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Abstract—This paper considers multiuser interference chan-
nels in which the transmitters have imperfect channel state
information (CSI) where CSI perturbations are modeled stochas-
tically. Transmitters are assumed to be equipped with multiple
antennas serving single-antenna receivers. Transmitters use pre-
designed discrete codebooks for beamforming directions and
dynamically (based on the available CSI) select the best set
of beamformers from the given codebook. The objective is to
perform optimal power allocation to different users while certain
quality of service (QoS) guarantees are ensured for the users.
Imposed by stochastic CSI uncertainties, guarantees provided
for the QoS measures have a stochastic nature too. The primary
focus is placed on the interference channels for which two power
allocation problems are considered. The first problem minimizes
power consumption subject to serving users at certain data
rates and the second problem considers max-min rate allocation
subject to given power budgets for the transmitters. The core step
in formalizing these problems in mathematically tractable forms
relies on using Bernstein approximation, which approximates and
convexifies the non-convex stochastic guarantees by conservative
convex and deterministic counterparts. For solving this resulting
convex and deterministic optimization problem, a specialized
version of the long-step logarithmic barrier cutting plane (LL-
BCP) algorithm is used. Effectiveness of the proposed solutions
and comparisons with other existing methods are assessed via
extensive simulation results.

Index Terms—Multiple-input single-output (MISO), interfer-
ence channel, broadcast channel, power control, probability-
constrained optimization, Bernstein approximation.

I. INTRODUCTION

NTERFERENCE channels are among the most important
building blocks of the modern multiuser communication
networks. These channels emphasize the disruptive effects of
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interference that independent transmitter-receiver links impose
on one another and is the fundamental model for studying
interference management, e.g, inter-cell interference manage-
ment in multi-cell multiuser networks [1]. Motivated by the
significance of these multiuser channels their fundamental
limits have been the subject of extensive studies. Exploiting
the spatial selectivity of the channels and directional signal
steering enabled by multi-antenna transmitters is known to
be an effective approach to focus the energy of a transmitter
towards its intended receiver(s) and harness its disruptive
effects on the non-intended receivers.

Optimal directional transmission (beamforming) strongly
hinges on the availability of perfect channel state information
(CSI) at the transmitters sites. This requirement is, however,
hard to meet in practice where there are multiple reasons,
including channel estimation errors, delayed estimation finite-
rate feedback channels, and quantization errors, causing per-
turbations to the CSI. It is shown that treating the imperfect
CSI as perfect CSI and applying the optimal solutions for
perfect CSI settings lead to rapid performance degradation as
CSI perturbation level increases [2]. Driven by this observation
and the premise that acquiring CSI is via only imperfectly there
is a growing interest and body of literature studying the effects
of CSI imperfections on designing the transmission strategies,
which we review next.

Depending on the nature of CSI uncertainties there exist,
broadly, two approaches coping with such uncertainties. In
one approach the CSI uncertainties are assumed to be pri-
marily shaped by the quantization errors introduced by finite-
rate feedback from the receivers to the transmitters. In this
approach channel uncertainties are modeled as bounded values
confined within known hyper-spherical regions and the objec-
tive is to provide worst-case guarantees for the performance
of the network. More specifically, these approaches search in
the channel states uncertainty regions and identify the channel
states that yield the weakest performance for the network and
declare it as the worst-case performance, which in turn serves
as a guaranteed performance level for the network. Such worst-
guarantees are studied for power optimization in broadcast
channel in [3], for beamforming in broadcast channels in [4]—
[6], for beamforming in interference channels in [7], and for
beamforming in multi-cell downlink transmission in [8], [9].
The worst-case-based optimization approaches provide robust-
ness against CSI imperfections. Nevertheless, the actual worst
case may occur with a very slim chance. Hence, the worst-
case approach may be overly pessimistic and therefore, may
lead to unnecessary performance degradation. The resulting
optimization problem sometimes does not even have a feasible
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solution and even if the problem is feasible, the resource
utilization is inefficient as most system resources must be
dedicated to provide guarantees for the worst-case scenarios.

In order to provide less conservative solutions in favor
of improved performance, in the second approach the CSI
uncertainties are modeled stochastically that can potentially
lie within bounded or unbounded regions. In this approach,
instead of deterministic worst-case guarantees, probabilistic
guarantees are provided for network performance. In these
approaches the probabilistic guarantees are often approxi-
mated and convexified by deterministic ones and often exhibit
improved average performance compared with the worst-
case solutions, which controlling the likelihood of the worst-
case performance. The relevant literature on stochastic im-
perfect CSI is mostly focused on single-user channels and
multiuser broadcast and multiple access channels. Effects of
channel uncertainties on the capacity of single-user multi-
antenna systems is analyzed in [10] where lower and upper
bounds on the mutual function are derived. Designing robust
transceivers in single-users multi-antenna channels is studied
in [11]. Receiver design in multiple access channels and its
pertinent space-time code design are considered in [12] and
[13], respectively, and transmission precoding in broadcast
channels is studied in [10]-[12], [14]-[18]. Specifically, non-
linear precoding (Tomlinson-Harashima) is treated in [16]
where the stochastic quality of service (QoS) constraints are
converted to deterministic second-order cone constraints via
Schur-Complement properties. Power control under linear pre-
coding (beamforming) in broadcast channels is studied in [17]
where Vysochanskii-Petunin inequality is used to transform
the problem into a deterministic convex optimization problem,
and finally, beamforming under stochastic CSI uncertainties is
studied in [14], [15] where the stochastic QoS guarantees are
converted to conservative deterministic ones via a Bernstein-
type inequality [19].

This paper focuses on interference channels, in which
multiple independent multi-antenna transmitters wish to com-
municate with their respective single-antenna receivers. We
assume that the multi-antenna transmitters employ some fixed
beamformers to perform directional transmission and treat two
closely related optimization problems. In the first problem
the objective is to minimize the total transmission power
subject to outage constraints, and in the second problem
the goal is to maximize the achievable rate margins under
the power constraint. We make use Bernstein approximation
technique [20], [21], which is a recent advance in the field
of chance-constrained programming that provides conservative
deterministic, convex, and computationally tractable approx-
imations for a computationally intractable probabilistic con-
straints.

It is noteworthy that the Bernstein approximation approach
is different from the Bernstein-type inequality approach of
[14], [15], [19] used for beamforming design in broadcast
channels. Specifically, Bernstein-type inequality of [19] is a
concentration-based inequality that upper bounds the likeli-
hood that a quadratic function of a set of Gaussian random
variables deviates from the concentration point. Bernstein
approximation method of [20], on the other hand, builds
approximates for the chance constraints under the assumption
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that the constraints are affine in perturbations and the entries
of the perturbations are independent. Advantages of Bernstein
approximation over Bernstein inequality are demonstrated via
simulation results in Section IV, respectively. Finally, we re-
mark that Bernstein approximation method was first deployed
in wireless communication for treating chance-constrained
resource allocation in adaptive adaptive orthogonal frequency
division multiple access (OFDMA) systems [21] and we use
the technique for applying on power allocation in multi-input
single-output (MISO) interference channels.

The remainder of this paper is organized as follows. The
chance-constrained power optimization problems in interfer-
ence channels is formalized in Section II. In Section III, we
offer the solutions to the stochastic optimization problems
based on the Berstein approximation technique and the long-
step logarithmic barrier cutting plane (LLBCP) algorithm.
Section IV presents the simulation results and finally, the
concluding remarks are provided in Section V.

II. PRELIMINARIES
A. System Model

We consider a MISO interference channel with K trans-
mitters and K receivers. Each transmitter employs M trans-
mit antennas and each receiver is equipped with a single
receive antenna. We assume that all receivers treat co-channel
interference as noise, i.e., they make no attempt to decode
the interference. Assuming a narrowband channel model, the

received signal at receiver ¢ € {1,..., K} is given by
yi = hyz; + Zhijwj + g, (D
J#i

where x; € CM*! is the transmitted signal vector by the
i-th transmitter, h;; € C**M is the channel vector linking
the j-th transmitter and the i-th receiver, and n; ~ N¢(0,7?)
is the additive complex Gaussian channel noise. Transmitters
employ beamforming to perform directional transmission and
we denote the beamforming vector of the i¢-th transmitter
by w; € CM*! Therefore, for the transmission vector of
the i-the transmitter we have x; = w;s;, where s; € C
denotes the complex data symbol intended for the i-th receiver.
We assume that the receivers can acquire perfect CSI while
the transmitters have access to only imperfect CSI. More
specifically, we assume that channel h;; can be decomposed
nto

hij & hij + 6, 2

where iLij denotes the imperfect estimate of the channel vector
hij, known to transmitter ¢, and J;; denotes the unknown
part of h;; with covariance matrix C; = E[ég d;;]. Driven
by the practical needs of multiuser systems we assume that
beamforming directions are selected from pre-designed beam-
forming codebooks [3], [17], e.g., discrete Fourier transform
(DFT) based codebooks in Long Term Evolution (LTE) sys-
tems. Hence, we assume that the beamforming vector w; can
be decomposed as

wi = \/pi g, 3)

where p; and g, denote the power and direction of w;, i.e.,
pi = ||w;||? and ||g,||*> = 1. The beamforming directions {g, }
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are based on known the channel estimates {h;}. On the other
hand, the design of the transmission powers {p; } is much more
sophisticated and it depends not only on the channel estimates,
but also on the channel perturbation statistic. In this paper, we
assume that the beam directions {g,} are selected based on
{h;} and are fixed, and we focus on the power allocation
problem, i.e., finding the optimal choices of {p;}. Finally, we
assume that the receivers employ single-use decoders where
the interferers at each receiver are treated as Gaussian noise.
Hence, the signal to noise plus interference ratio (SINR) of
the ¢-th user is

pilhiig|®

SINR; = )
n* + ;,pﬂhijgﬂz
j#

“

and consequently, the rate sustained by the channel linking the
i-the transmitter to the i-th receiver is

R; = log(1+SINR;) . 5)

B. Problem Formulations

We next formulate the chance-constrained power allocation
problems. Our goal is to optimize power allocation, while, in
parallel, stochastic constraints on outage events are satisfied.
We consider two chance-constrained optimization problems as
follows.

1) Rate-constrained Power Optimization: The first problem
seeks to minimize the average transmit power subject to the
rate constraints. Specifically, given the desired rate r; and
outage probability ¢; for the ¢-th transmitter and receiver pair,
we aim to minimize the average transmit power while meeting
the rate outage constraints of all users, i.e.,

. K
. ming, 1 Zi:l Pi
Pi(r,e) = s.t. PRy < 1) < e, Vi
0 S pi Vi

; (6)

where 7 = [r1,...,7k], € £ [e1,...,6K], and P(A) denotes
the probability of the event A. The design parameter ¢; ensures
that receiver ¢ is served with rate R; no less than r; at least
(1 —€;) x 100% of the time.

2) Max-Min Rate Optimization: The second problem seeks
to maximize the minimum rate among all users, subject to rate
outage constraints, and individual transmit power constraints.
This problem can be cast as

min; 7;

PR, < 1) <

maxgy, }
Pa(p, €) = S.t.

(N
where p 2 [p1,...,Px] captures the individual power con-
straints. In problems Pi(r,e) and Ps(p,e) given in (6)
and (7), respectively, the probabilistic constraints make the
optimization intractable. To circumvent the above hurdles, we
make use of the Bernstein approximation technique [20], [21]
to convert the probabilistic constraints to convex deterministic
constraints. Next we briefly introduce the Bernstein approxi-
mation.
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3) Bernstein Approximation: Consider the following opti-
mization problem:

®)

p & { mingexy f(x)
s.t. P(F(x,{) > 0) < e

where ¢ is a random vector supported on Z C R?, € R”
and F': R" x R — R is a function of z € R™ and ¢ € R%.
Also define v : R — R as a non-negative, non-decreasing,
and convex function satisfying (z) > ¢(0) = 1 for all
x € Ry. Then, as discussed in details in [20] and reviewed
in [21], the chance-constrained optimization problem P can
be approximated conservatively by the following deterministic
optimization problem:
mingex f(x)

P £ s.t. inf {U(xz,t) — tloge} <0 , (9)
0<t
where
U(a,t) £ t logE{y[t ' F(z,¢)]} . (10)

Moreover, when F(-,¢) is convex in its first argument for a
given ¢, by following the same footsteps as in [20] it can be
readily shown that

irtlf{\i/(m,t) —tloge} (11)
is also convex. As an important special of the optimization
problem P, when the components of the random vector ¢ £
[C1,...,¢q] are independent, F'(z, () is affine in ¢, i.e.,

d
F(@,¢) = fol@) + Y ¢ifi(®) (12)
j=1

where the functions f;(x),j = 0,1, ..., d, are well defined and
convex on R", and we set 1(2) £ exp(z), then the function
U(x, ¢) defined in (10) is convex and we have

d
U(w,t) = fo(m)+ > tlogE{exp[t™'¢;fi(®)]}  (13)

Jj=1

Hence, by using the Bernstein approximation method of [20],
the optimization problem P with stochastic constrains can be
converted to the optimization problem P with convex and
deterministic constraints.

III. POWER OPTIMIZATION IN INTERFERENCE CHANNELS

In this section, we apply the Bernstein approximation to ob-
tain the convex approximations to the probabilistic constraints
in problems (6) and (7) and then solve the resulting convex
problems using the long-step logarithmic barrier cutting plan
(LLBCP) algorithm.

A. Rate-constrained Power Optimization

The major difficulty in the robust power optimization design
is to convert the probabilistic constraint into a deterministic
one. To that end we apply the Bernstein approximation to
obtain the counterpart deterministic approximation in the
following proposition.
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Proposition 1: The stochastic rate-constrained power op-
timization problem P;(r,e) defined in (6) can be approxi-
mated conservatively by the deterministic optimization prob-
lem P (7, €) defined as

751 (7’,6) £
. K
ming,y > Pi
s.t. inf;, >, {Vi(p,t;) —tiloge;} <0,Vi

0 S Di Vi
(14)

where we have defined

\Ij(patl)
fon? 4 (3 Ozipj|17/ijgj|2 B
i 1-— ti aiij'iZj

—t; (log (1 — t;laipjafj) —log (1 —t; 'pio})) (15)

pilhiig;|?

1 —t; 'pio?,

a; 22m 1 (16)

pi & max {picrizi , mix aipjafj} (17)
VE

ol 2 1ICi g1 (18)

Proof: See Appendix A. |

B. Max-Min Rate Optimization

We next consider the max-min rate optimization problem as
formalized in (7). Since it is difficult to verify directly whether
problem (7) is convex, we use the similar method in [9] to
solve (7). Specifically, by introducing a slack variable a > 0,
the epigraph form of the robust max-min rate optimization
problem with individual power constraints (7) is given by

max{pq,}ﬂ a
Pa(p,e) = { st

19)
We demonstrate that solving S(p) can be facilitated via
solving a power optimization problem defined as

S(p,e,a) = { st

(20)
which can be solved using the similar method for solving the
chance-constrained power minimization problem given in (6).
The connection between Po(p, ) and S(p, €, a) is given by
the following Proposition

Proposition 2: Problem S(p, €, a) is strictly increasing and
continuous in a at any feasible solution and it is related to
Pa(p, €) via

S(p,e,P2(p,e)) = 1.

Proof: See Appendix B. [ ]
Since S(p, €, a) is strictly increasing and continuous in a,
there exists a unique a* satisfying S(p, €,a*) = 1. It follows
from Proposition 2 that solving P2 (p, €) boils down to finding
a* that satisfies S(p,e,a*) = 1. Due to monotonicity and
continuity of S(p,e,a), a* can be obtained by a bi-section

21
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search over a. The iterative bi-section search for given a,
involves solving S(p, €, a), which in turn, can be solved using
the chance-constrained power optimization problem Py (7, €).

C. Long-step Logarithmic Barrier Cutting Plane (LLBCP)
Algorithm

It is well-known that the convex optimization problem, as
usual, can easily achieve the global optimum, such as in
[22]. However, the constraint of the approximate deterministic
convex optimization in (14) itself is a convex optimization
problem. It is not in a standard form for which computationally
efficient methods already exist and cannot be solved by
straightforward application of the know convex optimization
methods. In this Section we propose to use the long-step
logarithmic barrier cutting plane (LLBCP) algorithm to solve
1t.

The detailed characteristics and development of the LLBCP
algorithm can be found found in [23] [24]. Here we outline the
basic ideas of this method. Suppose that we would like to find
a solution p that is feasible for (14) and is a reasonable vicinity
of the optimal solution, i.e., ||[p — p*|| < €', for some optimal
solution p* to (14) and error tolerance parameter ¢ > 0 2. It is
an iterative algorithm and at the beginning of each iteration,
the feasible set, if exists, is contained in a bounded polytope.
Then, a trial point is generated by constructing the analytic
center inside the bounded polytope. If a slack variable has
become large, and the associated variational quantity is small,
that hyperplane is deemed unimportant, and then dropped.
If the slack variables stay small, we test whether or not the
trial point belongs to the feasible set. If this trial point is not
feasible, a hyperplane through the trial point is introduced
to cut off the violated constraint(s), so that the remaining
polytope contains the feasible set. When the trial point is
feasible but not optimal, by updating the lower bound on the
optimal objective function value of problem (29) and reducing
the barrier parameter(as defined in (24)), the new optimality
constraint(s) is generated to update the polytope. We can then
proceed to the next iteration with the new polytope until the
termination condition is satisfied. Assuming that there exists a
set of feasible solutions to (14), the iterative LLBCP algorithm
terminates if one of the following three conditions is met:

1) Termination 1: The number of hyperplanes exceeds a
certain level, so that the volume of the current polytope
would be too small to contain a small enough ball.

2) Termination 2: The smallest slack is smaller than a
certain number, so that the polytope would be too narrow
to contain a small enough ball.

3) Termination 3: The duality gap is enough small, so that
the algorithm may be terminated with optimality.

Given these termination rules, it is shown in [23] [24] that the
LLBCP algorithm is guaranteed to terminate with a solution
p that is feasible for (14) and satisfies |p — p*|| < € for

| - || denotes Euclidean norm operator.

21t is assumed that there exist the set of feasible solutions to (14) and
a problem dependent constant e such that the set of optimal solutions is
guaranteed to be contained in the K dimensional hypercube of half-width
1/€ and to contains a full dimensional ball of radius €. Also it suffices to find
a solution within an accuracy e.
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some optimal solution p* after at most O(n(logy(1/¢€))?)
iterations, where n is the number of variables. Now, we begin
to specialize the generic LLBCP algorithm to solve the power
allocation problem at hand. The algorithm is initialized with
the following relaxed power optimization problem.

E.
[=}
S|
-
S
hS]
o=
L
-

p
Q = P (22)
p
1

Y IATY -
Om!H |

Tp > WK

where 1 and O denote the K x 1 vector of all ones, and the
K x 1 vector of zeros, respectively, and < , > represent
component-wise inequalities. The first and second K hyper-
planes® included in this initial relaxation will be referred to as
the box hyperplanes, and serve to ensure that the polytope
we have at any iteration is always bounded. The third K
hyperplanes ensure p, > 0,Vk. It is easy to find the the
first i hyperplanes are redundant, but they are retained as
their inclusion facilitates solving problem Qy. The final K
constraints give a initial bound % K on the optimal value
of p, which does not affect the feasible region of the initial
relaxation. When the algorithm obtains better lower bounds
on the optimal value, the right hand side of this lower bound
constraint is updated. After the initialization given by Q in
(22), the algorithm continues iteratively, where at the i-th
iteration, the following optimization problem is solved.

minp 17 .p
S.t. p>= 0
Q £ p =i (23)
1"p >
A"p > ¢

where A"-p > ¢ is the hyperplanes in the current relaxation
and [; is some lower bound on the optimal objective function
value in the current relaxation.

Based on these the problems Q;, as the main ingredients
of the LLBCP algorithm, in Fig. 1 we provide a detailed
flow chart of the LLBCP algorithm with the step-by-step
descriptions articulated in Algorithm 1. In the remainder of
this subsection the key components of the LLBCP algorithm
are elaborated in order to explain the dynamics of updating
A" . p> ¢’ and I; throughout algorithm iterations.

1) Finding p-center (Line 11): In each iteration, we need
to generate a trial point inside the polytope. To this end,
we define ;¢ > 0 as a barrier parameter and define the
corresponding logarithmic barrier function as

A 17 p
[pw) & ——= - > In(sn) , (24)
where we have defined
Sn é a;{P —Cn , (25)

where az; and ¢, are the the n-th rows of A’ and ct,
respectively. For a given value of i, we define p(u) as
the unique minimizer of this barrier function. We refer
this unique point as the p-center and has the property

3Hyperplane and constraint are used exchangeably
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that an approximate the p-center is sufficient to serve as
a trial point. An approximate p-center for the (i + 1)-th
iteration can be obtained from an approximate p-center
for the ¢-th iteration by applying O(1) Newton steps
[25].

2) Dropping unimportant constraints (lines 16-20): Fol-
lows the same footsteps as in [21], [24].

3) Feasibility test: Follows the same footsteps as in [21],
[24].

4) Cutting off the violated constraints (lines 31-34): Fol-
lows the same footsteps as in [21], [24]. If the trial point
p; is infeasible, then a hyperplane is generated at p as
follows:

5) Updating lower bound and reducing barrier parameter
(lines 40-44): If the point p, is feasible but not optimal,
the lower bound I = 17 - p — 1.25N to the optimal
objective function value of problem (14) is updated
(Lines 35-36), and the value of the barrier parameter p is
reduced (Line 37). Notice that according to the definition
of (24), for a fixed value of p > 0, it is desirable
to minimize f(p,u), leading to a balance between the
objective function and centrality. When we need to drive
the objective function value down, we just reduce the
value of the barrier parameter y, leading to increasing
emphasis on the objective function . When g is driven
to zero, we have the convergence to an optimal solution.

D. Related Literature

1) Cutting Plane Methods: The related method of short-
step cutting plane method (SSCP) to design a slow adaptive
OFDMA scheme in wireless system was first used in [21]. The
main advantage of the proposed LLBCP approach compared
to approach of [20] pertains to its lower computational com-
plexity [20], primarily due to the linearity of the associated
objective function. Specifically, while the method of [20] can
be directly applied to the problem at hand, our objective
function, as opposed to [20], is linear, which when exploited
judiciously can bring about improvement in computational
complexity.

For a linear objective function, LLBCP algorithm incor-
porates the linear objective function into a barrier function
explicitly (defined in (24)), and iteratively reduces the value
of a barrier parameter p, leading to increasing emphasis on
the objective function, and much greater progress in objective
function. For a linear objective function, the p-center can
always be solved in O(1) Newton steps. Moreover, it avoids
having to increase the number of constraints whenever we
need to drive the objective function value down. Thus, the
computation time at each iteration decreases. Moreover, for
a linear objective function, the LLBCP algorithm maintains
primal and dual variables and it allows for early termination
when the suboptimality is deemed to be within allowable
limits. This is in contrast to problems with non-linear objective
function, in which it is not easy to maintain the primal and
dual variables and whenever infeasibility is encountered, with
non-linear objectives the algorithm has to be used until the
current iterate again becomes feasible. Thus, although the
LLBCP algorithm has the same order of complexity as [21], in
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Initialization
Line 1-4

Calculate ¢-center,
slack variables
variational quantities
Line 11-15

Slack variable
is large?
Line 16

A

A 4

n;=a; p—¢; Dropping Cutting off
P is an index unimportant the violated
b such that constraints constraint(s)
;(p)>2 Line 19-20 Line 30-34

Line 21-24 ¢

,l

Termination 1
or
Termination 2?

The feasible
point(s) are found
so far ?

A

Reconstructing a new polytope

Fig. 1. Flow chart of the LLBCP algorithm.

practice it is computationally more efficient when the objective
function is linear. The simulation results verify the advantages
of LLBCP algorithm, including higher convergence speed,
and more efficient computation at each iteration. We also
remark that when the objective function is not linear, LLBCP
algorithm is not more efficient than SSCP, since LLBCP has
to solve an additional nonlinear optimization problem to find
the p-center, which can not be found in O(1) Newton steps.
Otherwise, in SSCP, the analytic center (AC) can always be
found in O(1) Newton steps.

In terms of the details of the algorithms, the barrier function
f(p, ) defined in 24, which is the basis for designing the
decisions in each iteration, are also different in LLBCP and
the method of [21]. Specifically, LLBCP modifies the potential
function used in [21] by introducing barrier parameter p and
adjusting the potential function via a shift proportional to
barrier parameter. As explained in details in [24], inclusion of
the barrier parameter leads to a balance between the objective
function and centrality and gradually the barrier parameter is
driven to zero, leading to increasing emphasis on the objective
function and convergence to an optimal solution. Overall,
by capitalizing on linearity of the objective function, the
inclusion of the barrier parameter leads to less computational
complexity at each iteration of the algorithm. We have tried
to put this as the focal distinction of LLBCP from [21] and
have summarized the entire section on LLBCP by skipping
the and citing the details that are available in [24].

2) Bernstein Inequality Approach: As will be shown in
the simulation results, compared with the Bernstein Inequality

The best
The problem feasible point
is infeasible. found so far
is optimal.
P i feasible? 4 r
Updating pis —
the optimalit; the optimal
e optimality ¢ optimal End
constraint(s) solution
Line 40-44 Line 38

approach of [14], Bernstein approximation followed by the
LLBCP algorithm provides a tighter solution to the power and
rate optimization problems. This gain, however, is viable at the
expense of higher computational complexity. Specifically, the
simulation results show that our proposed approach is about
2(average) times slower than the approach of [14]. This mainly
stems from the fact that our proposed Bernstein approximation
approach has higher computational complexity due to the first
constraint sets in the optimization problem (14), while the
approach of [14] can reformulate the stochastic constraints
into the deterministic convex constraints. This observation
shows that there exists a tradeoff between complexity and
performance across these two approaches.

We would to remark that besides better performance, an-
other advantage of the Bernstein approximation approach [20]
used in this paper is that it is more general in the sense
that it applies to CSI perturbations with distributions other
than Gaussian or any other perturbation model where channel
uncertainty regions are convex compact sets which might not
be even known precisely. The Bernstein-type inequality of
[19], however, deals with the case of stochastic processes that
involve quadratic forms of Gaussian variables.

IV. SIMULATION RESULTS

In this section, we present extensive simulation results to
illustrate the performance of proposed Bernstein approxima-
tion approach and LLBCP algorithm for solving the chance-
constrained power optimization in MISO interference chan-
nels. Also, we provide comparisons with the existing literature,
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Algorithm 1 : LLBCP Algorithm

1: initialization

20 Sete>0,p=121 Setm=2k=1,.,2K mpi1 = VK.
3: According to (29), set A = [I — Ix 1]7, p=0x,

4 ¢= [0 —élT —%\/E]T, and s = Ap —c.

5: repeat

6: if ming(alp —cx) < 107°€3/[2K 15 logy(1/€)] or

7: N > 4093K log,(1/€) then

8: STOP: the best feasible point found so far is optimal.

9: Otherwise, no feasible point is found.

10: else

11: Find a new approximagg: p-center p(p) as the minimizer of (24)
12: Calculate wy,(p) = %}:%Nkz.

13: Set wg(p) = 1, if k indexes the lowerbound constraint that
14: get added in Subcase 2.2. s .

15: If ws(p) > 2, calculate @3 (p) £ w .
16: if maxy (wk(p)) > 2 then ’

17: Case 1 :

18: if for some j, we have @;(p) < 0.04 then

19: Subcase 1.1:
20: Drop the hyperplane as;
21: else
22: Subcase 1.2:
23: Reset = a?p =5 where j be an index such that
24: w3 (p) > 2.
25: end if
26: end if
27: if maxy(wk(p)) < 2 then
28: Case 2 :
29: if p is not feasible in the problem (14) then
30: Subcase 2.1:
31: Fork € K, generate hyperplane(s) according to

. v, VT, A
3% IV, PSqv, G Po keK
. Vi Vi

33: Set TN = HV“;II “p; — ||Vi,i~” - p.
34: Set N + N + | K|
35: else

36: Subcase 2.2:

37: if 1.25Npu < e then

38: p; is the optimal solution, and STOP.

39: else
40: set the lower bound I = 17p — 1.25N on optimal
41: objective function of (29).
42: Let lprev denote previous lower bound. If Iprey < I,
43: replace 17p > lprev by 1Tp > 1.
44: Set pu <— Op, where 6 € (0.5,1).
45: end if
46: end if
47: end if
48: end if

49: until STOP

especially with the application of the Bernstein-type inequality
approach of [14], which has been developed for beamforming
design in broadcast channels, on the power optimization
problem in interference channels studied in this paper. For
this purpose the beamforming directions are selected from
a pre-designed codebook that based on their distance to the
channel pseudoinverse and we use our proposed method to
obtain the optimal powers to be allocated to the beamformers.
Throughout the section and in plots we refer to the approach
of [14] by “Bern-Ineq”. This section is concluded by pro-
viding simulation results on power optimization on broadcast
channels and compare it with the relevant literature.
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Throughout the simulations for the interference channel
we assume a K = 4 user interference channels with 4-
antenna transmitters and single-antenna receivers. The channel
coefficients are generated as i.i.d. complex Gaussian random
variables with zero mean and unit variance. We apply a simple
method to ensure that the direct links are stronger than the
interference links [26] and set the strengthened direct channel
links by a multiplicative constant 5. For simplicity, we assume
that the covariance matrices of the channel uncertainty vectors
are C;; = E[68,,] = 0?1, and consider cases of
0% = 0.001 and 027 = 0.002 in the simulations. The noise
variances of all receivers are set to 2 = 0.01, and the outage
probabilities are set € = ¢ - 1 and consider cases of £ = 0.05
and ¢ = 0.1 in the simulations. Moreover, we assume that
all receivers have the identical target rates = = r - 1, or
equivalently, identical target SINR levels o = « - 1. As the
rate and SINR values are uniquely interchangeable according
to (5) all the simulations are provided for SINR values. Finally,
the Monte-Carlo simulations are performed over 2000 sets
randomly generated channels.

A. Rate-constrained Power Optimization

In this section we focus on the rate-constrained power
optimization problem P;(r,e) Fig. 2 demonstrates the feasi-
bility frequency of the problem versus target SINR and Fig. 3
evaluates the average transmission power of required by our
proposed methods and by Bern-Ineq [14]. Both plots conform
in that our proposed method demonstrates improved perfor-
mance compared with Bern-Ineq [14] by achieving higher
feasibility rate and lower average transmission power under
different choices for parameters o2 and . We also implement
the bisection technique for our proposed methods and Bern-
Ineq [14]. From the simulation result shown in Fig. 4, we
can see that the bisection technique can reduce the conser-
vativeness of our proposed methods and Bern-Ineq, and our
proposed methods still has a bit better performance. However,
the computation time of our proposed methods is about 1.2-
3.8 times (average about 2.2 times) of the computation time
of Bern-Ineq [14].

From Fig. 2-4, we can see the impact of the channel uncer-
tainty o2 and outage probability requirement € as follows,

o When the channel uncertainty o2 increases, it takes more
power to meet the rate (SINR) outage requirement. For a
fixed channel uncertainty level o2, as the target SINR
value o increases, it becomes exceedingly difficult to
meet the outage requirement; and moreover, the trans-
mit power increases drastically, and even making the
optimization problem infeasible, and thus feasibility rate
decreases.

o It is seen that as the outage requirement £ becomes
more stringent, i.e., when ¢ becomes smaller, it takes
more power to meet the SINR outage requirement, the
maximum feasible SINR value o becomes smaller, and
feasibility rate decreases.

In order to highlight the advantages of using the information
about the uncertainty model, Fig. 2 and Fig. 3 also depict
the feasibility rate and the average transmit power rate corre-
sponding to a setting where the uncertainty model information
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Fig. 2. Feasibility rate versus target SINR in a MISO interference channel.
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Fig. 3.
channel.

Average transmit power versus target SINR in a MISO interference

is not used. As indicated by both figures, not utilizing this
information incurs a considerable penalty, i.e., reduction in
feasibility rate and increase in transmit power.

In order to gain more insight into the behavior of these two
methods, we verify the actual outage probability by plotting
the histograms of the realistic SINR in Fig. 5 and Fig. 6. The
system parameters are o = 6dB, o2 = 0.002 and ¢ = 0.05.
The simulation results show that the actual outage probability
in both methods is smaller than the target outage probability,
corroborating that both methods provide conservative approx-
imations to the original probabilistic constraints. However,
from Figs 5 and 6 it is observed that the realistic outage
probability yielded by our approach is closer to the target value
€ = 0.05, indicating that it is less conservative.

Next, we provide simulation results for assessing the perfor-
mance of the LLBCP algorithm and the relevant comparisons
with the SSCP algorithm used in [21]. Specifically, Fig. 7
demonstrates the convergence of LLBCP and SSCP algorithms
for a feasible channel realization, when o« = 6dB, o2 = 0.002,
and £ = 0.05. According to Fig. 7, LLBCP algorithm exhibits
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T
—— Our method with bisection (02=0.001 , €=10%)
0. =8 Bern-Ineq with bisection (cz=0.001, £=10%)
= % = Our method with bisection (62:0.002, £=10%)
0.8 - % - Bern-Ineq with bisection (02:0.002‘ &=10%)
' =+=" Our method with bisection (62:0,002, £=5%)
0.7 =P Bern-Ineq with bisection (0‘2:0.002, £=5%)
2
©
T 06
2
2
& 05
5]
w
0.4}
0.3
0.2
0.1 H H H H H H
2 4 6 8 10 12 14 16

SINR targets(dB)

Fig. 4. Feasibility rate versus target SINR in a MISO interference channel
(with bisection).
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Fig. 5. Histograms of realistic SINR of our proposed method.

a higher convergence speed than SSCP algorithm. It is also
observed that LLBCP algorithm is more computationally
efficient due to the less number of constraints at each iteration
as discussed in Section III-C. The simulations results confirm
the advantages of LLBCP algorithm. Detailed discussions on
convergence is available in [24].

B. Max-min Rate Optimization

We next consider the max-min rate optimization problems
with individual power constraints in MISO interference chan-
nels. We assume that the transmitters have the same maximum
allowable individual transmit power p = p-1, where p denotes
the total transmission power of each transmitter.

Fig. 8 shows the maximum achievable SINR versus the
maximum allowable transmission power for different outage
probability ¢ values and for different channel uncertainty o>
levels. Note that for a given allowable transmission power,
the maximum achievable SINR decreases as the channel un-
certainty o2 increases, or as the outage probability ¢ decreases.
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used in [21].

It is noteworthy that for the channel uncertainty o> = 0.01,
the maximum achievable SINR is always smaller than 6.2dB,
even if the maximum allowable total transmit increases from
2dBW to 10dBW.

C. Rate-constrained Power Optimization in Broadcast Chan-
nels

In this section we evaluate the application of the proposed
Bernstein approximation method for power optimization in
MISO broadcast channels. We assume a broadcast channel
of one 4-antenna base-station serving i = 4 single-antenna
users. Channel coefficients are distributed according to i.i.d.
complex Gaussian random variables with zero mean and unit
variance. The performance of feasibility rate versus target
SINR, and transmission power versus target SINR are shown
in Fig. 9 and Fig. 10, respectively. The results in Fig. 9 and
Fig. 10 imply that our proposed method is amenable to support
a wider range of target SINRs under the different parameter
settings of o2 and ¢.
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Fig. 9. Feasibility rate versus target SINRin the MISO broadcast channel.

We also verify the actual outage probability at o = 12dB,
02 = 0.002 and £ = 0.05. From the histograms of the realistic
SINR shown in Fig. 11 and Fig. 12, we can see that the
outage probability of both methods is smaller than the target
outage probability, and Bern-Ineq [14] provides a slightly
more conservative approximation to the original probabilistic
constraint.

V. CONCLUSIONS

We have treated the problems of robust power allocation
in MISO interference channels with stochastic and imper-
fect transmitter-side CSI. The multi-antenna transmitters are
assumed to employ beamforming directions based on pre-
designed beamforming codebooks. For MISO interference
channels, we have considered the minimizing the transmission
power and maximizing the rate of the weakest users in the
network subject to constraints on the rate outage probabilities.
The key contribution is to employ the Bernstein approximation
to conservatively transform the probabilistic constraints into
deterministic and convex ones, and consequently convert the
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Fig. 11. Histograms of realistic SINR of our proposed method.

original stochastic optimization problems into convex opti-
mization problems. We also propose to propose to use the
long-step logarithmic barrier cutting plane (LLBCP) algorithm
to solve the deterministic problems. Extensive simulation
results establish the gains of the proposed approach over the
existing literature.

APPENDIX A
PROOF OF PROPOSITION 1

Given the definitions of SINR; and R; given in (4) and (5),
respectively, the constraint R; < r; can be equivalently state
as

Fi(p.¢;) = 0, (26)
where
Fi(p.¢;) & ain®+ i > piCij — picii » 27)
J#i
which is in the affine form of (12) and also
Ci 2 |hijg;* = hijg; + 059,07, (28)
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Fig. 12. Histograms of realistic SINR of Bern-Ineq [14].

Hence, based on the discussions in Section II-B3 and Equa-
tions (8) and (9) the rate-constrained power optimization
problem P(r, &) can be approximated by

. K
ming,y >0, Pi

Pir.e) 2l St infy, {U;(p,t;) — t;loge;} <0,Vi
1(r E) 0 < Di Vi
0<ti, Vi
(29)
where
¥ (p,t:)

=t;log ]E{exp[ti_lFi (P, ¢}

27

= tilogE |exp | t; 'oun® +t; 'eu ZP;‘CU —t; 'piis

i

=’ +t; Z log E [exp (t; " cip;Gij) |
i
+tilogE [exp (—t; 'piCii)] -

In order to further simplify (30) we next find the distributions
of the random variables (;;. This this end, by recalling that
the covariance matrix of &§;; is denoted by C;; for the
random vector s;; = 61']-0;/2 we have s;; ~ Ng(0,1),
and consequently,

1/2
0ij9; = Sij Cij/ g; ~Ne(0,0%) ,

(30)

(31)
where

1/2
o} 2(|lCl? g;)? .

Therefore, corresponding to (;; defined in (28) we have

2Gi; 2|fliﬁg‘|2
G| T (32)
ij ij
By recalling the fact that for X ~ x3 (\), we have
E {exp (£X)} eXp(lfg"') ith (<2, (33)
xp (¢ =— 7 i ~.
P 1-z20 ° " 2
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we find that
lo?, 2C;;
E [exp ((G)] = E |exp ( 22 - 25
o3
ohig .2
(32)-33) exp (%)
o QU N A lo2 <1. (34
1—601‘2]' A G

Hence, based on (30) and (34) we find that

‘i’(Pa t;) = an’

P>
i

—t; (log (1 —t; 'avipjo};) —log (1 —t; 'pio}y))
(35)

2 pilhiigi|?

1— ti_lpl-o*?i

aipjlhi;g;
1-—- ti_lozipjcrfj

Note that satisfying the constraints Zcr?j < 5 necessitate that

1
2
2

t;laipjaizj < 1 and t;lpicr <1 (36)

i
or equivalently

A 2 2
t; > p; = max {piaii , mixaipjaij}
JF

(37)
Hence, the rate-constraint power optimization problem P (r, €)
can be approximated by P; (7, €) as follows:

. K
ming,} Yo Pi
S.t. infti>pi{\11i(p, ti) — 1 10g 61'} <0 s Vi

(38)

where \i!i(p, t;) is defined in (35).

APPENDIX B
PROOF OF PROPOSITION 2

The proof follows a similar line of argument as in [9]. Let us
denote the set of powers obtained from solving P (p, €) by p*
and their corresponding smallest rates by r*. From the defini-
tion of Py(p, ) we have p; < p;, Vi and min; r} = P2(p, €)
concluding that for all ¢ we have 7 > Pa(p,e). As a result
from the definition of S(p,e,a) we find that for the choice
of p* the choice of b = 1 is achievable for S(p, e, P2(p, €))
and therefore S(p, e, P2(p,€)) < 1.

Next we show that S(p,e,P2(p,€)) cannot be less than
one. Let us denote the set of powers obtained by solving
S(p,e, P2(p,€)) by p** with corresponding rates r**. From
the definition of S(p,e,P2(p,e)) we clearly have ri* >
Pa(p. ) forall i. If S(p, &, Pa(p, €)) < L. ., if max; L= =
¢ < 1, then we define the set of powers p; = p;*/c. Set of
powers {p; } clearly satisfy the power constraints and we have
their corresponding SINRs satisfying

o i |hiigil 2 hyg,|
SINR, — —Pil : gil - c Ip“gll _ (39)
7?4+ 2 by |higs|” P+ Y " kg,
J#i j#i
= |hiig,|? = |hiig;|”
__ pi"|hag,] o pitlhugi] _ (40)

cn?+ 3 py” hig;|”  w?+ % p;* |hijg;|
i i
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Since ¢ < 1 we have SINR; > SINR;*. Therefore, we have
found a set of powers which satisfy the power constraints and
yet yield a strictly larger smallest SINR compared to what
the powers p** obtain. This contradicts the optimality of p**
and therefore S(p, e, P2(p,€)) = 1. The strict monotonicity
and continuity of S(p, €, P2(p, a) in a, at any strictly feasible
region, follows from a similar line of argument.
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