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O
utliers refer to observations that do not conform 
to the expected patterns in high-dimensional 
data sets. When such outliers signify risks (e.g., 
in fraud detection) or opportunities (e.g., in 
spectrum sensing), harnessing the costs associ-

ated with the risks or missed opportunities necessitates mecha-
nisms that can identify them effectively. Designing such 
mechanisms involves striking an appropriate balance between 
reliability and cost of sensing, as two opposing performance 
measures, where improving one tends to penalize the other. 

This article poses and analyzes outlying sequence detection in a 
hypothesis testing framework under different outlier recovery 
objectives and different degrees of knowledge about the under-
lying statistics of the outliers. 

INTRoDUCTioN

Motivation
Advances in data acquisition and high-dimensional information pro-
cessing are rapidly transforming various technological, social, and 
economic domains, including the Internet, telecommunication, 
energy grids, social networks, and the health industries, to name a 
few. Empowered by these advances, such domains are evolving into 
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complex networked platforms in which high-dimensional and com-
plex data is routinely generated, communicated, stored, and pro-
cessed for various monitoring, inference, and resource 
management purposes. Due to the inherent scale of data and 
complexity of the processes involved, the challenges associated 
with capturing, curating, searching, and sharing the information 
are also expected to grow well into the future. Hence, benefiting 
from the full extent of such enabling technologies is feasible only 
when appropriate measures are implemented that address these 
growing challenges while recognizing constraints pertinent to 
the physical limits of the application domains of interest. 

Analyzing large-scale and complex data sets involves multifa-
ceted phases, each of which introduces its own set of challenges. 
These phases include data acquisition and storage, information 
extraction, data aggregation, data modeling, and query process-
ing, and the associated challenges include information hetero-
geneity, processing timeliness, data security and privacy, and 
human interactions. By capitalizing on the promises of data-
driven information processing theories for understanding and 
addressing these challenges, this article focuses on a particular 
class of challenges related to information extraction and its 
associated timeliness requirements. 

Extracting information and knowledge from data sets has been 
studied extensively over the past decade through developing pow-
erful data mining and statistical learning methods. These methods 
are primarily focused on discovering (inferring) patterns in data 
sets and have widespread applications. In addition to the ongoing 
developments in discovering patterns in large data sets, there has 
also been a growing interest in uncovering outlying observations, 
which are observations that do not conform to expected patterns 
in large data sets. Such outlying observations generally refer to 
observations that are significantly different from the other data set 
constituents. While defining and identifying outliers are subjective 
exercises, outlier observations are often abstracted as deviations in 
the nature of a data set population and are considered to be caused 
by transient disruptions during data acquisition due to, for 
instance, a malfunctioning measurement apparatus, noisy data 
transmission media, or abrupt changes in the nature or behavior 
of the population. There exists a rich literature on outlier detec-
tion for the setting in which outliers are candidates for aberrant 
data that lead to biased or incorrect inferences. The general 
approach to cope with outliers in such circumstances is to clean 
up the data prior to modeling and performing the attendant statis-
tical analysis [1]. Relevant outlier detection methods can be cate-
gorized under different taxonomies, the major ones being 
univariate versus multivariate methods and parametric versus 
nonparametric methods. Some popular approaches for such out-
lier detection approaches include Pierce’s criterion [2], Chau-
venet’s criterion [3], and Dixon’s test [4]. 

In contrast to the aforementioned notion of outlier detection 
that aims to render disturbance-free data, a less-investigated 
aspect of identifying outliers pertains to searching for rare and 
at the same time significant anomalies that do not conform to 
expected patterns and are often manifested as opportunities to 
be exploited (arising, e.g., in spectrum sensing) or risks to be 

ameliorated (e.g., network intrusion or fraud detection). In 
these settings, we can consider the outlying sequence detection 
problem as one in which a large number of sequences are being 
monitored simultaneously and the goal is to choose a small sub-
set of sequences that are outliers. We refer to such problems as 
outlying sequence detection problems to distinguish them from 
the setting described in the previous paragraph in which a few 
outlier observations are winnowed out from a single set of data. 

Detecting the outliers, especially in large data sets, is often 
very time-sensitive due to the transient nature of the opportuni-
ties that are attractive only when detected quickly, or due to the 
substantial costs that risks can incur if not managed swiftly. In 
this article, we focus on the fundamental problems in quick 
detection of outliers while recognizing different system- and 
physical-level constraints imposed by various contexts.

Background
Outlier detection has immediate application in a broad range of 
contexts in which large volumes of data are constantly gener-
ated and processed. Some of these contexts and their applica-
tion domains will be reviewed briefly in the section “Application 
Domains.” While outlier observations in all contexts conform in 
representing unusual changes of the behavior of the underlying 
physical phenomena over one or more dimensions (e.g., time or 
space), the broad diversity in the range of the relevant applica-
tions necessitates diverse formulations that are customized to 
capture the specifics of each application domain. The remainder 
of this subsection focuses on reviewing some of the widespread 
models for abstracting the outlier detection problem in large 
data sets. The three major components for modeling the outli-
ers and abstracting the outlier detection problem are the level 
of available information about the normal and outlying data 
streams, the type of the outliers, and the figure of merit for 
identifying the outliers. A comprehensive review of all such 
abstractions can be found in [5] and [6].

Supervision Level
Availability of information about the models for the data 
streams governs the modes and approaches for performing out-
lier detection in large data sets. Specifically, the existing 
approaches to outlier detection can be broadly categorized into 
four classes: supervised, semisupervised, unsupervised, and uni-
versal approaches, which are distinguished based on the availa-
bility of information about the structure of the data streams. 

■■ Supervised: In the presence of prior information about the 
data streams (often acquired through training data) the mod-
els of both normal and abnormal (outlying) observations are 
known, which enables supervised outlier detection. These 
approaches are appropriate for static data or data models that 
evolve slowly enough so that tracking and learning the 
changes in the model are viable. In the statistics and com-
puter science literature, the class of supervised outlier detec-
tion is studied extensively under classification-based 
approaches [7], [8], neural networks [9]–[11], Elman net-
works [12], naïve Bayes, and support vector machines [13]. 
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■■ Semisupervised: In many practical circumstances acquir-
ing models for both normal and outlying data streams is 
often infeasible. Based on the availability of information 
about a model for either normal or outlying sequences, sem-
isupervised outlier detection approaches are developed, 
which capitalize on the known structure of normal (outly-
ing) data streams to be robust against uncertainty about the 
structure of outlying (normal) data streams. While there 
exist scenarios that assume availability of information about 
the outlying sequences and lack of information about nor-
mal data streams [9], [14], these scenarios do not often arise. 
This is primarily due to the fact that outliers typically have 
an unpredictable nature and designing learning algorithms 
that can cover all possible outlying events is difficult. On the 
other hand, normal behavior is often well defined and thus it 
is more viable to construct models for normal data streams. 
Hence, in the majority of the existing literature on semisu-
pervised outlier detection, the normal data streams are 
assumed to have known models while those of the outliers 
are unknown. 

■■ Unsupervised: Under this category no assumption is made 
about models for the normal or outlying data streams and, 
instead, some other assumptions (e.g., parametric) are made 
about the models. In these approaches the normal observation 
are those that share a pattern occurring frequently and the 
outliers are those with rare and distinct patterns. Some repre-
sentative unsupervised approaches include discriminative 
approaches [15]–[19], parametric approaches [18], [20]–[24], 
and online analytical processing (OLAP) approaches [25]. 

■■ Completely universal: Unlike in the supervised, semisuper-
vised and unsupervised approaches, in the completely univer-
sal approach, no training data is available for either the 
typical or outlier distributions. As we discuss in the section 
“Universal Outlying Sequence Detection,” it is possible to 
construct decision rules under this completely universal set-
ting, with only the assumption that the typical and outlier 
distributions are different.

Types of Outliers
A pivotal step toward formulating any outlier detection 
approach is an abstraction for modeling the outliers. Here we 
review some of the more common categories of outliers, which 
are distinguished based on their composition and their rele-
vance to normal observations. 

■■ Outlying points within a data stream: This type of outlier 
occurs in circumstances when we are dealing with one data 
stream (often modeled as a time series) and one or more iso-
lated elements of the stream do not conform to the common 
pattern of the data stream. Depending on whether the objec-
tive is to perform real-time or in-retrospect (offline) outlier 
detection, there are two different types of detection proce-
dures. In real-time scenarios, the existing approaches often 
dynamically provide forecasts for the upcoming observations 
and, upon collecting the actual observations, a similarity 
measure between the actual observations and their forecast is 

computed. This measure determines whether the observation 
deviates from the expected pattern, and consequently 
whether it is an outlier or a normal observation [26]. In the 
offline outlier detection approaches, on the other hand, one 
popular approach is to cast the outlier detection problem as 
an in-retrospect change point detection problem [27]. 

■■ Outlying subsequences within a data stream: In contrast to 
outlying points, which appear sporadically and in isolation in 
one data stream, outlying subsequences appear in the form of 
consecutive outlying points. Similar to outlying points, detect-
ing such outliers can be studied under real-time and offline set-
tings. For the former there exist a body of window-based 
prediction approaches that form similarity measures for identi-
fying outlying subsequences, and, for the latter, in-retrospect 
change point detection approaches are applicable. 

■■ Outlying data streams: The previous two types of outliers 
occur within a data stream. Outlying data streams occur when 
we are given a large group of data streams, most of which fol-
low a common pattern, but a few of which do not conform to 
this common pattern. Hence, there is no notion of outliers 
occurring within a stream anymore, but rather, each entire 
data stream is either normal or outlying. In such circum-
stances, the objective is to identify a group of sequences that 
exhibit behaviors different from the common pattern. This set-
ting has been studied extensively in the statistics literature in 
which several approaches based on autoregression, moving 
average, and cumulative sum tests have been proposed with 
details reviewed in depth in [1], [5], and [28].

Decision Mechanism
Upon designing the information-gathering process and collecting 
observations, there are two broad schemes for forming a decision 
on individual observations or sets of observations and categorizing 
them as normal or outlying. In one approach, often termed the 
labeling technique, a binary decision about each individual obser-
vation is made. The outcome in this approach is a classification of 
the observations into two sets. The advantage of this approach is 
its accuracy in labeling every observation with a decision, while its 
drawback is that when the data volume increases, forming an 
accurate decision for every single observation is computationally 
prohibitive. In an alternative approach, often referred to as a sort-
ing technique, each observation receives a score that indicates the 
likelihood of that observation being an outlier. The advantage of 
this technique is that it is less stringent in reaching an accurate 
decision for all observations in favor of enhancing the speed of the 
detection procedure, which makes it more suited for analyzing 
large data sets. The drawback of this approach, on the other hand, 
is that there should be a supplementary mechanism deciding 
about a threshold on the scores to delineate the normal and outly-
ing regions. 

Application Domains
Different combinations of the different types of outliers, super-
vision level, and decision mechanisms (and other details 
reviewing, which is not relevant to the scope of this article) 
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create different abstractions for the outlier detection problem, 
each of which is relevant in certain application domains. Spe-
cifically, there exist a wide range of applications in which large 
volumes of data are constantly generated and the goal is to 
search for features or to identify anomalies that signify risks or 
opportunities. These goals can often be cast as outlier detection 
where the nature of the outliers, supervision level, the atten-
dant decision mechanism, and other assumptions and con-
straints collectively formulate the underlying outlier detection 
problem. Examples of the application domains that involve 
detecting outliers in large data sets include credit card fraud 
detection [29], clinical trials [30], high-frequency trading [31], 
voting irregularity analysis [32], spectrum sensing [33], net-
work intrusion [34], severe weather prediction [35], and seis-
mic data analysis [36]. In this subsection we review a few 
application domains in which the problem of outlying 
sequence detection has important physical implications. 

Network Intrusion
Network intrusion detection refers to detecting malicious pene-
trations to data networks. Intrusions exhibit behaviors different 
from the normal patterns in the network and the measurements 
associated with them can be modeled as outliers. The major 
impediment for identifying intrusions in this setting is the large 
volume of data, which makes the intrusion detection process 
computationally costly and time-consuming, while agile 
response to the presence of the intruders is crucial as any delay 
in detecting them leads to recovery costs for the system. Intru-
sions can often be modeled as outlying subsequences or 
sequences for which an observation model is unknown and, 
consequently, semisupervised or unsupervised approaches are 
best suited for identifying them. A comprehensive review of the 
literature on outlier detection approaches for network intrusion 
detection is available in [37]. 

Fraud Detection
Fraud detection, which is the practice of identifying deliberately 
unlawful gains, is widely deployed by commercial entities 
including financial institutions, telecommunication companies, 
and insurance agencies. The pivotal step in designing fraud 
detection algorithms is creating profiles for usage activities of 
legitimate users and flagging any activity deviant from these 
profiles as a potential fraud. Hence, fraudulent activities can be 
modeled as outlying activities that should be identified swiftly to 
minimize the associated financial losses. A survey of different 
outlier detection approaches suited for credit card, mobile 
phone, insurance claim, and insider trading fraud detection is 
available in [37]. 

Spectrum Sensing
Wireless connectivity is ubiquitous and is constantly growing in 
scale and complexity to cope with the existing demands (e.g., 
data communication and sensor networks) and to accommodate 
the emerging ones (e.g., wireless health and smart grids). All such 
enabling technologies are viable at the expense of increasing 

demands for radio spectrum, which is the major commodity in 
the wireless industry. As reported by the U.S. Federal Communi-
cations Commission (FCC), exclusive spectrum access rights 
lead to underutilization of the spectrum. Driven by this observa-
tion and the urgency for higher spectral efficiency, future spec-
trum access policies are envisioned to provide the flexibility of 
dynamically granting spectrum access to unlicensed wireless 
services when the spectrum is underutilized by the license-
holding services. Under such envisioned spectrum access pol-
icies, unlicensed services compete to make use of shared 
spectrum opportunities. The underutilized segments of the 
spectrum, hence, will not be as abundant as they otherwise 
should be and such reduction in their availability becomes even 
more severe as wireless sensing and networking grows in size 
and services. Hence, spectrum holes across wideband spectrum 
can be modeled as outliers in terms of their occupancy status 
and the problem of spectrum sensing in congested wideband 
spectrum can be abstracted as an outlier detection problem [33]. 

Environmental Monitoring
The applications of outlier detection in environmental monitor-
ing are multifaceted. Different forms of outlier detection are 
being used across the globe, e.g., for determining locations with 
constantly different temperatures from their neighbors, discov-
ering drought areas, positioning fertility loss areas, and detect-
ing hurricanes. A detailed overview of these application domains 
is available in [6]. 

DATA-ADAPTiVE OUTLYiNG SEQUENCE DETECTioN
We introduce a general dichotomous hypothesis testing model 
for the outlying sequence detection problem of interest. This 
will be a unifying theme for investigating the problem under 
different settings. In this dichotomous model, we assume that 
the data set consists of M  data streams, each being either a typ-
ical or an outlying sequence. Typical sequences exhibit identical 
statistical behavior, with which the outliers do not comply by 
exhibiting arbitrarily different known or unknown behaviors. 
The data volume increases as the number of data streams M  
increases, and in this article the focus is placed on high-dimen-
sional data by performing the analysis in the asymptote of large 
values of M  (i.e., ) .M " 3  Furthermore, to emphasize the rar-
ity of the outliers, we assume that the number of outliers grows 
sublinearly as M  increases. 

The above dichotomous model is adopted to mainly focus 
the attention on the discrepancy between the outliers and the 
typical observations and can be generalized to models that 
involve multiple statistical behaviors for the typical sequences. 
Each data stream generates independent and identically distrib-
uted (i.i.d.) real observations { , , }Y Y( ) ( )i i

1 2 f  obeying one of the 
two models 
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where F  denotes a cumulative distribution function (cdf), mode-
ling the statistical behavior of the typical sequences. Designing an 
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optimal outlying sequence detector rests fundamentally on deline-
ating the inherent interplay between two opposing performance 
measures, one being the frequency of erroneous decisions and the 
other being the cost of sensing (e.g., the number of measurements 
taken). To this end, we consider the most general structure for the 
information-gathering process, which either sequentially, or based 
on a prespecified rule selects and takes measurements from a sub-
set of the data streams at each time. By denoting the subset of data 
streams selected at time t  by { , , },M1Lt f3  upon collecting the 
measurements at time ,t  the outlier detection process takes one of 
the following actions: 

1)	Observation: due to lack of sufficient information making 
any decision is deferred and the same set of data streams is 
retained for more scrutiny, i.e., L Lt t1 =+  
2)	Exploration: the information accumulated is insufficient 
to identify the outliers, but provides partial information that 
is sufficient for updating the set of data streams that should 
be measured more carefully, or possibly ruling out some of 
the data streams as typical ones, i.e., L Lt t 1" +   
3)	Detection: the information gathering process is termi-
nated and the outliers are identified.
The stopping time of the procedure, i.e., the time after which 

detection is performed, is denoted by .x  Furthermore, a switching 
function : { , , } { , }1 0 1"f} x  is devised to distinguish between 
observation and exploration actions at time .t  The switch is set to 

( )t 0} =  if it is decided in favor of performing observation at time 
,t  while ( )t 1} =  indicates a decision in favor of performing 

exploration. The sequential information-gathering procedure is 
uniquely determined by its stopping time ,x  the sequence of 
switching functions [ ( ), , ( )],1 f} } } x=xr  and the ordered col-
lection { , , } .L LL 1 1f=

9
x x-

The quality of the ultimate decision, which is the output of 
the detection action, is captured by the frequency of erroneous 
decisions. To formalize the dependence of such decision quality, 
on the given set of stopping time ,x  switching sequence ,}xr  
and observation order Lx , we denote the frequency of errone-
ous decisions by ( , , ) .P LM x }x xr  An optimal outlying sequence 
detection approach can be characterized as a strategy that opti-
mizes a desired balance between this decision quality and the 
aggregate cost of sensing ,Ltt 1

x

=
/  which incorporates the 

stopping time and the number of samples taken during the 
exploration cycles. Such a balance often can be cast as minimiz-
ing one of these measures, within a desired constraint on the 
other, e.g., 
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}
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x
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where t  controls the decision reliability. In the following sec-
tions, we discuss several important topics under which the out-
lying sequence detection problem has different interpretations 
and can be cast as a balance between these measures.

Obtaining the optimal strategies for observation, explora-
tion, and detection that strike a desired balance between deci-
sion quality and cost of sensing, in its most general form, is an 

open problem. By imposing certain structures on data or sam-
pling models, however, one can delineate optimal strategies. In 
the remainder of the article, we discuss different outlying 
sequence detection approaches with different structures rang-
ing from fully sequential to fully prespecified sampling strate-
gies, and different objectives, ranging from identifying only one 
outlier to identifying all. 

DATA-ADAPTiVE SAMPLiNG
In this section, we concretize the generic outlying sequence 
detection problem by focusing the attention on the closed-loop 
(adaptive) aspects of the sampling process. The extent of data 
adaptivity of the data-gathering process leads to a wide range of 
structures for the outlying sequence detection problem. Adap-
tivity is embedded in the sequential selection of the subset of 
data streams to be measured at each time, i.e., { , , } .LL1 f x  
Besides adaptivity in sensing, identifying the outliers can also be 
performed in either sequential or nonsequential fashion, where 
in the former the data collected is processed altogether to iden-
tify the outliers, whereas in the latter one could identify and 
remove an outlier and then search for other outliers among the 
remaining data streams. 

Quickest Search for All Outliers
When the objective is to identify all outliers with minimum 
expected number of aggregate measurements and subject to 
controlled reliability, the problem is equivalent to forming a 
decision about the underlying model of all the sequences. 
Hence, the optimal sampling and decision-making problem can 
be decomposed into M  independent hypothesis testing prob-
lems corresponding to the M  sequences. The optimal solution 
to these latter subproblems is the sequential probability ratio 
test (SPRT), which minimizes the expected number of measure-
ments required for forming a decision for each sequence with 
prespecified reliability [38] when the underlying distributions 
for normal and outlying observations are known. 

These independent SPRTs can be performed either in paral-
lel or sequentially. When performed in parallel, the sampling 
procedure is initiated by setting { , , }M1Lt f=  and after tak-
ing measurements at time t , the set Lt  is refined by discard-
ing the indices of the sequences for which their associated 
SPRT has reached a decision. In contrast, when the SPRTs are 
performed sequentially, the sampling strategy focuses on the 
sequences one at a time. While being effective in forming accu-
rate decisions for individual data streams, performing inde-
pendent SPRTs becomes computationally prohibitive as the 
size of the data set grows, and is not a suitable approach for 
large data sets. 

Quick Search for a Subset of Outliers
In certain scenarios, one might be interested in recovering only 
a fraction of the outliers, especially when the outliers represent 
rare opportunities of interest, while in certain other scenarios, 
especially when the outliers model risks, it is imperative to 
identify all of the outliers. 
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Shifting the objective from recovering all the outliers to 
identifying only a fraction of them allows for missing some of 
the outliers in favor of quickly identifying the fraction of inter-
est. Under this objective, performing SPRTs on all sequences is 
clearly not optimal as it tends to identify all sequences and does 
not take advantage of the more relaxed objective. Such a shift of 
objective and its ensuing flexibility leads to significant reduction 
in the sensing cost and the delay in reaching a decision. 

Obtaining optimal structures of such sequential and data-
adaptive experimental designs and finding associated nontrivial 
performance bounds for the such design are open for most sce-
narios, with some exceptions discussed in [39]–[41]. Neverthe-
less, by imposing certain structures on the refinement action, 
one can ascertain certain optimality properties with provable 
gains over nonadaptive approaches. 

In this subsection, we focus on a specific structure studied in 
[33] and [42]–[45,] which consists of consecutive rounds of obser-
vations and exploration actions, followed by consecutive cycles of 
observations and satisfies certain optimality properties [45]. 
Driven by the premise that the outliers (anomalies) occur rarely, 
this adaptive structure starts by spending the sampling resources 
conservatively, and as more information about different data 
streams is accumulated, the sensing resources are progressively 
allocated to the data streams that are more likely outliers. The 
central motivation for such progressive allocation of the sensing 
resources is that while conservative (rough) observations are not 
accurate enough to identify the outliers, they can be informative 
enough to discard a considerable fraction of the typical streams. 
Consecutive cycles of rough observations and exploration, there-
fore, lead to substantial reduction in the search space, which 
facilitates using the sensing resources more effectively. Careful 
design of the exploration actions and the number of exploration 
actions, can provide sufficient guarantees that the discarded data 
streams are almost surely typical ones. 

In this approach, more specifically, the sampling strategy is 
initiated by including all the streams for sampling and K  con-
secutive cycles of exploration are performed, where K  is deter-
mined by the amount of sampling resources and the fraction of 
the outliers one seeks to identify. The detailed steps of this pro-
cedure for identifying T  outliers are provided in Table 1. In this 
procedure the exploration actions are designed such that at 
least T  data streams will be retained after the exploration cycles 
for the final detection decision. 

To assess adaptation gains, we formalize the adaptive experi-
mental design problem as the minimizer of the decision quality 
under a hard constraint on the sampling budget, i.e., 
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where S  controls the sensing budget. Addressing the sensing prob-
lem in this setting sheds light on the ratio of the sensing resources 
to be allocated to the observation and exploration actions. 

To assess the gains of adaptation we investigate the following 
two settings in which the typical distribution F  is Gaussian with 

known mean and variance and the outliers are also Gaussian with 
either different mean or different variance values. Specifically, 
sequence i  is generated according to ( , ) .N i i

2n v  If sequence i  is a 
typical sequence then in n=  and ,iv v=  where n  and v  are 
known, and if it is an outlier sequence we consider two settings: 
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By defining F  as the outlier cdf that exhibits the smallest Kull-
back–Leibler (KL) divergence from ,F  a necessary and sufficient 
condition for ( )S 0PM

M"3  to successively identify a small 
fraction of the outliers is presented in the following theorem.  
Here, a small fraction refers to a fraction that grows with M  at 
a rate dominated by the growth rate of ,M Mi  where Mi  is the 
probability that a stream is an outlier. 

Theorem 1  
The decision error probability ( )SPM  tends to zero in the 
asymptote of large M  if and only if [43] 
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where ( )D $ $<  denotes the KL divergence, and St  is a constant 
independent of M  and determined by the constraints on the 
cost of sensing ( ) .S S· K. g-t  Also ( , )0 1M !f  is defined as 
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M
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where Mi  is the prior probability that a stream is an outlier. 
The necessary and sufficient conditions on ( )D F F<  in The-

orem 1 partition the ( , )D Mf  plane into two regions separated 
by sharp boundaries, as shown in Figure 1. This figure also 
compares the regions over which the adaptive and nonadaptive 
procedures are guaranteed to make error-free decisions. Specifi-
cally, the diagonally shaded region is the region in which both 
schemes succeed to detect the T  outliers. In the vertically 
dashed region, however, only the adaptive procedure succeeds 
and the nonadaptive procedure makes an erroneous decision 
almost surely, and finally both schemes fail in the horizontally 
shaded region. It is observed that, depending on the choice of 

,S  the detectability region corresponding to the adaptive 

[TABLE 1] THE ADAPTiVE oUTLYiNG sEQUENCE  
DETECTioN ALGoRiTHM.

1) set { , , }M1L1 f=

2) for t 1= to K

3) take one sample from each stream in Lt

4) set ( ) (| | )T1 Lt tb g= - -  for a prespecified constant 0 11 1g

5) discard tb  streams that are most likely typical 
6) end for 

7) set / | |s S L Ltt

K
K1

= -
=

` j8 B/  

8) take s  samples from the surviving streams 

9) output the T  sequences that are least likely typical 
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procedure can be substantially larger than that corresponding 
to the nonadaptive procedure. 

It is noteworthy that as long as the objective is to identify a 
small but prominent fraction of the outliers, the conditions 
given in (5) and (6) do not depend on the exact number of 
streams to be identified. This is due to the asymptotic nature of 
the results, which is dominantly shaped by the regime of inter-
est (small fraction) and the precise number of the outliers has a 
vanishing effect as M  grows. More general necessary and suffi-
cient conditions for identifying any desired fraction of the outli-
ers and with arbitrary distributions for the typical and outlier 
data streams are provided in [46]. 

Quickest Search for One Outlier
In this subsection we discuss a special scenario of partial recovery 
of the outliers, in which the objective is to identify only one outlier. 
While the optimal sequential strategy for solving this problem, as 
discussed in the section “Data-Adaptive Sampling,” is known, by 
imposing reasonable structures in sensing, some optimality prop-
erties can be ensured as .M " 3  Specifically, when the sampling 
strategy is constrained to 

1)	observe only one data stream at a time, i.e., | | 1Lt =  for 
all { , , }t 1 f! x

2)	once a data stream is discarded after an exploration action, it 
will be discarded permanently, and the next stream to be exam-
ined will be selected randomly from the ones that remain 
3)	outliers have identical distributions denoted by ,F

the quickest search for detecting an outlier can be restated as 

	
}

}

. ( , , ) .
[ ]min

s.t P
E

L
, ,

M

L

#x t

xx

x x

x x � (8)

The sequential and data-adaptive sampling strategy that 
optimizes the above tradeoff between the average number of 
measurements and the decision quality (false alarm probabil-
ity) is the cumulative sum (CUSUM) test [47]. In this test, one 
of the sequences is selected at random and measurements are 
taken from this sequence sequentially. After taking each sam-
ple and given all the information accumulated, the likelihood 
that the sequence under scrutiny is an outlier is updated. If 
this likelihood exceeds a certain threshold ,Ur  the sequence is 
declared an outlier; if it falls below a certain threshold Lr  it is 
discarded permanently and another sequences will be selected 
to test; and if the likelihood remains within the interval 
[ , ]L Ur r  another sample is taken from the same sequence. By 
defining tr  as the likelihood that the sequence observed at 
time t  is an outlier given the information accumulated up to 
time ,t  the details of the optimal sampling strategy are 
presented in Table 2 with its optimality established by the 
following theorem. 

Theorem 2 
The optimal stopping time for the quickest search problem in 
(8) is [48]

	 { : } ,inf t t U2x r r=

and the optimal sampling strategy at time t  switches to a new 
sequence if .t L1r r  The thresholds Lr  and Ur  are deter-
mined uniquely as functions of g  and the observation cdfs. 

GRoUP SAMPLiNG
Motivated by the insights gained from partial recovery of outli-
ers, i.e., rough measurements can be sufficient for eliminating 
a substantial fraction of the typical streams through the explo-
ration process, we next discuss the idea of group sampling, aim-
ing at basing some of the decisions on even rougher 
measurements. Group sampling is facilitated by the possibility 
of taking samples that are combined measurements from multi-
ple sequences. The ultimate objective of such measurements is 
to expedite the process of exploration and reduce the dimension 
of the search space with fewer measurements. 

A central principle in designing the observation action in the 
previous section was that at any given time ,t  one measurement 
is taken from each data stream included in .Lt  In this section, in 
contrast, we consider two types of samples: coarse and fine sam-
ples, which bear information with different qualities. Coarse sam-
ples are constructed by linearly combining simultaneous 
measurements from a group of data streams. While such coarse 
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[FiG1]  ( )D F F<  versus the prior likelihood Mf  for Gaussian 
distributions with (a) a different mean and (b) different 
variance values.
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measurements are not informative for identifying the outliers, 
they can often be informative enough to discard a group of typical 
data streams altogether, especially when M  is very large and the 
outliers occur very rarely. When such coarse samples are not suf-
ficient to discard a block, or the block is deemed to contain an 
outlier, then the data streams constituting the blocks are meas-
ured individually via fine samples to refine the information about 
the status of the data streams within the block. Inclusion of 
coarse measurements reduces the required sampling budget. 

Taking such coarse samples in some applications has a natu-
ral interpretation. For instance, in wideband spectrum sensing 
in which the majority of the channels are occupied and a mobile 
radio is interested in identifying rare spectrum opportunities 
(abstracted as outliers), due to the broadcast nature of the wire-
less channels, any measurement taken by the interested party is 
a linear superposition of the measurements that it can take 
from the channels individually via appropriate filtration. 

For this purpose, we divide the data streams into blocks of size 
,  and take one sample that is a linear combination of ,  measure-
ments from the data streams. Such block sampling has, broadly, a 
twofold effect. On one hand, it takes only one sample for accumu-
lating information about the ,  sequences and is substantially 
smaller than the resources needed by the existing approaches 
that devote at least one sample to each sequence. On the other 
hand, one combined and aggregated sample is less informative 
about the status of the individual sequences in comparison to 
having ,  different samples. To benefit from the advantage (reduc-
tion in sampling rate) and avoid its undesired effects (inaccurate 
information) these combined samples are used only to obtain 
some rough confidence about whether the block of data streams 
include outliers. When a block is deemed to include only typical 
data streams the entire block is discarded. Alternatively, if the 
block is deemed to include an outlier, then the block is retained 
for further scrutiny through more refined (fine) measurements. 

Quick Search for a Subset  
of Outliers via group sampling 
We define /r M ,_  to be the number of blocks and without loss of 
generality we define 

	 {( ) , , }i i1 1Gi f, ,_ - + � (9)

to be the set of the data streams grouped in the ith  block for 
{ , , } .i r1 f!  With the ultimate objective of identifying T  outli-

ers the proposed sampling procedure is initiated by taking 
coarse samples from all groups ., ,G Gr1 f  Based on these 
coarse observations a fraction of the groups that are least likely 
to contain outliers are discarded and the rest are retained for 
more accurate scrutiny. Repeating this procedure successively 
refines the search support and progressively focuses the obser-
vations on the more promising blocks. More specifically, at each 
time the sampling procedure selects a subset of the blocks 
{ , , }GG r1 f  and takes one coarse sample from each of these 
blocks. Upon collecting these measurements, it takes one of the 
following actions: 

■■ Observation: Following the spirit of the generic observation 
action defined earlier, this action is taken in case of lack of suf-
ficient confidence for deciding whether the blocks under scru-
tiny contain outliers. 

■■ Exploration: There is sufficient confidence that some of the 
blocks are very unlikely to contain an outlier; discard a portion 
of the groups with the highest likelihoods of containing only 
typical data streams. This step can be designed similarly to the 
adaptive sampling procedure in Table 1. 

■■ Coarse sampling termination: There is sufficient confidence 
that the blocks retained contain outliers; stop coarse sampling 
and start taking fine samples and perform SPRTs on individual 
sequences until an outlier is identified. If, after performing 
SPRTs on all sequences in the block, none is identified as an 
outlier, the sampling procedure resets by moving to the next 
block and starts taking coarse samples.
After terminating coarse sampling, the retained data streams 

contain a substantially more condensed proportion of outliers to 
typical data streams. When the block length 1, 2  and the explo-
ration action are designed carefully, while enjoying the same sens-
ing budgets, adaptive group sampling yields a more reduced 
dimension for the search space compared with the adaptive proce-
dure of the section “Quick Search for a Subset of Outliers” (i.e., 

) .1, =  Similar to the mean and variance testing problems for 
partial recovery of the outliers presented in the section “Quick 
Search for a Subset of Outliers,” the following theorem presents a 
necessary and sufficient condition for ( ) ,S 0PM

M"3  for 
( )SPM  defined in (3), to successively identify a small fraction of 

the outliers. F  denotes the outlier cdf that minimizes the KL 
divergence from .F

Theorem 3 
For fixed block size ,,  the decision error probability ( )SPM  tends 
to zero in the asymptote of large M  if and only if [49] 
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where St  and ( , )0 1M !f  are defined in Theorem 1. 
This result indicates that as ,M " 3  the region of outliers that 

are undetectable by the adaptive procedure delineated by (5) and 

[TABLE 2] THE QUiCKEsT sEARCH foR oNE oUTLiER.

1) initialize ,t 0=  ,11z =  ,Lr  and Ur

2) t t 1! +  

3) set { }Lt tz=  

4) take one sample from Lt  

5) update tr  

6) if t L#z r  

7) ;1t t1z z= ++  go to 2 

8) else if L t U1 1r r r  

9) ;t t1z z=+  go to 2 
10) end if 

11) set ;tx =  output the sequence tz  



	 IEEE SIGNAL PROCESSING MAGAZINE  [52]  SEPTEMBER 2014

(6) and depicted in Figure 1 is further shrunk by a factor of ,  
through group sampling. 

Quickest Search for One  
Outlier via group sampling
Similarly to the partial outlier recovery scenario, the quickest 
search approach of the section “Quickest Search for One Outlier” 
for identifying one outlier can be further extended by accommo-
dating group sampling into the sampling strategy. 

In the simplest scenario, the sequences can be bundled into 
groups of size 2, =  and the combined measurements taken will 
be the sum of two independent samples from each sequence. This 
leads to three possibilities for the distribution of the combined 
measurement. The sampling strategy is initiated by selecting a 
bundle at random and taking a mixed measurement from that 
sample and follows, in spirit, the same steps as the quickest search 
procedure in the section “Quickest Search for One Outlier.” Spe-
cifically, when there is sufficient confidence that the group does 
not contain an outlier, the block is discarded; when there is a lack 
of confidence for making any reliable inference about the block, 
one more mixed sample is taken; and when there exists sufficient 
confidence that the block contains an outlier, taking combined 
measurements is terminated, and then the sequences contained in 
the block are examined individually to identify an outlier. 

Designing the optimal sampling strategy involves characteriz-
ing two optimal stopping times, one corresponding to the termi-
nal time of taking combined measurements, and the second one 
corresponding to reaching a decision for individual sequences 
after taking combined measurements is terminated. An effective 
approach for identifying these stopping times is proposed in [50], 
where a CUSUM test is applied to the sequence blocks to find a 
promising block, and then SPRTs are applied on the individual 
sequences to reach decisions about their underlying distributions. 

UNiVERsAL OUTLYiNG SEQUENCE DETECTioN
Depending on the underlying application, the underlying statisti-
cal models of the data streams might or might not be known. 
Whether the distributions of both typical and outlier sequences 
are known, only one is known, or both are unknown, outlier 
detection approaches can take drastically different structures. Rep-
resentative examples are spectrum sensing in congested wideband 
channels as a case in which both distributions can be known 
(spectrum holes are the outliers) and fraud detection as a case in 
which either the outlier (fraud) or both distributions are 
unknown. When the statistics are fully known strategies that bal-
ance the interplay among different measures optimally can be 
characterized optimality according to the abstraction given in (2). 
These optimal strategies can be shown to be exponentially consist-
ent and all the observation, exploration, and detection actions 
have likelihood-ratio-like structures [43]. 

When there exist uncertainties associated with the descriptions 
of the statistical models, the outlying sequence detection problem 
is related to general composite hypothesis testing problems, for 
which the generalized likelihood principle, which exhibits certain 
asymptotic optimality properties [51]–[53], is a popular solution. 

Universal outlying sequence detection is also closely related to 
homogeneity testing and classification [51], [54]–[58]. In homoge-
neity testing, one wishes to decide whether or not two samples 
come from the same probability law. In classification problems, a 
set of test data is classified to one of multiple streams of training 
data with distinct labels. 

In this section, we investigate the effects of uncertainties about 
the statistics of the outliers and discuss a universal approach for 
identifying outliers in which, besides the premise that the outliers 
follow a distribution distinct from that governing the typical data 
streams, no knowledge of their statistics is assumed [59]. To focus 
the attention on the effects of unknown statistics, we mainly con-
sider a simple setting in which it assumed that 

1)	only one data stream is an outlier and the remaining M 1-  
ones are typical 
2)	we have access to n  samples from each data stream 
3)	the samples belong to a finite set .Y
Under the hypothesis that the ith coordinate is the outlier, the 

joint distribution of all the observations (i.e., the likelihood func-
tion) is 
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where 

	 , , , , , ,y y y i M1( ) ( ) ( )i i
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and fr  and f  denote the probability mass functions (pmfs) of the 
outlier and typical streams, respectively. 

For a universal detection rule : { , , },M1YMn " fd  which is 
not allowed to depend on f  and ,fr  the maximal error probability, 
which will be a function of the test and ( , ),f fr  is 
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with the corresponding error exponent, denoted by 

	 ( , , ) ( , , ) .lim logf f n e f f1
n

a d d= -
"3

9r r � (12)

We consider the error exponent as n  goes to infinity, while ,M  
and hence the number of hypotheses, is kept fixed. Consequently, 
the error exponent in (12) also coincides with the one for the aver-
age probability of error. 

A test is termed universally consistent if ( , , )e f f 0"d r  for any 
( , ),f fr  f f!r  as .n " 3  It is termed universally exponentially 
consistent if ( , , ) .f f 02a d r

Universal Test
For each , , ,i M1 f=  denote the empirical distribution of y( )i  by 

.ic  When f  is known and fr  is unknown, we compute the likeli-
hood for outlier hypothesis i  by replacing fr  in (10) with its maxi-
mum likelihood (ML) estimate ,f i i_ crU  as 
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Similarly, when neither fr  nor f  is known, we compute the like-
lihood for outlier hypothesis i  by replacing the fr  and f  in (10) 
with their ML estimates ,f i i_ crU  and / ( ),f M 1i jj i

_ c -
!

t ` j/  as 

	 ( ) { ( ) ( )} .L y f y f y( ) ( )
i

Mn

t

n

i t
i

i
j i

t
j

1

univ =
!=

r tU% % � (14)

Finally, we decide upon the coordinate with the largest likeli-
hood to be the outlier. Using (13) and (14), our universal tests in 
the two cases can be described respectively as 

	 ( ) ( ),argmaxy L y
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when only f  is known, and 

	 ( ) ( ),argmaxy L y
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when neither fr  nor f  is known. 

Results
Our results will be stated in terms of a distance metric between a 
pair of pmfs ,p q P Y! ^ h called the Bhattacharyya distance, 
which is related to the Chernoff information (see, e.g., [60]), 
defined as 
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Our first theorem for models with one outlier characterizes the 
optimal exponent for the maximal error probability when both fr  
and f  are known, and when only f  is known. 

Theorem 4 
When fr  and f  are both known, the optimal exponent for the 
maximal error probability is equal to [59]

	 ( , ) .B f f2 r � (18)

Furthermore, the error exponent in (18) is achievable by a test 
that uses only the knowledge of .f  In particular, such a test is our 
proposed test in (15). 

Consequently, in the completely universal setting, when noth-
ing is known about fr  and f  except that ,f f!r  and both fr  and f  
have full supports, it holds that for any universal test ,d  

	 ( , , ) ( , ) .f f B f f2#a d r r � (19)

Given the second assertion in Theorem 4, it might be tempting 
to think that it would be possible to design a test to achieve the 
optimal error exponent of ,B f f2 r^ h universally when neither fr  
nor f  is known. A counterexample given in [59] shows that this is 
not possible. This motivates us to seek instead a test that yields 
just a positive (no matter how small) error exponent 

, , )f f 02a d r^ h  for every fr  and ,f  ,f f!r  i.e., a test that achieves 
universally exponential consistency. Without knowing either fr  or 
,f  it is not clear at the outset that even this lesser objective can be 

met. One of the main contributions in [59] is to show that the 

proposed universal test in (16) is indeed universally exponentially 
consistent for every fixed .M

Theorem 5 
For every pair f f!r
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It can be shown that the solution ( , , )f f 0univ 2a d r  [59].
Note that for any fixed M 3$  and ,02i  regardless of which 

coordinate is the outlier, it holds that the random empirical distri-
butions , , M1 fc c^ h satisfy 
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where · 1  denotes the 1-norm of the argument distribution. 
Since ( / ) ( )/M Mf M f f1 1 "+ -r  as ,M " 3  heuristically speak-
ing, a consistent estimate of the typical distribution can readily be 
obtained asymptotically in M  at the outset from the entire obser-
vation set before deciding upon which coordinate is the outlier. 
This observation and the second assertion of Theorem 4 motivate 
a study of the asymptotic performance (achievable error expo-
nent) of univd  when M " 3  (after having taken the limit as n  
goes to infinity). 

Theorem 6 
 For each M 3$
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where ( ( ))log minC f yf
y Y
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 by the fact that f  has a full 
support [59].

The lower bound on the error exponent in (22) is nondecreas-
ing in .M 3$  Furthermore, as ,M " 3  this lower bound con-
verges to the optimal error exponent ( , );B f f2 r  hence, our test is 
asymptotically optimal: 

	 ( , , ) ( , ),lim f f B f f2
M

univa d =
"3

r r � (23)

which from Theorem 4 is equal to the optimal error exponent 
when both fr  and f  are known. 

Example 1
We now provide some numerical results for an example with 

{ , } .0 1Y =  Specifically, the three plots in Figure 2 are for three 
pairs of outlier and typical distributions being ( ( ) . ,f p 0 0 3= =r  

( ) . ), ( . , . ); ( . , . ),p f f1 0 7 0 7 0 3 0 35 0 65= = =r  ( . , . );f 0 65 0 35=  and 
( . , . ), ( . , . ),f f0 4 0 6 0 6 0 4= =r  respectively. Each horizontal line 

corresponds to ( , ),B f f2 r  and each curved line corresponds to the 
lower bound in (22) for the error exponent achievable by .univd  As 
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shown in these plots, the lower bounds converge to ( , )B f f2 r  as 
,M " 3  i.e., univd  is asymptotically optimal for all three pairs , .f fr

Models with at Most One Outlier
A natural question that arises at this point is what would happen if 
it is also possible that no outlier is present? To answer this question, 
we now consider models that append an additional null hypothesis 
with no outlier to the set of possible hypotheses. In particular, 
under the null hypothesis, the likelihood function is given by 
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A universal test : { , , , }M0 1YMn " fd  will now also accommo-
date an additional decision for the null hypothesis. Correspond-
ingly, the maximal error probability is now computed with the 
inclusion of the null hypothesis according to 
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With just one additional null hypothesis, contrary to the previ-
ous models with one outlier, it becomes impossible to achieve uni-
versal exponential consistency even with the knowledge of the 
typical distribution. This pessimistic result reaffirms that our pre-
vious finding that universal exponential consistency is attained for 
the models with one outlier is indeed quite surprising. 

Proposition 1 
For the setting with the additional null hypothesis, there cannot 
exist a universally exponentially consistent test even when the 
typical distribution is known [59].

In typical applications such as environment monitoring and 
fraud detection, the consequence of a missed detection of the out-
lier can be much more catastrophic than that of a false positive. In 
addition, Proposition 1 tells us that there cannot exist a universal 
test that yields exponential decays for both the conditional 

probability of false positive (under the null hypothesis) and the 
conditional probabilities of missed detection (under all nonnull 
hypotheses). Consequently, it is natural to look for a universal test 
fulfilling a lesser objective: attaining universal exponential consist-
ency for conditional error probabilities under only all the nonnull 
hypotheses, while seeking only universal consistency for the con-
ditional error probability under the null hypothesis. We now show 
that such a test can be obtained by slightly modifying our earlier 
test. Furthermore, in addition to achieving universal consistency 
under the null hypothesis, this new test achieves the same expo-
nent as in (20) in Theorem 5 for the conditional error probabilities 
under all nonnull hypotheses. 

In particular, we modify our previous test in (16) to allow for 
the possibility of deciding for the null hypothesis as: 
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where ( ) .O nnm =

Theorem 7 
For every pair of distributions , , ,f f f f!r r  the test in (24) yields a 
positive exponent for the conditional probability of error under 
every nonnull hypothesis , , ,i M1 f=  and a vanishing condi-
tional probability of error under the null hypothesis [59]. In 
particular, the achievable error exponent under every nonnull 
hypothesis is the same as that given in (20). 

Furthermore, as ,M " 3  the test in (24) is asymptotically 
optimal under each of the nonnull hypotheses, i.e., 

	 ( , ),lim lim logn i B f f1 2  P
M n i !d- =
" "3 3

r^ h" , � (25)

while also yielding that 

	 .lim 0 0P
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Extension to Multiple Outliers
The aforementioned results on universal outlying sequence 
detection can be extended to the setting with more than one 
outlier [59]: 

■■ For the setting with a known number of distinctly distrib-
uted outliers, we can construct a universally exponentially 
consistent test using the generalized likelihood principle as 
in the section “Universal Test.” A key difference from the sin-
gle outlier case is that the error exponent when both the out-
lier and typical distributions are known can be larger than 
that when only the typical distribution is known. 

■■ For the setting with a known number of identically distrib-
uted outliers, the error exponent when both the outlier and 
typical distributions are known is equal to that when only the 
typical distribution is known, which is equal to ( , )B f f2 r  (the 
same as for the case of a single outlier). Furthermore, the uni-
versally exponentially consistent test when both the outlier 
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[FiG2]  An illustration of the asymptotic optimality of .univd
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and typical distributions are unknown is asymptotically opti-
mum as M " 3  (with the number of outliers fixed) in that its 
error exponent is also equal to ( , ) .B f f2 r

■■ For the setting with an unknown number of identically 
distributed outliers, we construct a test based on modified 
application of the generalized likelihood principle to achieve 
a positive error exponent under each nonnull hypothesis, and 
also consistency under the null hypothesis universally. 

■■ When the outliers can be distinctly distributed (with their 
total number being unknown), it can be shown that a uni-
versally exponentially consistent test cannot exist, even 
when the typical distribution is known and the null hypothe-
sis is excluded.

CoNCLUDiNG REMARKs
In this article, we have discussed the problem of identifying outly-
ing sequences from a large pool of sequences that is populated by 
typical sequences. By crafting the problem as a natural dichoto-
mous hypothesis testing problem, we have discussed three gen-
eral classes of strategies for outlying sequence detection based on 
different detection objectives and available information about the 
statistics of the outliers. In this class, we have discussed sequen-
tial data-adaptive approaches in which there is no prespecified 
order for making measurements from the sequences, and the 
sampling decisions are made dynamically at each time and based 
on the information accumulated up to that time. Depending on 
whether one is interested in identifying all outlying sequences, a 
fraction of them, or only one of them, the data-adaptive sampling 
strategies exhibit different structures. An important insight one 
gains from these approaches is that if the objective is not identify-
ing all outliers, incorporating an exploration stage, which uses 
rough observations to reduce the dimension of the data set with 
more condensed proportion of outliers, translates into substantial 
reduction in the cost of sensing. Motivated by this insight, in the 
second class of approaches we have discussed the notion of group 
sampling, in which the sequences are split into groups and in the 
exploration stage the sequences are not measured individually, 
but instead, rough observations in the form of combined meas-
urements from sequence groups are made. Finally, in the third 
class, we have investigated the effects of uncertainties about the 
statistics of the outliers and have discussed a universal approach 
for identifying outliers, in which besides the premise that the out-
liers follow a distribution distinct from that governing the typical 
data streams, no knowledge of their statistics is assumed. Our 
generalized likelihood approach was based on using the empirical 
distributions of the data streams. A recent study [61] adopts an 
alternative kernel-based test, which applies the metric of maxi-
mum mean discrepancy that measures the distance between 
embeddings of distributions into a reproducing kernel Hilbert 
space. We further note that in our discussion of universal outly-
ing sequence detection, we have restricted attention to the fixed 
sample size setting in which every sequence is sampled at every 
time step. Extending the study of universal outlying sequence 
detection to the sequential and adaptive sampling settings is a 
challenging open area of research that is worthy of pursuit. 
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