When the cost function C(X,U(Y)) is the mean squared error
cost, and C∗

p,i(Y) is evaluated using (35), we obtain

fi(Y) =
(ζφ)

ζ
2

(ζφ +
∑n

r=1 ‖Yr − θi‖2) ζ+n
2

· Γ(ζ + n)
2π

n
2 Γ(ζ/2)

. (47)

By setting T = 1, n = 1, θ0 = 0, θ1 = 2, and selecting
ζ = 4, φ = 1, Fig. 3 depicts the performance region and
the associated (q, β)-security curve, which shows the tradeoff
between the quality of the detection and the degradation in
the estimation quality. It is noteworthy that this tradeoff is
inherently due to the formulation of the secure estimation
problem. Essentially, problem P(α, β) as specified in (18),
is designed to trade the quality of detection in favor of
improving the estimation cost.

Based on all the decision rules specified in the section and
the detailed steps of specifying the parameters involved in
characterizing the decision rules, we provide Algorithm 1 to
summarize all the steps for solving P(α, β) for any feasible
pair of α and β.

Fig. 3. Performance region for the Gaussian data model.

Algorithm 1 Solving P(α, β)
1: input α and β and evaluate β∗(α)
2: if β < β∗(α) then
3: P(α, β) not feasible for given choice of α and β
4: break
5: else
6: Initialize u0 = 0, u1

7: Evaluate optimal posterior estimation costs in (28)
8: repeat
9: û← (u0 + u1)/2

10: for every �̂ � 0 in the discretized space ‖�̂‖1 = 1
do

11: Compute δ from Theorem 4
12: Compute M(�̂) � R(α, β, û)
13: end for
14: if min�̂ M(�̂) ≤ 0 then
15: u1 ← û
16: �← �̂
17: else
18: u0 ← û
19: end if
20: until u1 − u0 ≤ ε, for ε sufficiently small
21: P(α, β)← u∗ = u1

return Decision rules δ
22: end if

V. SCALABLE SECURE PARAMETER ESTIMATION

As the data dimension m grows, the number of possible
data models T grows exponentially. This, subsequently, leads
to an exponential growth in the complexity of forming the
decision rules, e.g., the number of Lagrangian multipliers
needed for characterizing the detection rules scales linearly
in T . This can render Algorithm 1 computationally prohibitive.
In order to circumvent the computational complexity, in this
section, we design a scalable approach to secure estimation
that exhibits optimality properties too. The core idea is to
break down the problem into m coordinate-level problems,
treat them individually, and then aggregate the individual deci-
sions. Specifically, the decisions involve a high-level binary
decision about whether the data is compromised. If the data
is deemed to be compromised, then each coordinate is tested
individually, and an estimate of X is formed based on the
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data of that coordinate. Individual coordinate-level estimates
are then tested for reliability, and combined to form an
aggregate estimate for X . Since we need to perform only
m single-coordinate binary detection decisions followed by
forming a coordinate-level estimation routine, the compu-
tational complexity scales only linearly in the number of
coordinates m, as opposed to exponentially for forming the
optimal decision rules.

A. Binary Attack Detection

In the first stage, we perform a binary test to detect whether
the data is compromised at all. This is carried out by solving
a binary composite hypothesis testing problem given by

Ĥ0 :Y ∼ f(Y | X), with X ∼ π(X)

Ĥ1 :Y ∼ f̂(Y | X), with X ∼ π(X), (48)

where Ĥ0 is the hypothesis corresponding to the attack-free
setting, and Ĥ1 signifies to the presence of an attack. Proba-
bility distribution f̂ is a mixed distribution given by

f̂(Y) � 1
1− ε0

T∑
i=1

εifi(Y). (49)

Similarly to the optimal approach of Section IV,
to design the decision rules we define the randomized
test δ̂ � [δ̂0(Y), δ̂1(Y)], in which δ̂i(Y) ∈ [0, 1] is the
probability of deciding in favor of Ĥi, and we have
δ0(Y) + δ1(Y) = 1. Furthermore, define Dd ∈ {Ĥ0, Ĥ1}
and Td ∈ {Ĥ0, Ĥ1} as the decision and the true hypotheses.
Hence, the false alarm rate is given by

P(Dd = Ĥ1 | Td = Ĥ0) =
∫
δ̂1(Y)f(Y) dY, (50)

and the miss-detection rate is given by

P(Dd = Ĥ0 | Td = Ĥ1) =
∫
δ̂0(Y)f̂(Y) dY. (51)

Since our objective is to maximize the true detection rate
(or minimize (51)), in the first step, we design the decision
rule δ̂ using the Neyman-Pearson approach. Following the
Neyman-Pearson approach, as noted in Remark 4, we have
the following decision rules [31].

Theorem 5 (Attack Detection): The optimal attack detec-
tion rule that minimizes the rate of missing the attacks subject
to a constraint on the rate of false alarms is given by

δ̂0(Y) = �� f̂(Y)
f(Y) <γ

� + (1− �) · �� f̂(Y)
f(Y) =γ

�, (52)

δ̂1(Y) = �� f̂(Y)
f(Y) >γ

� + � · �� f̂(Y)
f(Y) =γ

�, (53)

where the threshold γ and the probability term � are chosen
such that the false alarm constraint is satisfied with equality.

B. Isolating Compromised Coordinates

The outcome of the binary detection rule in Section V-A
is deciding whether there exists an attack in the data. If an
attack is deemed to exist, in the second step, we carry out
an isolation decision, the role of which is identifying the

compromised coordinates. In this subsection, we start by
analyzing the optimal isolation rules when an attack is deemed
to exist in Section V-B1, and characterize the performance
of the optimal decision rules. This analysis will serve as a
baseline for comparing the performance of any alternative
low-complexity isolation rule. Finally, we provide an isolation
rule in Section V-B2 that has low complexity and achieves the
optimal performance asymptotically, as the data size n grows.

1) Optimal Isolation Rule: If the attack detection rules
specified by (52)-(53) determine that the data in one or more
coordinates are compromised, in the next step we aim to
identify the compromised coordinates. Isolating the set of com-
promised coordinates is equivalent to solving the following
T -hypothesis testing problem.

Hi :Y ∼ fi(Y |X), with X ∼ π(X) (54)

for i ∈ {1, . . . , T}. Define Dis ∈ {H1, . . . ,HT } and
Tis ∈ {H1, . . . ,HT } as the decision formed and the true
hypothesis, respectively. We define the randomized test
δ̂1(Y) � [δ̂11(Y), . . . , δ̂1T (Y)] for discerning the correct
decision Dis, where we have defined δ̂1i(Y) ∈ [0, 1] as the
probability of deciding in favor of Ĥi. Accordingly, we define
Pis(δ̂1) as the probability of making an erroneous decision on
the problem in (54), given that the decision in the detection
step was Ĥ1. Therefore, Pis(δ̂1) is given by

Pis(δ̂1) � P(Dis �= Tis | Dd = Ĥ1) (55)

=
T∑

i=1

T∑
j=1,j �=i

P(Dis = Hj | Tis = Hi, Dd = Ĥ1)

× P(Tis = Hi | Dd = Ĥ1). (56)

We also denote the error exponent of Pis(δ̂1) as the number
of the samples n grows according to (when the limit exists)

ψ(δ̂1) � − lim
n→∞

log Pis(δ̂1)
n

. (57)

In the next theorem, we characterize the optimal decision
rule δ̂1 and the associated error exponent. For this purpose,
we denote the Chernoff information between two probability
measures with probability density functions g and h by

C(g, h) � − log min
α∈(0,1)

∫
gα(x)h1−α(x) dx. (58)

Theorem 6: The decision rule δ̂1 that minimizes Pis(δ̂1) is
given by

δ̂1i(Y) =

{
1, if i = i∗

0, if i �= i∗
, (59)

where

i∗ = arg max
j∈{1,...,T}

fj(Y)P(Tis = Hj | Td = Ĥ1). (60)

Proof: See Appendix D.
Note that the optimal decision rules will have the same

computational complexity as the optimal rules characterized
in Theorem 4.
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2) Asymptotically Optimal Isolation Rule: The optimal
decision rule in Theorem 6 has similar drawbacks in terms of
computational complexity in high dimensions as the optimal
decision rules discussed in Section IV. In this subsection,
we provide an alternative isolation rule for discerning the
compromised coordinates at a lower computational complex-
ity, and show that this rule is optimal in the asymptote
of large number of samples, n. We denote the alternative
low-complexity decision rule by δ̄1 and start by providing
lower and upper bounds on Pis(δ̄1), and show that these
bounds have the same error exponents. To specify a lower
bound, we first leverage the fact that Pis(δ̂1) ≤ Pis(δ̄1), which
is true due to the optimality of Pis(δ̂1), and define Pis(X, δ̄1)
as the value of Pis(δ̄1) when the unknown parameterX is fully
known (e.g., provided by a genie). Clearly, when X is fully
known, the error probability decreases, as part of the model
uncertainty due to the unknown parameter is removed, and
the decision problem reduces to a purely detection problem.
To specify the upper bound on Pis(δ̄1), we define Pis(Xc, δ̄1)
as the value of Pis(δ̄1) when X is assumed to take an arbitrary
value Xc ∈ R

p. Note that replacing X by some arbitrarily
chosen Xc induces sub-optimality compared to the optimal
case in which optimal estimation is performed. The following
lemma specifies the bounds on Pis(δ̄1).

Lemma 1: There exists some Xc ∈ R
p, such that

Pl
is � Pis(X, δ̂1) ≤ Pis(δ̂1) ≤ Pis(δ̄1) ≤ Pu

is � Pis(Xc, δ̄1).
(61)

This lemma is instrumental to establishing the error expo-
nent of the alternative low-complexity decision rule that we
will provide. To proceed, corresponding to each coordinate
l ∈ {1, . . . ,m} we define the likelihood ratio term

LRl(Y) �
n∏

r=1

g1
l (Yr(l))
g0

l (Yr(l))
, (62)

where g0
l and g1

l denote the marginal pdfs of the data at
coordinate l ∈ {1, . . . ,m} under the attack-free setting and
when the coordinate is compromised, respectively. In the next
theorem, we show that a decision rule based on calculating
these likelihood ratio terms suffices to reach a decision that
achieves the same error exponent as the optimal decision rule
specified in (55).

Theorem 7: The isolation rule

δ̄1i(Y) =

{
1, if i = i∗

0, if i �= i∗
, (63)

in which we have defined

i∗ = argmax
i∈{1,...T}

∏
v∈Si

LRv(Y), (64)

has the following error exponent

ψ(δ̄1) = min
i�=j∈{1,...,T}

C(fi, fj), (65)

which is equal to ψ(δ̂1), i.e., the error exponent of the optimal
rule.

Proof: See Appendix E.

Therefore, the error probabilities corresponding to the opti-
mal decision rule in Theorem 6 and the low-complexity
alternative rule in Theorem 7 decay at the same rate with the
increasing number of samples n, rendering the decision rule in
Theorem 7 asymptotically optimal. Clearly, the decision rule
based on the marginal likelihood ratios significantly reduces
the computational complexity for isolating the attacked coor-
dinates. In the next subsection, we discuss how the attack
detection and coordinate isolation decisions characterized so
far are leveraged for forming an estimate of X .

C. Coordinate-Based Secure Estimation

The decision rules in Section V-A and Section V-B pro-
duce decisions about whether each individual coordinate is
compromised. In the third stage of the decisions, we form
one estimate of X based on all the n samples available at
each coordinate. This leads to forming m distinct estimates
for X , one corresponding to each coordinate. Clearly, not all
the estimates are equally reliable, especially when some of the
coordinates are compromised. For this purpose, after forming
the m estimates we perform a reliability test, the purpose of
which is discarding the unreliable estimates and retaining and
aggregating the reliable ones. We provide relevant estimation
cost functions in Section V-C1, and characterize the reliability
test in Section V-C2.

1) Cost Functions: Based on the sequence of the data points
at each coordinate, we form an estimate of X corresponding
to each coordinate, resulting in m distinct estimates for X .
Clearly, different coordinates produce estimates of X with
potentially different qualities. Motivated by the fact that the
decisions formed in the previous steps are not perfect and a
coordinate might yield an unreliable estimate for X , we con-
sider performing a reliability test on the decision produced at
each coordinate. For this purpose, at each coordinate l and
based on the data available at coordinate l, which we denote
by Yl, we perform a binary test to decide whether the estimate
based on the data from coordinate l is reliable or unreliable,
denoted by Hr

l and Hu
l , respectively.

We define Dr
l ∈ {Hr

l,H
u
l } as the decision formed about

the reliability of the estimate, and let the randomized test
δ̄l(Yl) = [δ̄r

l(Yl), δ̄u
l (Yl)] be the decision rule to decide

upon the reliability of the estimate from coordinate l, where
δ̄r
l(Yl) is the probability of deciding in favor of Hr

l and δ̄u
l (Yl)

is the probability of deciding in favor of Hu
l . Furthermore,

we define δl(Y) � [δ0l (Yl), δ1l (Yl)], where δ1l (Yl) denotes
the probability of coordinate l being compromised based on
data Y and the decision rules in Section V-A and Section V-B,
and subsequently, δ0l (Yl) = 1−δ1l (Yl). Hence, the likelihood
of forming a reliable estimate at coordinate l given that we
have decided that coordinate l is not compromised is given by

P0(Dr
l = Hr

l) =
∫
δ0l (Yl)δ̄r

l(Yl)g0
l (Yl)dYl. (66)

Similarly, the likelihood of forming a reliable estimate at
coordinate l given that we have decided that coordinate l is
compromised is given by

P1(Dr
l = Hr

l) =
∫
δ1l (Yl)δ̄r

l(Yl)g1
l (Yl)dYl. (67)

Authorized licensed use limited to: Rensselaer Polytechnic Institute. Downloaded on January 10,2021 at 15:00:44 UTC from IEEE Xplore.  Restrictions apply. 



5156 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 8, AUGUST 2020

Furthermore, consider U0
l and U1

l as the estimates of X at
coordinate l when we have decided that the coordinate is
attack-free and compromised, respectively. Hence, the cost
associated with U j

l when the decision of the reliability test
is Hr

l is defined as

Jj
l (δj

l , δ̄
r
l , U

j
l )

� Ej [C(X,U j
l ) | Dr

l = Hr
l] (68)

=

∫ ∫
δj
l (Yl)δ̄r

l(Yl)C(U j
l , X)gj

l (Yl | X)π(X)dXdYl∫ ∫
δj
l (Yl)δ̄r

l(Yl)g
j
l (Yl | X)π(X)dXdYl

(69)

=

∫
δj
l (Yl)δ̄r

l(Yl)C
j
l (U

j
l | Yl)g

j
l (Yl)dYl∫

δl
j(Yl)δ̄r

l(Yl)g
j
l (Yl)dYl

, (70)

where Cj
l (U

j
l | Yl) is the posterior estimation cost at coordi-

nate l. We define the optimal average estimation cost as

Ĉj
l (Yl) � min

Uj
l

Cj
l (U

j
l | Yl), (71)

and the optimal coordinate-level estimators as

X̂j
l (Yl) � argmin

Uj
l

Cj
l (U

j
l | Yl). (72)

2) Reliability Decision Rules: For the probabilities of form-
ing a reliable estimate at coordinate l defined in (66) and (67)
we have

Pj(Dr
l = Hr

l) =
∫
δj
l (Yl)δ̄r

l(Yl)g
j
l (Yl)dYl, (73)

≤
∫
δj
l (Yl)g

j
l (Yl)dYl (74)

= ρj
l , (75)

where (1 − ρ0
l ) and (1 − ρ0

l ) are the Type-I and Type-II
probabilities of mis-classifying the status of coordinate l.
Therefore, the probability of forming a reliable estimate, when
coordinate l is deemed to be compromised or attack-free is
upper bounded by ρ1

l and ρ0
l , respectively. This implies that

only a fraction of the decisions on the true model of data
at coordinate l will provide reliable estimates. We wish to
have decision rules that control the fraction of the reliable
estimates to be beyond a pre-specified level. Obviously, these
desired levels should also be within the feasible range. For this
purpose, we select νj

l ∈ [0, ρj
l ], and impose a lower bound on

the fraction of the reliable estimates that the reliability test
retains according to

Pj(Dr
l = Hr

l) ≥ νj
l . (76)

Based on the cost functions and decision constraints, the deci-
sion rules δ̄l and the estimators U j

l are determined by solving
m problems in parallel, where the problem to be solved
corresponding to coordinate l is given by

S(νj
l ) �

{
minδ̄l,U

j
l
Jj

l (δj
l , δ̄

r
l , U

j
l )

s.t. Pj(Dr
l = Hr

l) ≥ νj
l

. (77)

Similar to the discussion in Section IV, since the effect of the
estimators U j

l appears only in the cost function Jj
l (δj

l , δ̄
r
l , U

j
l ),

the optimization problem in (77) can be decoupled into two
subproblems as formalized in the following theorem.

Theorem 8: For given ν0
l and ν1

l , the optimal decision rules
for the problems S(ν0

l ) and S(ν1
l ) are given by

Ĉ0
l (Yl)

Hu
l

≷
Hr

l

γ0
l if coordinate l is deemed attack-free (78)

Ĉ1
l (Yl)

Hu
l

≷
Hr

l

γ1
l if coordinate l is deemed compromised,

(79)

where γ1
l and γ0

l are selected such that the constraints in (77)
are satisfied with equality. The optimal estimate that solve
S(ν0

l ) and S(ν1
l ) are the estimators X̂0

l (Yl) and X̂1
l (Yl),

respectively, defined in (72).
Proof: See Appendix F.

For given data Y, performing the reliability test in
Theorem 8 retains the estimates deemed reliable. These esti-
mates, subsequently, can be aggregated to form a single
estimate for X . The estimation approach, which consists of
global binary attack detection, followed by coordinate-level
isolation of compromised coordinates and local estimates,
and completed by aggregating the reliable coordinate-level
estimates, renders a scalable approach to the secure estimation
of interest. This approach is significantly less complex as
compared to the optimal estimation rules characterized in
Theorem 2.

We remark that there exist extensive studies on optimal
fusion and aggregation of local decisions, especially for
inference objectives, studied under different taxonomies (e.g.,
distributed estimation). While there is a no general unified
theory for optimal aggregation, there exist a broad range of
solutions for specific choices of the statistical models and
the cost functions with varying degrees of optimality [32].
Representative approaches in the context of sensor networks
include [33]–[36], which focus on linearized data models.
In these approaches the measurement in each coordinate
is a linear combination of the coordinates in X , and they
are contaminated by additive Gaussian noise. Specifically,
the study in [33] focuses on networks with star topologies
and provides an optimal fusion and aggregation strategy. The
study in [34] focuses on these settings in which the distribution
of the unknown parameter X is bounded, and provides an
optimal fusion strategy. The studies in [35] and [36] discuss
the optimal fusion strategies for linearized data models under
the assumptions of non-Gaussian distributions for the additive
noise. Specifically, [35] adopts an entropy-based cost function,
and [36] adopts the absolute error as its estimation cost
function. The fusion strategies in [33]–[36] can be readily
adopted in our framework for a linearized data model under
their respective assumptions on the noise distribution and
choice of cost function. Furthermore, study in [37] proposes
a consensus-based estimation strategy to form an estimate
that minimizes the mean squared error for any general data
model with no assumption on the noise model. The estima-
tion strategy in [37] can also be adopted in our framework
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by selecting a mean squared error cost function, using the
locally formed estimates to select the reliable coordinates and
then adopting a consensus-based strategy to form the final
estimate by repeated rounds of information exchange among
the reliable coordinates.

Algorithm 2 Scalable Solution to P(α, β)
1: Input feasible ν0

l and ν1
l for all coordinates l

2: Binary attack detection by (52)-(53)
3: if Attack exists then
4: Isolate the true model by (63)
5: end if
6: Form coordinate-level estimates by (72)
7: Coordinate-level reliability tests by (78)-(79)
8: Aggregate the reliable coordinate-level estimates to form

the final estimate

Finally, we also briefly comment on the applicability of
the scalable secure estimation framework to the setting with
multiple attack models per attack scenario, i.e., when the
space Fi is not a singleton. Earlier we discussed that as
the number of attack models per attack scenario increases,
the optimal decision rules can be generalized readily, and
as long as the models {f1, . . . , fT } are fully specified,
the pertinent analysis remains intact. For the scalable solution
(Algorithm 2), however, the structure of the solution will be
impacted. Specifically, when we have multiple attack models
per attack scenario, the marginal distribution of the data at
each coordinate may have more than one alternative models
under the attack, i.e., the decision to select the true model
at every coordinate may no longer be binary. In such set-
tings, the decision rules in the binary attack detection step,
the optimal isolation rule to select the true model when
the data is deemed to be compromised, and the reliability
decision rules on the estimates formed at each coordinate
remain fundamentally similar with straightforward changes
to accommodate the additional number of attack models
per coordinate. However, the structure of the low-complexity
decision rule must be altered. Specifically, multiple likelihood
ratio terms defined in (62) must be evaluated corresponding to
all possible attack models at each coordinate and the maximum
of the products of the likelihood ratio terms corresponding
to all possible combinations of compromised coordinates and
their attack models determines the true model for Y. The
asymptotic optimality of this low-complexity decision rule can
be established using similar technical arguments as in the proof
of Theorem 7.

VI. CASE STUDIES: SENSOR NETWORKS

We use the example of a sensor network consisting of two
sensors and a fusion center (FC) to evaluate the estimation
frameworks presented in this paper. Each sensor is collecting
a stream of data. Sensor i ∈ {1, 2} collects n measurements,
denoted by Yi = [Y i

1 , . . . , Y
i
n], where each sample Y i

j ∈ R in
an attack-free environment is related to X according to

Y i
j = hiX +N i

j , (80)

where hi models the channel connecting sensor i to the FC and
N i

j accounts for an additive noise. Different noise terms are
assumed to be independent and identically distributed (i.i.d.)
generated according to a known distribution. We will consider
two adversarial scenarios that impact the data model in (80),
and evaluate the optimal performance as well as the application
of the asymptotically optimal scalable algorithm when the
number of the samples n tends to infinity.

A. Case 1: One Sensor Vulnerable to Causative Attacks

We start by considering an adversarial setting in which
the data model of the measurements from only one sensor
(sensor 1) are vulnerable to a causative attack, while the other
sensor (sensor 2) remains attack-free. Under such a setting,
we have only one attack scenario, i.e., T = 1 and S1 = {1}.
Accordingly, we have ε0 + ε1 = 1. Under the attack-free
scenario, we assume that the noise terms N i

j are i.i.d. and
distributed according to N (0, σ2

n), i.e.,

Y i
j | X ∼ N (hiX,σ2

n). (81)

When data from sensor 1 is compromised, the actual condi-
tional distribution of Y 1

j |X is distinct from the above distribu-
tion assumed by the statistician. The inference objective under
such a setting, in principle, becomes similar to the adversarial
setting of [2], which focuses on a data injection attack. Hence,
in order to be able to compare the performance of the optimal
framework with that of [2], we assume that the conditional
distribution of Y 1

j |X when sensor 1 is under a causative
attack is N (hiX,σ2

n) ∗ Unif[a, b], where a, b ∈ R are fixed
constants and ∗ denotes convolution. The convolution between
the normal distribution and the attack uniform distribution can
be implemented as a uniform random shift of the mean of the
normal distribution. Therefore, the composite hypothesis test
for estimating X and discerning the model in (4) simplifies to
the following binary test with the prior probabilities ε0 and ε1,
in which we have defined Y � [Y1,Y2].

H0 :Y ∼ f0(Y | X), with X ∼ N (0, σ2)
H1 :Y ∼ f1(Y | X), with X ∼ N (0, σ2), (82)

Figure 4 depicts the variations of the estimation quality,
captured by q, versus the tolerable miss-detection rate β,
where it is observed that the estimation quality improves
monotonically as β increases, and it reaches its maximum
quality when β = 1. This observation is in line with what
is expected analytically from the formulation of the secure
parameter estimation problems in (17) and (18).

A similar setting is studied in [2], where the attack is
induced additively into the data of sensor 1 and can be any
real number. This setting can be studied in the context of
causative attacks where the attacker’s mode of compromising
the data is adding a disturbance that has a uniform distribution.
Therefore, our secure estimation framework can be applied
in the context of data injection attacks as well. Figure 4
compares the estimation quality of the methodology developed
in this paper, with that obtained by applying the methodology
of [2], which characterizes a single point in the (q, β) plane.
Specifically, in [2], an estimator is designed to obtain the most
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Fig. 4. q versus β for fixed α∗ = 0.1.

robust estimate by exploring the dependence of the estimation
quality on the false alarm probability, using which an optimal
false alarm probability α∗ is obtained. This in turn, fixes
the miss-detection error probability, and does not provide the
flexibility to change the miss-detection rate β.

The results presented in Fig. 4 correspond to σ = 3, σn = 1,
h1 = 1, h2 = 4, a = −40, and b = 40. The upper bound
on Pfa is set to α∗ = 0.1, where α∗ is obtained using the
methodology in [2].

B. Case 2: Both Sensors Vulnerable to Causative Attacks

We again consider the same model for X , and in this setting,
we assume that data from both the sensors are vulnerable to
being compromised. We assume that the attacker can compro-
mise the data of at most one sensor at any instant. Under such
a setting, we have T = 2, S1 = {1}, and S2 = {2}. Therefore,
under the adversarial setting, the sensor measurements follow
the following composite hypothesis model

H0 :Y ∼ f0(Y | X), with X ∼ π(X)
H1 :Y ∼ f1(Y | X), with X ∼ π(X)
H2 :Y ∼ f2(Y | X), with X ∼ π(X), (83)

where H0 corresponds to the attack-free setting, and hypothesis
Hi corresponds to the data of sensor i being compromised.
Motivating by the fact that the sensor with the higher gain hi

is expected to generate a better estimate, we explore a scenario
in which the sensor with the higher gain is more likely to be
attacked. Hence, we select the parameters h1 = 1, and h2 = 2,
and set the probabilities (ε0, ε1, ε2) = (0.2, 0.2, 0.6). We set
the distribution of X to Unif[−2, 2]. We assume that Y i

j , for
i ∈ {1, 2}, given X , is distributed according to N (hiX, 1)
in the attack-free setting. When sensor i is compromised,
we assume that Y i

j | X ∼ N (hiX, 5) for i ∈ {1, 2}.
Figure 5 depicts the performance region defined in Fig. 2

for three different values of α. These regions are the feasible
regions of operation for secure estimation. This provides the
FC with the flexibility to adjust the emphasis on each of the
estimation or detection decisions. As expected, the estimation
quality improves monotonically as α and β increase.

The proposed secure estimation framework evaluates the
optimal detection and estimation rules that minimize q, and the

Fig. 5. q versus β for different values of α.

Fig. 6. Decision boundaries for MAP detection and optimal detection rules.

resulting detection rules are different from the ones that focus
on minimizing the detection error rate without regards for the
estimation quality. These methods include Neyman-Pearson
based tests (e.g., GLRT). This is also illustrated by our
experiments on the setting described in (83) for one sample
collected per sensor. To highlight this difference, in Fig. 6 we
depict the decision rules in two different settings. Figure 6
plots the decision regions for (1) a maximum-a-posteriori
(MAP) detection rule that minimizes the detection error in
detecting the true model from H0, H1 and H2, and (2) the
optimal detection rules δ that minimize the degradation factor
q(δ, U, V ) when one sample is collected per sensor. Clearly,
the detection rules that minimize q are distinct from the ones
that minimize the true model detection error. In both cases,
when (Y1, Y2) fall in the blue region, we decide in the favor
of H0, when they fall in the yellow region or green region,
we decide in the favor of H1 or H2, respectively.

C. Case 3: Scalable Secure Parameter Estimation Framework

We compare the estimation performance from the scal-
able approach developed in Section V and the optimal
approach. To start, we illustrate the asymptotic optimality of
the decision rule proposed in Theorem 7. Consider a 2-sensor
network, where the measurements of at least one sensor are
compromised at any instant. The measurements of the sensors
follow a similar model as described in (80). Assuming that the
parameter X ∼ N (0, σ2), Y i

j given X is distributed according
to N (hiX,σ2

1) under the attack-free scenario and according to
N (hiX,σ2

2) when sensor i is compromised. We illustrate the
variations of − log(Pis(δ̄1)) versus the number of observations

Authorized licensed use limited to: Rensselaer Polytechnic Institute. Downloaded on January 10,2021 at 15:00:44 UTC from IEEE Xplore.  Restrictions apply. 



SIHAG AND TAJER: SECURE ESTIMATION UNDER CAUSATIVE ATTACKS 5159

Fig. 7. − log(Pis(δ̄1)) versus number of observations at each sensor.

TABLE I

COMPARISON OF ESTIMATION PERFORMANCE FROM OPTIMAL
DECISION RULES AND HEURISTIC APPROACH

at each sensor in Fig. 7. For the results in Fig. 7, we set
h1 = 1, h2 = 4, σ2 = 4, σ2

1 = 2, and σ2
2 = 6. The

error probabilities corresponding to both decision rules decay
exponentially at the same rate with the increase in number of
observations at each sensor.

In order to compare the performance of the scalable secure
estimation framework with that of the optimal framework,
we choose ν0

l and ν1
l , for l ∈ {1, 2}, according to the steps

described in Algorithm 2. We aggregate the reliable local
estimates to form an optimal linear estimate at the FC using
the fusion strategy for sensor networks with star topology
in [33]. The decision on the reliability of the estimate is
formed using the decision rules in Theorem 8, following which
the local linear estimates from the sensors deemed to provide
reliable estimates are aggregated at the FC. To compare with
the estimation degradation factor q for an optimal framework,
we evaluate the estimation degradation factor for the scalable
secure estimation framework and denote it by q̂. The estima-
tion performances for the scalable framework and the optimal
decision rules are compared in the following table:

For the results presented in Table I, we have set
h1 = h2 = 1. We assume that the parameter X is distributed
according to N (0, 3), N i

j is distributed according to N (0, 1)
under the attack-free scenario, and according to N (0, 1) ∗
Unif[−10, 10] when data from sensor i is compromised.
As expected, the optimal decision rules result in superior
estimation quality as compared to that obtained from the
scalable framework, i.e., q̂ > q.

VII. CONCLUSION

We have formalized and analyzed the problem of secure
parameter estimation under the potential presence of causative
attacks on the estimation algorithm. Under causative attacks,

the information of the estimation algorithm about the statistical
model of the sampled data is compromised. This leads the
estimation algorithm to exhibit degraded performance com-
pared to the attack-free setting. We have provided closed-form
optimal decision rules that ensure the best estimation quality
(minimum estimation cost) while controlling the error in
detecting the attacks and isolating the true model of the
data. We have shown that the design of optimal estimators is
intertwined with the detection rules for deciding upon the true
model of the data. Based on this, we have designed the optimal
decision rules, which combine both estimation performance
and detection power. Based on this vision, the decision-maker
can place any desired emphasis on the estimation and detection
routines involved. We have also provided case studies by
applying the theory developed to sensors networks, where
sensors face security vulnerabilities. Finally, to circumvent
the computational complexity associated with growing the
data dimension or attack complexity, we have provided a
low-complexity secure estimation algorithm that is optimal in
the asymptote of large data size.

APPENDIX A
PROOF OF THEOREM 2

From (11) we have

Ji(δi, Ui)=E [C(X,Ui(Y)) |D=Hi]

=

∫
Y

∫
X

δi(Y)C(X,Ui(Y))fi(Y |X)π(X)dXdY∫
Y

δi(Y)fi(Y)dY
.

Using the definition of Cp,i(Ui(Y) | Y) from (25), we find
the following lower bound on Ji(δi, Ui(Y))

Ji(δi, Ui) =

∫
Y

δi(Y)Cp,i(Ui(Y) | Y)fi(Y)dY∫
Y

δi(Y)fi(Y)dY

≥

∫
Y

δi(Y) inf
Ui(Y)

Cp,i(Ui(Y) | Y)fi(Y)dY∫
Y

δi(Y)fi(Y)dY
,

(84)

which implies that

Ji(δi, Ui) ≥

∫
Y

δi(Y)C∗
p,i(Y)fi(Y)dY∫

Y

δi(Y)fi(Y)dY
. (85)

Based on the definition of X̂i(Y) provided in (24), this lower
bound is clearly achieved when the estimator is selected as

X̂i(Y) = arg inf
Ui(Y)

Cp,i(Ui(Y) | Y), (86)

which proves that the estimator characterized in (24) is an
optimal estimator that minimizes the cost Ji(δi, Ui). The
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corresponding minimum average estimation cost is

Ji(δi, X̂i) =

∫
Y

δi(Y)C∗
p,i(Y)fi(Y)dY∫

Y

δi(Y)fi(Y)dY
. (87)

Next, we prove that

max
i

min
U
{Ji(δi, Ui)} = min

U
max

i
{Ji(δi, Ui)} . (88)

Recall from (12) that the overall estimation cost J(δ,U) is
defined as

J(δ,U) = max
i
{Ji(δi, Ui)} . (89)

Define C(Ω, δ,U) as a convex function of
Ji(δi, Ui), i ∈ {0, . . . , T}, given by

C(Ω, δ,U) �
T∑

i=0

ΩiJi(δi, Ui), (90)

where Ω = [Ω0, . . . ,ΩT ], and Ωi satisfy
T∑

i=0

Ωi = 1, and Ωi ∈ [0, 1]. (91)

We can represent J(δ,U) as a function of C(Ω, δ,U) in the
following form

J(δ,U) = max
Ω
C(Ω, δ,U).

Let Ω∗ = {Ω∗
j : j = 0, . . . , T} be defined as

Ω∗ � arg max
Ω
C(Ω, δ,U),

where Ω∗
j = 1 if

j = arg max
i
{Ji(δi, Ui)} . (92)

From (86) and (87), we observe that

max
Ω

min
U
C(Ω, δ,U) = max

Ω
C(Ω, δ, X̂)

≥ min
U

max
Ω
C(Ω, δ,U). (93)

Also, at the same time, we have

max
Ω
C(Ω, δ,U) ≥ max

Ω
min
U
C(Ω, δ,U), (94)

which implies that

min
U

max
Ω
C(Ω, δ,U) ≥ max

Ω
min
U
C(Ω, δ,U). (95)

From (93) and (95), it is concluded that

max
Ω

min
U
C(Ω, δ,U) = min

U
max
Ω
C(Ω, δ,U), (96)

which completes the proof for (88). Using the results in (88)
and (87), the cost function J(δ, X̂) is given by

J(δ, X̂) = min
U

max
i
{Ji(δi, Ui)}

= max
i

min
U
{Ji(δi, Ui)}

= max
i

{
Ji(δi, X̂i)

}
(97)

= max
i

⎧⎪⎪⎨
⎪⎪⎩

∫
Y

δi(Y)C∗
p,i(Y)fi(Y)dY∫

Y

δi(Y)fi(Y)dY

⎫⎪⎪⎬
⎪⎪⎭ . (98)

APPENDIX B
PROOF OF THEOREM 3

Note that the function Ji(δi, Ui) is a quasi-convex function
in δi ∈ [0, 1]. To show this, let δ1i and δ2i be two possible
values of δi such that δi = λδ1i +(1−λ)δ2i for some λ ∈ [0, 1].
We have

Ji(δi, Ui)

=

�
Y

�
X

(λδ1
i (Y)+(1−λ)δ2

i (Y))C(X, Ui)fi(Y |X)π(X)dXdY
�
Y

(λδ1
i (Y) + (1 − λ)δ2

i (Y))fi(Y)dY

(99)

=

λ

�
Y

�
X

δ1
i (Y)C(X, Ui)fi(Y |X)π(X)dXdY

λ

�
Y

δ1
i (Y)fi(Y)dY + (1 − λ)

�
Y

δ2
i (Y)fi(Y)dY

+

(1 − λ)

�
Y

�
X

δ2
i (Y)C(X, Ui)fi(Y |X)π(X)dXdY

λ

�
Y

δ1
i (Y)fi(Y)dY + (1 − λ)

�
Y

δ2
i (Y)fi(Y)dY

(100)

Note that, for any a, b, c, d > 0,

a+ b

c+ d
≤ max

{
a

c
,
b

d

}
. (101)

Therefore,

Ji(δi, Ui) ≤ max{Ji(δ1i , Ui), Ji(δ2i , Ui)}, (102)

which implies that Ji(δi, Ui) is quasiconvex in δi for any
desired non-negative cost function C(X,Ui).

Since the weighted maximum function preserves the quasi-
convexity, it is concluded that Ji(δi, X̂i) is a quasi-convex
function from its definition in (27). Therefore, we can find
the solution by solving an equivalent feasibility problem given
below [38]. Specifically, for some u ∈ R+, it is easily observed
that

J(δ, X̂) ≤ u⇔
∫
Y

δi(Y)fi(Y)(C∗
p,i(Y)− u)dY ≤ 0,

(103)

for all i ∈ {0, . . . , T}. Hence, the feasibility problem equiva-
lent to (23) is given by

P̃(α, β)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minδ u

s.t.
∫
Y

δi(Y)fi(Y)(C∗
p,i(Y) − u)dY ≤ 0, ∀i

T∑
j=1

T∑
i=0,i�=j

εj

1−ε0

∫
Y

δi(Y)fj(Y)dY ≤ β
T∑

i=1

∫
Y

δi(Y)f0(Y)dY ≤ α
(104)

If the above problem is feasible for a given u, the problem
in (23) must satisfy P(α, β) ≤ u, and P(α, β) represents the
lowest possible value of u for which the problem in (104)
is feasible and all its constraints are satisfied. If the problem
P̃(α, β) is infeasible, then P(α, β) > u. Given an interval
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[u0, u1] containing P̃(α, β), the optimal detection rule δ and
the optimal estimation cost P(α, β) can be determined by a
bi-section search between u0 and u1 iteratively, solving the
feasibility problem in each iteration. To solve the feasibility
problem, we define an auxiliary convex optimization problem

R(α, β, u)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minδ η

s.t.
∫
Y

δi(Y)fi(Y)(C∗
p,i(Y) − u)dY ≤ η, ∀i

T∑
j=1

T∑
i=0,i�=j

εj

1−ε0

∫
Y

δi(Y)fj(Y)dY ≤β + η

T∑
i=1

∫
Y

δi(Y)f0(Y)dY ≤ α+ η

(105)

Algorithm 1 summarises the steps for determining P(α, β).

Algorithm 3 Bi-Section Search
1: Initialize u0, u1

2: repeat
3: û← (u0 + u1)/2
4: Solve R(α, β, û)
5: if R(α, β, û) ≤ 0 then
6: u1 ← û
7: else
8: u0 ← û
9: end if

10: until u1 − u0 ≤ ε, for ε sufficiently small
11: P(α, β)← u1

APPENDIX C
PROOF OF THEOREM 4

To solve the problem in (105), a Lagrangian function is
constructed according to

Q(δ, η, �) �
T∑

i=0

�i

∫
Y

δi(Y)fi(Y)(C∗
p,i(Y)− u)dY

+ �T+1

T∑
j=1

T∑
i=0,i�=j

εj
1− ε0

∫
Y

δi(Y)fj(Y)dY

− �T+1β + �T+2

T∑
i=1

∫
Y

δi(Y)f0(Y)dY

− �T+2α, (106)

where � � [�0, . . . , �T+2] are the non-negative Lagrangian
multipliers selected to satisfy the constraints in (23), such that

T+2∑
i=0

�i = 1. (107)

The Lagrangian function also involves the term
(1 − ∑T+2

i=0 �i)η pertinent to the utility function of (105),

which is nullified due to (107). Consequently, the Lagrangian
dual function is given by

d(�) � min
δ,η
Q(δ, η, �)

= min
δ

(
T∑

i=0

∫
Y

δi(Y)AidY

)
− �T+1β − �T+2α,

(108)

where

A0 � �0f0(Y)[C∗
p,0(Y) − u] + �T+1

T∑
i=1

εi
1− ε0 fi(Y),

(109)

and for i ∈ {1, . . . , T},
Ai � �ifi(Y)[C∗

p,i(Y) − u]

+ �T+1

T∑
j=1,j �=i

εj
1− ε0 fj(Y) + �T+2f0(Y). (110)

Therefore, the optimal detection rules that minimize d(�) are
given by:

δi(Y) =

{
1, if i = i∗

0, if i �= i∗
, (111)

where

i∗ = argmin
i∈{0,...,T}

Ai. (112)

APPENDIX D
PROOF OF THEOREM 6

We can write Pis(δ̂1) as

Pis(δ̂1) =P(Dis �= Tis | Dd = Ĥ1)

=P(Dis �= Tis | Dd = Ĥ1,Td = Ĥ0)

× P(Td = Ĥ0 | Dd = Ĥ1)

+ P(Dis �= Tis | Dd = Ĥ1,Td = Ĥ1)

× P(Td = Ĥ1 | Dd = Ĥ1). (113)

Note that P(Dis �= Tis | Dd = Ĥ1,Td = Ĥ0) = 1 for any
decision rule δ̂1, and the terms P(Td = Ĥ1 | Dd = Ĥ1) and
P(Td = Ĥ0 | Dd = Ĥ1) are independent of the decision
rule δ̂1. Therefore, minimizing Pis(δ̂1) is equivalent to mini-
mizing P(Dis �= Tis | Dd = Ĥ1,Td = Ĥ1). Furthermore,

P(Dis �= Tis | Dd = Ĥ1,Td = Ĥ1)

=
P(Dis �= Tis,Dd = Ĥ1 | Td = Ĥ1)P(Td = Ĥ1)

P(Dd = Ĥ1,Td = Ĥ1)
(114)

=
P(Td = Ĥ1)

P(Dd = Ĥ1,Td = Ĥ1)

×
T∑

i=1

⎛
⎝ T∑

j=1,j �=i

P(Dis = Hi,Dd = Ĥ1 | Tis = Hj ,Td = Ĥ1)

× P(Tis = Hj | Td = Ĥ1)

)
(115)
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=
P(Td = Ĥ1)

P(Dd = Ĥ1,Td = Ĥ1)

×
T∑

i=1

(
(1− P(Dis = Hi,Dd = Ĥ1 | Tis = Hi,Td = Ĥ1))

×P(Tis = Hi | Td = Ĥ1)
)

(116)

=
P(Td = Ĥ1)

P(Dd = Ĥ1,Td = Ĥ1)

×
T∑

i=1

(
(1−

∫
Ri ∩ R̂1

fi(Y)dY)P(Tis = Hi |Td = Ĥ1)
)
,

(117)

where Ri ⊆ Yn is the region corresponding to the decision
Dis = Hi and R̂1 ⊆ Yn is the region corresponding to the
decision Dd = Ĥ1. Since we form the decision Dis only when
Dd = Ĥ1, we conclude that Ri ⊆ R̂1 and hence,Ri∩R̂1 = Ri.
Therefore,

P(Dis �= Tis | Dd = Ĥ1,Td = Ĥ1)

=
P(Td = Ĥ1)

P(Dd = Ĥ1,Td = Ĥ1)

×
T∑

i=1

(
(1−

∫
Ri

fi(Y)dY)P(Tis = Hi |Td = Ĥ1)
)
,

(118)

and P(Dis �= Tis | Dd = Ĥ1,Td) is minimized when the
regions Ri are chosen using the decision rule

δ̂1i(Y) =

{
1, if i = i∗

0, if i �= i∗
, (119)

where

i∗ = argmax
j∈{1,...,T}

fj(Y)P(Tis = Hj | Td = Ĥ1). (120)

APPENDIX E
PROOF OF THEOREM 7

For the decision rule defined in Theorem 7, we denote the
decision formed as D̄is ∈ {H1, . . . ,HT } to distinguish it from
the decision formed by the optimal decision rule in Lemma 6.
Also, from Lemma 1,

− logPu
is

n
≤ − log Pis(δ̄1)

n
≤ −Pis(δ̂1)

n
≤ − log Pl

is

n
. (121)

Note that we can write Pis(δ̄1) as

Pis(δ̄1) =
∫

Pis(X, δ̄1)π(X)dX,

where Pis(X, δ̄1) is the error probability Pis(δ̄1) when con-
ditioned on X . Therefore, there exists at least one Xc ∈ R

p,
such that

Pis(Xc, δ̄1) ≥ Pis(δ̄1).

For any arbitrary choice of Xc that satisfies the equation
above, we analyze the probability Pu

is = Pis(Xc, δ̄1). Next,

we find an upper bound on Pu
is. When X is assumed to

be Xc, the probability that the decision formed by the rule
in Theorem 7 is Hj when the true model is Hi is given
by P(D̄is = Hj | Tis = Hi, Xc). Assuming that the probabil-
ities εi, for i ∈ {1, . . . , T}, are independent of the choice of
Xc, we have

Pu
is =

T∑
i=1

T∑
i�=j
j=1

εjP(D̄is = Hi | Tis = Hj , Xc) (122)

=
T∑

j=2
i<j

(εj + εi)Pij , (123)

where we have defined

Pij � εj
εi + εj

· P(D̄is = Hi | Tis = Hj , Xc)

+
εi

εi + εj
· P(D̄is = Hj | Tis = Hi, Xc). (124)

Therefore,

Pu
is ≤

T (T − 1)
2

max
i�=j;i,j,∈{1,...T}

Pij , (125)

≤ T (T − 1)
2

× max
i�=j;i,j∈{1,...T}

{
P(D̄is = Hi | Tis = Hj , Xc) ,

P(D̄is = Hj | Tis = Hi, Xc)
}
. (126)

Let T ′ � T (T−1)
2 . Note that

P(D̄is = Hj | Tis = Hi, X = Xc) ≤
∫

Rij

fi(Y | Xc) dY,

(127)

where Rij =
{
Y :
∏

a∈Sj
LRa ≥

∏
b∈Si

LRb

}
. Define Bi as

the set of coordinates deemed to be compromised in Hi but
not in Hj , i.e., Bi � Si − Si ∩ Sj , with |Bi| = ri. Similarly,
define Bj � Sj − Si ∩ Sj , with |Bj | = rj . Also, since we
have gj

l , for l ∈ {1, . . . , n}, j ∈ {0, 1}, to be conditionally
independent distributions given Xc, we have

fi(Y |Xc) =
∏

a∈Si

(
n∏

c=1

g1
a(Yc(a) |Xc)

)

×
∏
b∈S̄i

(
n∏

d=1

g0
b (Yd(b) |Xc)

)
, (128)

where S̄i � {1, . . . ,m}\Si. Then, the region Rij is equivalent
to⎧⎨
⎩Y :

⎛
⎝ ∏

a∈Bj

n∏
c=1

g1
a(Yc(a) |Xc)

⎞
⎠(∏

b∈Bi

n∏
d=1

g0
b (Yb(d) |Xc)

)
≥

(∏
a∈Bi

n∏
c=1

g1
a(Yc(a) | Xc)

)⎛⎝∏
b∈Bj

n∏
d=1

g0
b (Yd(b) | Xc)

⎞
⎠
⎫⎬
⎭ .

(129)
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Therefore,

P(D̄is = Hj | Tis = Hi, Xc)

≤
∫

Rij

(∏
a∈Bi

n∏
c=1

g1
a(Yc(a) | Xc)

)

×
⎛
⎝∏

b∈Bj

n∏
d=1

g0
b (Yd(b) | Xc)

⎞
⎠ dYBi∪Bj (130)

=
∫

Rij

min{t1, t2} dYBi∪Bj , (131)

where YBi∪Bj is the data for the coordinates in the set Bi∪Bj

and

t1 �
(∏

a∈Bi

n∏
c=1

g1
a(Yc(a) |Xc)

)⎛⎝∏
b∈Bj

n∏
d=1

g0
b (Yd(b) |Xc)

⎞
⎠ ,

(132)

t2 �

⎛
⎝ ∏

a∈Bj

n∏
c=1

g1
a(Yc(a) |Xc)

⎞
⎠
(∏

b∈Bi

n∏
d=1

g0
b (Yb(d) |Xc)

)
.

(133)

Using the inequality

min(a, b) ≤ aλb1−λ, ∀ a, b > 0, and λ ∈ [0, 1], (134)

and ∫
Rij

fi(Y | Xc) dY ≤
∫
fi(Y | Xc) dY, (135)

from (130) we get

P(D̄is = Hj | Tis = Hi, Xc) ≤
∫
tλ1 t

1−λ
2 dYBi∪Bj , (136)

for all λ ∈ [0, 1]. Following a similar line of analysis as
in (130)-(136), it can be verified that

P(D̄is = Hi | Tis = Hj, Xc) ≤
∫
tλ1 t

1−λ
2 dYBi∪Bj . (137)

The inequalities in (136) and (137) hold for all λ ∈ [0, 1].
Hence, from (125), (136), and (137) we get

Pu
is ≤ T ′max

i,j
min

λ∈[0,1]

∫
tλ1 t

1−λ
2 dYBi∪Bj . (138)

We use the change of variables Ỹa(b) = Ya(b) | Xc to obtain∫
tλ1 t

1−λ
2 dYBi∪Bj

=

⎛
⎝ ∏

a∈Bj

n∏
c=1

∫
(g1

a(Ỹa(c)))λ(g0
a(Ỹa(c)))1−λ dỸa(c)

⎞
⎠

×
(∏

b∈Bi

n∏
d=1

∫
(g1

b (Ỹb(d)))λ(g0
b (Ỹb(d)))1−λ dỸb(d)

)
.

(139)

Note that

− logPu
is

n
= − 1

n
log
(

max
i,j

min
λ

∫
tλ1 t

1−λ
2 dYBi∪Bj

)
.

(140)

By letting n to grow to infinity, and using the monotonicity
of the log function, we have

− lim
n→∞

log Pu
is

n

= lim
n→∞

1
n

min
i,j

max
λ
− log

(∫
tλ1 t

1−λ
2 dYBi∪Bj

)
(141)

= lim
n→∞

1
n

min
i,j

max
λ⎛

⎝∑
a∈Bj

−n log
(∫

(g1
a(Y ))λ(g0

a(Y ))1−λ dY

)

+
∑
b∈Bi

−n log
(∫

(g0
b (Y ))λ(g1

b (Y ))1−λ dY

))
.

(142)

Therefore,

− lim
n→∞

log Pu
is

n

= min
i,j

max
λ

⎛
⎝∑

a∈Bj

− log
(∫

g1
a(Y )λg0

a(Y )1−λ dY

)

+
∑
b∈Bi

− log
(∫

g0
b (Y )λg1

b (Y )1−λ dY

))
.

(143)

We now find a lower bound on Pl
is. Under the perfect knowl-

edge of X , we have

Pl
is =

T∑
i=1

T∑
j=1
j �=i

P(Dis = Hj | Tis = Hi, X)εi (144)

=
T∑

i=1

P(Dis �= Hi | Tis = Hi, X)εi (145)

≥ max
i,j
{P(Dis = Hj | Tis = Hi, X)εi,

P(Dis = Hi | Tis = Hj , X)εj} . (146)

Note that

lim
n→∞−

log(Pl
is)

n

≤ lim
n→∞−

1
n

log
(

max
i,j
{P(Dis = Hj | Tis = Hi, X)εi ,

P(Dis = Hi | Tis = Hj , X)εj}
)

= lim
n→∞−

1
n

log
(

max
i,j
{P(Dis = Hj | Tis = Hi, X) ,

P(Dis = Hi | Tis = Hj , X)}
)
. (147)

For further analysis, we adopt the approach used in [39]. Under
model Hi, the data points Yw are distributed according to the
pdf fi, for w ∈ {1, . . . n} and i ∈ {1, . . . T}. Define bλi,j(Yw)
as the pdf

bλi,j(Yw) �
fλ

i (Yw | X)f1−λ
j (Yw | X)∫

fλ
i (Yw | X)f1−λ

j (Yw | X)dYw

, (148)
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and let

λ∗ = argmax
λ∈[0,1]

− log
(∫

fλ
i (Y | X)f1−λ

j (Y | X) dY
)

(149)

= argmax
λ∈[0,1]

−
n∑

w=1

log
(∫

fλ
i (Yw |X)f1−λ

j (Yw |X) dYw

)

(150)

= argmax
λ∈[0,1]

−n log
(∫

fλ
i (Yw | X)f1−λ

j (Yw | X) dYw

)
.

(151)

It can be readily verified that

max
λ∈[0,1]

− log
(∫

fλ
i (Yw | X)f1−λ

j (Yw | X) dYw

)
= DKL(bλ

∗
i,j‖fi(. | X)) = DKL(bλ

∗
i,j‖fj(. | X)),

(152)

where DKL(f‖g) denotes the Kullback-Liebler divergence
between distributions f and g. Define the probability measure
P̃ as

P̃(Y | X) �
n∏

w=1

bλ
∗

i,j(Yw), (153)

and define a random process Mr as

Mr �
r∑

w=1

(
log

(
bλ

∗
i,j(Yw)

fj(Yw | X)

)

−E

[
log

(
bλ

∗
i,j(Yw)

fj(Yw | X)

)
| Fw−1

])
, (154)

where Fw−1 is the σ−field generated by {Y1, . . . , Yw−1}, and
the expectation is with respect to the probability measure P̃.
It can be verified that the process Mr is a stable martingale.
According to the martingale stability theorem [40], we have

lim
r→∞

Mr

r

a.s−→ 0. (155)

This can be equivalently written in the following form:

lim
r→∞ P̃

(
Mr

r
> ν

)
= 0, ∀ν > 0. (156)

Since for a given X the random vectors Yw are i.i.d., we have

E

[
log

(
bλ

∗
i,j(Yw)

fj(Yw | X)

)∣∣∣∣∣Fw−1

]

= DKL(bλ
∗

i,j‖fi(. | X)) = DKL(bλ
∗

i,j‖fj(. | X)). (157)

By using (157) and restructuring (156), we obtain

lim
n→∞ P̃

(
n∏

w=1

fj(Yw |X) > exp(−nDKL(bλ
∗

i,j‖fj(. |X))− nν)

×
n∏

w=1

bλ
∗

i,j(Yw)

)
= 1. (158)

Under the probability measure P̃, we denote the prob-
ability of deciding Hi as the true model when X is

given as P̃(Dis = Hi | X) and note that either
P̃(Dis �= Hi | X) ≥ 1

2 or P̃(Dis = Hi | X) ≥ 1
2 . Then, assum-

ing that P̃(Dis = Hi | X) ≥ 1
2 holds, from (158) we get

lim
n→∞P̃

(
n∏

w=1

fj(Yw |X)>exp(−nDKL(bλ
∗

i,j‖fj(. |X))−nν)

×
n∏

w=1

bλ
∗

i,j(Yw),Dis = Hi | X
)
≥ 1

2
− κ, (159)

for any κ > 0. Using (153), we conclude that (159) is
equivalent to

lim
n→∞

∫
R

n∏
w=1

bλ
∗

i,j(Yw) dYw ≥ 1
2
− κ, (160)

where R is the region{
Y : {Dis = Hi | X} and

{
n∏

w=1

bλ
∗

i,j(Yw | X) < exp(nDKL(bλ
∗

i,j‖fj(. | X)) + nν)

×
n∏

w=1

fj(Yw | X)

}}
. (161)

In the region R, we have∫
R

n∏
w=1

bλ
∗

i,j(Yw | X) dYw

≤ exp(nDKL(bλ
∗

i,j‖fj(. |X))+nν)
∫

R

n∏
w=1

fj(Yw |X)dY,

≤ exp(nDKL(bλ
∗

i,j‖fj(. |X))+nν)
∫

R2

n∏
w=1

fj(Yw |X)dY,

= exp(kDKL(bλ
∗

i,j‖fj(. |X))+nν)

× P(Dis �= Hj |Tis = Hj, X), (162)

where region R2 is {Dis �= Hj | X} and also, R ⊆ R2. From
(160) and (162), it is concluded that

P(Dis �= Hj | Tis = Hj , X)

≥
(

1
2
− κ
)

exp(−nDKL(bλ
∗

i,j‖fj(. | X))− nν),
(163)

for any ν, κ > 0. Similarly, if the case P̃(Dis �= Hi | X) ≥ 1
2

holds,

P(Dis �= Hi | Tis = Hi, X)

≥
(

1
2
− κ
)

exp(−nDKL(bλ
∗

i,j‖fi(. | X))− nν).
(164)

Using (147), (163) and (164), we get

lim
n→∞−

log(Pl
is)

n

≤ lim
n→∞−

1
n

max
i,j
{log(P(Dis �= Hj | Tis = Hj , X)),

log(P(Dis �= Hi | Tis = Hi, X))} (165)
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= lim
n→∞

1
n

(
−
(

1
2
− κ
)

+ κν

)

+ lim
n→∞

1
n

min
i,j
{nDKL(bλ

∗
i,j‖fi(. | X)),

nDKL(bλ
∗

i,j‖fj(. | X))}. (166)

Using the fact that κ and ν can be made arbitrarily close to
0, and using (152), we get

lim
n→∞−

log(Pl
is)

n

≤ min
i,j

max
λ∈[0,1]

− log
(∫

fλ
i (Yw | X)f1−λ

j (Yw | X) dYw

)
(167)

= min
i,j

max
λ

⎧⎨
⎩
∑

a∈Bj

− log
(∫

(g1
a(Y ))λ(g0

a(Y ))1−λdY
)

+
∑
b∈Bi

− log
(∫

(g0
b (Y )λ(g1

b (Y ))1−λdY
)}

(168)

= min
i�=j

C(fi, fj), (169)

where (169) follows after the change of variables in (167).
From (143) and (168), it is clear that

lim
n→∞−

logPl
is

k
= lim

n→∞−
logPu

is

n
. (170)

Then, using (121), we conclude that the error exponents of
Pis(δ̂1) and Pis(δ̄1) are the same and are given by (169).

APPENDIX F
PROOF OF THEOREM 8

We aim to design the estimator U j
l and the decision rule δ̄l

that minimize the utility function Jj
l (δj

l , δ̄
r
l , U

j
l ) subject to the

constraint

Pj(Dr
l = Hr

l) =
∫
δj
l (Yl)δ̄r

l(Yl)g
j
l (Yl)dYl ≥ 1− νj

l .

(171)

Since the effect of estimator only appears in Jj
l (δj

l , δ̄
r
l , U

j
l ),

the optimization problem can be decoupled similarly to the
approach followed earlier, and the optimal estimator can be
readily verified to be

X̂j
l (Yl) = argmin

Uj
l

Jj
l (δj

l , δ̄
r
l , U

j
l ), (172)

where X̂j
l (Yl) is defined in (72). In order to design the

decision rules, we start by noting that for a decision rule δ̄l,
such that, ∫

δj
l (Yl)δ̄r

l(Yl)g
j
l (Yl)dYl > 1− νj

l , (173)

we can design another decision rule Δl � [Δr
l(Yl),Δu

l (Yl)],
such that, ∫

δj
l (Yl)Δr

l(Yl)g
j
l (Yl)dYl = 1− νj

l , (174)

with the same estimation performance. To show this, we set

Δr
l(Yl) =

(1− νj
l )δ̄r

l(Yl)∫
δj
l (Yl)δ̄r

l(Yl)g
j
l (Yl)dYl

, (175)

which satisfies (171) with equality. Using (173), note that
Δr

l(Yl) < δ̄r
l(Yl), which implies that Δl is a valid decision

rule. We can easily verify that

Jj
l (δj

l ,Δ
r
l, X̂

j
l ) = Jj

l (δj
l , δ̄

r
l , X̂

j
l ), (176)

which implies that the estimation performance is the same
for both decision rules, and therefore, we can restrict our
design for the optimum decision rule to the class of rules that
satisfy (171) with equality. Under the equality condition,∫

δi
j(Yi), δ̄r

l(Yl)g
j
l (Yl)dYl = 1− νj

l , (177)

in which case minimizing Jj
l (δj

l , δ̄
r
l , X̂

j
l ) is equivalent to

minimizing
∫
δj
l (Yl)δ̄r

l(Yl)Ĉ
j
l (Yl)g

j
l (Yl)dYl. Let γj

l ≥ 0 be
the solution to

Pj(γ
j
l ≥ Ĉj

l (Yl)) =
∫

R̂

δj
l (Yl)g

j
l (Yl)dYl = 1− νj

l , (178)

where R̂ �
{
Yl : γj

l ≥ Ĉj
l (Yl)

}
. Hence,∫

δj
l (Yl)δ̄r

l(Yl)Ĉ
j
l (Yl)g

j
l (Yl)dYl − γj

l (1 − νj
l )

=
∫
δj
l (Yl)δ̄r

l(Yl)Ĉ
j
l (Yl)g

j
l (Yl)dYl

− γj
l

∫
δj
l (Yl)δ̄r

l(Yl)g
j
l (Yl)dYl

=
∫
δj
l (Yl)δ̄r

l(Yl)(Ĉ
j
l (Yl)− γj

l )g
j
l (Yl)dYl

≥
∫

R̂

δl
j(Yl)(Ĉ

j
l (Yl)− γj

l )g
j
l (Yl)dYl

=
∫

R̂

δl
j(Yl)Ĉ

j
l (Yl)g

j
l (Yl)dYl − γj

l Pj(γ
j
l ≥ Ĉj

l (Yl))

=
∫

R̂

δj
l (Yl)Ĉ

j
l (Yl)g

j
l (Yl)dYl − γj

l (1− νj
l ). (179)

Clearly,∫
δj
l (Yl)δ̄r

l(Yl)Ĉ
j
l (Yl)g

j
l (Yl)dYl

≥
∫

R̂

δj
l (Yl)Ĉ

j
l (Yl)g

j
l (Yl)dYl, (180)

and therefore, the decision rule δ̄r
l(Yl) given by

δ̄r
l(Yl) = �{γj

l ≥Ĉj
l (Yl)}, (181)

is optimal since it ensures optimal estimation performance and
satisfies the constraint in (171).
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