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Distributed Real-Time Energy Scheduling in Smart
Grid: Stochastic Model and Fast Optimization

Chen Gong, Xiaodong Wang, Weiqiang Xu, and Ali Tajer

Abstract—We develop a stochastic energy scheduling model
for a local-area smart-grid system with a single energy source
and multiple energy consumers. The tasks of the energy con-
sumers are classified into two categories, namely, the stochastic
background tasks and the deterministic dynamic tasks. The
objective is to schedule the energy consumptions of the dynamic
tasks to maximize the expected system utility under the given
energy consumption and energy generation constraints. To make
this problem tractable, using rolling horizon optimization and
Gaussian approximation we transform the original stochastic
optimization problem into a convex optimization problem with
linear constraints. We then derive a distributed Newton’s method
to solve this problem, and design a message-passing mechanism
for a distributed implementation of the algorithm with limited
information exchange between the energy consumers and the
energy source. In simulations, the proposed distributed Newton’s
method converges for the system under consideration, while the
traditional dual decomposition method does not converge to a
primary feasible solution; and thus it is a powerful practical tool
for real-time control of smart-grid systems.

Index Terms—Smart grid, energy scheduling, stochastic model,
distributed Newton’s method.

I. INTRODUCTION

E NERGY scheduling [1]–[4] is one of the key enabling
techniques for smart-grid systems bymaximizing the total

system utility of an electrical power network under various en-
ergy usage constraints. Recent research on energy scheduling
can be classified into two types, residential energy scheduling
[5]–[8] and local-area energy scheduling [9], [10]. For residen-
tial energy scheduling, a residential controller schedules the en-
ergy consumption of various devices according to the tasks to be
fulfilled and the price of electricity at different times. For local-
area energy scheduling, local-area energy controllers schedule
the energy generation by the sources and the energy consump-
tion of the consumers, to maximize the system utility, usually in
a distributive manner.
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On the other hand, in existing works the system models can
be classified as either deterministic [5], [6], [9] or stochastic [7],
[10]. Under deterministic models, energy scheduling is formu-
lated as a standard optimization problem with a convex objec-
tive function and several linear constraints, which is then solved
using either a centralized or a distributed method. Under sto-
chastic models, the energy scheduling problem is typically for-
mulated as a Markov decision process (MDP) [7], [10], which is
then solved using either an online Q-learning method or an ex-
haustive search by enumerating all possible realizations. How-
ever, neither method is practical for real-time control since the
Q-learning method takes a long time to converge and the ex-
haustive search has a prohibitively high computational com-
plexity.
In this paper, we consider the real-time local-area energy

scheduling for a local-area power network with a single energy
source and multiple energy consumers, and with both stochastic
and deterministic energy demands. Different from the methods
used in [10], in this work, to reduce the complexity of system
optimization, we convert the stochastic constraints to linear
constraints using Gaussian approximations. To further make the
solution tracktable, we employ the rolling horizon optimization
[11] to reduce the problem sizes. More specifically, at each
time slot we optimize the energy scheduling in a short time
window ahead starting from the current time slot, resulting in
an online energy scheduler. Moreover, to meet the real-time
requirement, we develop a fast distributed solution based on the
distributed Newton’s method which converges quadratically
to a neighborhood of the optimal solution, while the classical
dual-decomposition method [12] does not converge.
The remainder of this paper is organized as follows. In

Section II, we develop a stochastic model for energy sched-
uling and formulate the optimization problem. In Section III,
we transform the energy scheduling problem into a convex op-
timization problem with linear constraints using rolling horizon
optimization and Gaussian approximation. In Section V, we
introduce the distributed Newton’s method, and show that it
can be applied to any convex optimization problem with linear
constraints. In Section V, we develop a distributed Newton’s
algorithm for solving the energy scheduling problem. Numer-
ical results are given in Section VI; and finally Section VII
concludes this paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a smart-grid system with a single energy source
and energy consumers. The time cycle is divided into
time slots . Assume that there are energy controllers
which control the energy consumption of the energy consumers
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and the energy generation of the source. There are communica-
tion links between the energy consumers and the energy source,
which enable message passing for the distributed network opti-
mization.

A. Energy Consumer Task Models

The tasks of the energy consumers are classified into two
types, the background tasks and the dynamic tasks. Background
tasks are running in an “on-off” manner, to maintain the basic
system operating conditions during the entire time cycle, e.g.,
the lighting and monitoring systems. Dynamic tasks are those
which are created at certain times and become inactive after the
tasks are completed, e.g., cookingmeals and washing clothes. In
the following we elaborate on the energy consumption models
for the background and dynamic tasks.
1) Background Tasks: Let , be the set of

background tasks of energy consumer , and be the energy
consumption of task in time slot .
Assume that there are two states, on and off, for each back-

ground task. For task , if in time slot it is on, then in
the next slot it keeps on with probability and turns
off with probability ; and if in time slot it is off,
then in the next slot it keeps off with probability
and turns on with probability . Note that the on-off
transition probabilities and are functions of the
current time slot . Assume that, when a task is on, it
consumes a fixed amount of energy ; otherwise it consumes
zero energy.
Here we assume that all transition probability belongs to an

interval for some , i.e.,
for all , and .

Assume that at the first time slot, the probability that a back-
ground task is on falls between the interval . Assume
that for all background tasks , the energy consumption

.
We model the transition probabilities and as

time-varying variables. Motivated by the fact that they change
very insignificantly within a short time interval we divide the
entire time cycle into several smaller time intervals, and assume
that the parameters and remain constant within
each time interval. We can estimate the values of and

based on the observed samples of the background tasks.
A simple estimation method is to record the numbers of on-off
state transitions, and use the transition frequencies as estimators
of the transmission probabilities.
2) Dynamic Tasks: We classify the dynamic tasks into two

types, types-1 and type-2 dynamic tasks. For a type-1 dynamic
task, it has no total energy consumption constraint, and the
utility function is a function of its total energy consumption.
For a type-2 dynamic task, its total energy consumption equals
to some fixed amount, without utility function. For each dy-
namic task, we define an associated active interval specified by
a starting time slot and an ending time slot, and schedule its
energy consumption in each slot within that time interval [13].
We say that a dynamic task is active within that time slot. The
energy scheduling is deterministic and no stochastic energy
consumption is involved.

For type-1 dynamic tasks, let be the set of dynamic tasks
of consumer for . Each consumer dynamically
adds tasks into the set over time. A dynamic task
is specified by three parameters , where
and are the starting and ending time slots, respectively, and

is the utility function. Let be the set of type-1 dy-
namic tasks of consumer , and be the energy consumption
of dynamic task at slot . We have that its utility is given
by

(1)

Assume that the consumer utility of each user satisfies the linear
decreasing marginal benefit condition [9]. Then the utility func-
tion is quadratic, given by

(2)

where and are the coefficients of the utility function.
Assume that the energy consumption for type-1 dynamic
task is upper bounded by .
For type-2 dynamic tasks, let be the set of dynamic tasks

of consumer for . Each consumer dynamically
adds tasks into the set over time. A dynamic task
is specified by three parameters , where and

are the starting and ending time slots, respectively, and
is the total required energy consumption. Let be the set of
type-2 dynamic tasks of consumer active at time , and be
the energy consumption of dynamic task at time . We
have that its energy consumption must satisfy

(3)

Also, assume that the energy consumption for type-2 dy-
namic task is upper bounded by .
In the remainder of this paper we denote each background

task as , the type-1 dynamic task as ,
and the type-2 dynamic task as . In this work,
assuming that the background tasks are stochastic, we schedule
the energy consumption of the two types of dynamic tasks, to
maximize the expected system utility.

B. System Outage

A system outage occurs when the total energy consumption of
all consumers, which is also the energy generated by the energy
source, exceeds the maximum value.
Let be the maximum value of the energy generated by

the source. Let

(4)

be the energy consumption of all consumers which is also the
energy generated by the source in time slot . In each slot , the
system outage occurs if .
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C. Optimization Problem Formulation

Our objective is to maximize the total system utility which is
defined as the expected sum utilities of dynamic tasks minus the
expected cost of the energy source, subject to the system outage
probability constraint. The energy source cost, denoted as ,
should be strictly increasing; and the marginal cost per amount
of energy generation should also be increasing, which indicates
that is convex [9]. Assuming a linearly increasing mar-
ginal cost of the energy source, the energy source cost function
is then given by [9]

(5)

Let denote the probability of the event , and de-
note the expectation. Let be the upper bound on the allowable
system outage probability. The system optimization problem
can be formulated as follows.

(6)

The above optimization problem is intractable due to the
huge problem size and the probabilistic constraints. Moreover,
since the dynamic tasks are generated during the system run-
ning process, the associated linear constraints are unknown
at time slot , which makes the system optimization
infeasible at time slot . A solution to this issue is to break
the entire optimization problem into smaller ones for each time
slot, where the optimization for each slot is within a small
window ahead of that slot. This results in reducing the impact
of the uncertainties due unknown linear constraints on system
optimization. Following the above idea, in the next section we
transform the optimization problem into a tractable form for
which an efficient solution can be devised.

III. ROLLING HORIZON OPTIMIZATION AND GAUSSIAN
APPROXIMATION

Using rolling horizon optimization [11], we transform the op-
timization problem into a tractable form and reduce the problem
size, and using Gaussian approximation, we transform the prob-
abilistic constraints to linear constraints.

A. Rolling Horizon Optimization

Rolling horizon optimization [11] is a decomposition method
for a large scale optimization problem, which divides the

problem into various small windows and transforms the orig-
inal objective function and constraints into those within the
windows. Note that the rolling horizon optimization usually
changes the original optimization problem, and the optimal
solution to the decomposed optimization problem is not the
optimal solution to the original problem. However, the main
advantage of rolling horizon optimization is lower computa-
tional complexity. In this work, besides the lower complexity,
another reason for the rolling horizon optimization is that the
objective function and the constraints are unknown at the start
of the entire time slots, and thus solving the entire scheduling
problem is not feasible. Furthermore, the prediction of the
objective function and constraints in a time slot is accurate only
several slots after that time slot. Thus, the energy scheduling
is accurate only within a small window after a given time slot.
In this work, we employ rolling horizon optimization to break
down the original optimization problem into smaller scale
problems.
Instead of performing energy scheduling for the entire time

cycle in the beginning, at each time slot we schedule the cur-
rent dynamic tasks in a time window , i.e., for time
slots , where the window length is
usually small, e.g., , such that the sizes of the sub-
problems are small. For , recall that and

denote the set of type-1 and type-2 dynamic tasks that are
created before or at time slot and still active in slot , respec-
tively. Note that and are the
set of active type-1 and type-2 tasks during .
We next address how to transform the energy constraint for

the entire time cycle to that for each window , for
both types of tasks. For each type-1 dynamic task, let

and be its active
slots in and the total remaining time slots, respec-
tively. Since the energy consumptions for
are already known, we have that the total energy consumption
of task , denoted as , satisfies

(7)

Note that may involve the energy consumption for
and thus need prediction. We employ a simple linear

prediction for as follows:

(8)

Let and be the total
energy consumption before time slot and in the slot window

, respectively. We have that

(9)

For each type-2 task, similarly we let
and be its active slots in
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and the total remaining time slots, respectively. We also
use linear prediction to provide a linear constraint for as
follows:

(10)

Then, letting , the energy sched-
uling optimization problem during the window can
be formulated as follows:

(11)

(12)

B. Gaussian Approximation

We now apply the Gaussian approximation to the background
tasks, to transform probabilistic constraint (12) to linear con-
straint.
Let be the probability that task is on at slot . We

have the following recursion for :

(13)

with the initial values if task is on at time
slot , and otherwise. Note that satisfies
a binomial distribution with probability for and
probability for . Note that for
all background tasks and .

Then, the mean and variance of the sum energy consumption
of background tasks at slot , denoted as and , respec-
tively, are given as follows:

(14)

where and denote the mean and variance of background
tasks for consumer , respectively. Based on Gaussian approx-
imation, we have that

(15)

The constraint (12) can be transformed to the following:

(16)

where the function is the inverse function of
for the unit normal distributed variable .

The Gaussian approximation employed here is based on an
extended version of the central limit theorem for independent
random variables but not necessarily identically distributed. The
justification is provided in the Appendix. Note that it is based
on the assumption that for all

, and .
Remark: Note that here we transform the stochastic con-

straints to linear constraints using Gaussian approximation. An-
other related approach for incorporating the impact of the un-
certainties in the analysis is to design a scheduler that is robust
against the uncertainties in terms of the model parameters [14],
which is not the scenario of this work. Thus, in this work we do
not employ robust optimization, but convert the stochastic con-
straints to linear constraints using Gaussian approximation.

C. Problem Reformulation

Consider in the objective function (18). Let
be the total energy con-

sumption of all dynamic tasks in time slot . We have the total
energy consumption where .
From (15)

(17)
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Based on (16) and (17), we reformulate the optimization
problem (18)-(12) as follows.

(18)

(19)

We propose a distributed algorithm for solving the energy
scheduling problem in hand. The major motivations for imple-
menting a distributed algorithm can be summarized as follows:
1) Computations: The computation load can be distributed
among all different computational resources across the net-
work, which in return eliminates the need for having a
super-powerful processor in charge of the computations.

2) Robustness: The distributed method is more robust as in
practice some components (or subnetworks) may break
down or stop functioning. Distributing the computation
among all components can reduce the impact brought by
such unforeseen impediments.

3) Communication: This also reduces the communication
load across the network as part of the computations are
carried out locally and subnetworks need to exchange
only their processed information that are needed by other
agents instead of reporting all the information they have
collected.

4) Privacy: As a by-product, a distributed solution also helps
to preserve the privacy of the agents and improve their
security. The reason is that the agents do not have to reveal
the entire information they have accumulated and reveal is
as much as other agents need. This, indirectly, improves the
privacy of the agents, which is one of the major concerns
about the futuristic designs for the smart grids.

We also remark that an alternative and more conventional dis-
tributed solution is the dual-decomposition method. However,
the convergence of the dual-decomposition method sometimes
needs very strong requirements (and as shown in this work, the
dual-decomposition method does not converge.); and even if it
converges a large number of iterations are needed. This is the

reason why other distributed solutions for the energy scheduling
problem in hand are of interest. In this work we have adopted
distributed Newton method for the following reasons: 1) it is
distributed; 2) it converges for the energy scheduling scenario
in this work while the dual-decomposition method does not.

IV. DISTRIBUTED NEWTON’S METHOD

In this section we first give an overview of the distributed
Newton’s method for network utility maximization (NUM)
problems [15]. Note that for the NUM problem in [15], all
constraints are linear with 0–1 coefficients. Here we extend the
result in [15] by proving that the distributed Newton’s method
can be used to solve any convex optimization problem with
linear constraints and real coefficients.

A. Network Flow Maximization

Consider a network consisting of sources and links, with
the binary routing matrix where
if link is on the route from source and other-

wise. Let be the flow of source for , and
denote . For , assume that the
sum flow of all sources on link cannot exceed , and de-
note . From the standard network flow anal-
ysis, we have that . Assume that the utility of source
is given by where the function is monotoni-

cally nondecreasing, strictly concave, twice continuously differ-
entiable, and self-concordant. The network flow maximization
problem is formulated as follows:

(20)

The above optimization problem can be approximately refor-
mulated using the log-barrier representation. In particular, non-
negative slack variables are introduced such
that . Let , where for

and for , and
. Then maximization problem (20) can be approxi-

mated using the following log-barrier form:

(21)

Note that in order for (21) to well approximate (20), the coeffi-
cient should be sufficiently small.

B. Distributed Newton’s Method

Consider the optimization problem (21). Given an initial fea-
sible point , the Newton’s method iteratively generates a new
feasible solution given by , where
is a positive step size and is the Newton’s direction that

is determined by the following equation:

(22)

and the vector is the collection of dual vari-
ables for the link capacity constraints [15].
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We introduce the procedure of distributed Newton’s method
given in [15]. Initialize to be any feasible solution. The dual
variables and primal variables are updated iteratively as
follows. Note that several rounds of updating the dual variables
are needed for each update of the primal variables.
1) Update of Dual Variables: The update of dual variables

is to efficiently compute from (22) given the current primal
variables . According to [15], the dual variables are initialized
to be zero, and updated as.

(23)

In (23) is an diagonal matrix with diagonal compo-
nents

(24)

; and is an diagonal matrix
with diagonal components

(25)

In the following we rewrite (23) in the form of row vectors of
. For , let be the th row of , and
be the sum of all rows of . Via algebraic manipulations, (23)
can be rewritten as follows:

(26)

We iterate (26) until converges. Let be the value of
when reaching convergence.
2) Update of Primal Variables: Given , the Newton’s di-

rection is given by

(27)

and the primal variables are updated as ,
where the step size is set as

(28)

with .
Remark: The updates of the dual and primal variables can

be made distributed due to the diagonal structure of . The
message passing mechanism can be devised according to (53)
and (27). Specifically, when updating according to (53),
the edges for which , and the nodes corre-
sponding to the nonzero elements in , need pass messages to
edge .When updating , each edge whose linear constraint
involves node need pass messages to node . The distributed
computation of the step size is also discussed in [15].
Remark: The distributed Newton’s method is different from

the decomposition method proposed in [16] and its application
to power grid [17]. For the decomposition method proposed in

[16] and [17], the linear constraints in (22) are changed to ap-
proximate form, which facilitates the problem decomposition
and distributed solution. However, in the distributed Newton’s
method the linear constraints are transformed in an equivalent
form that involves no approximation.

C. Sufficient Condition for Convergence

In [15], the convergence proof of the distributed Newton’s
method is based on the following two arguments:
1) Updated using (53), the dual variable approaches the
exact value given by (22). Thus the output of the
iteration can be sufficiently close to .

2) Since can be sufficiently close to , the update di-
rection of the primary variable can be sufficiently
close to the exact direction given by (22). Moreover, it can
be proved that the distributed Newton’s method converges
quadratically to a neighborhood of the optimal solution.

From the above arguments, it is seen that the key step is to
guarantee that the dual variable converges to the exact
value given by (22). Using the similar arguments as in the
proof of Theorem 4.3 in [15], it follows that if all components of

are nonnegative, the dual variable converges
to the exact value . Since is convex, we have that
, and thus a sufficient condition for is that

for , where and are the
th component of and respectively. In other words, for
each column of all components are of the same sign. The fol-
lowing result generalizes Theorem 4.3 in [15].
Theorem 1: If all components of each column of are of

the same sign, then the distributed Newton’s method converges
quadratically to a neighborhood of the optimal solution.
We can further show that any linear constraint , even

if not meeting the sufficient condition of Theorem 1, can be
transformed to an equivalent linear constraint that satisfies the
sufficient condition of Theorem 1. The proof is given in the
Appendix.
Theorem 2: Any linear constraint can be transformed

to an equivalent form , where all components of each
column of are of the same sign.
By applying the transform given in the proof of Theorem

2, the distributed Newton’s method can be used to solve any
convex optimization problem with linear constraints and con-
cordant objective function. Note that although the condition
is a sufficient condition for the objective function to be concor-
dant, it significantly change the original optimization problem
[cf. (20) and (21)]. Thus, in practice a small value , usually

, is employed, and empirically fast convergence of the
distributed Newton’s method is always observed in simulations.

V. DISTRIBUTED NEWTON’S ALGORITHM FOR ON-LINE
ENERGY SCHEDULING

In this section, we derive the distributed Newton’s algorithm
for solving the optimization problem (18). We first rewrite (18)
in the standard formulation of Theorem 1 as follows.
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(29)

(30)

(31)

(32)

(33)

(34)

(35)

Remark: (34) also can be written in the following form:

(36)

However, then the sign of is negative in (31) but positive in
(33), which violates the sufficient condition in Theorem 1. In-
deed, numerical results show that if (34) is replaced by (36), then
the distributed Newton’s method does not converge. Hence, in
order to apply the distributed Newton’s method, it is crucial to
represent the optimization problem in a form that satisfies the
sufficient condition given by Theorem 2.

A. Notations

Let be the objective function of the optimization problem
(29). For variable , or , define
the following first and second derivatives:

(37)

and the corresponding inverses and
. The expressions of the above auxiliary

variables are given in the Appendix, Section D. Let be
the diagonal Hessian matrix with the diagonal elements

(38)

for and sequentially in the
same order as that for those shown in (39).
The matrix form of the linear constraints in (30)–(35) are

shown in (), where the rows of the overall linear constraint ma-
trix, denoted as , are partitioned into six parts

, and , corresponding to the constraints in (30),
(31), (32), (33), (34), and (35), respectively, where the coeffi-
cient vectors , and denotes the
linear constraints with the corresponding indices in (30)
and (31), in (32) and (33), and in (34) and (35), where
the ranges of indices are the same as those given by (30)–(35).

(39)

Furthermore, we note that a large portion of the linear constraint
matrix is zero. Partitioning the rows of into seven parts
corresponding to the variables and
from left to right, we have the representation shown in (40) at
the bottom of the page.
Similarly, we partition the dual variables into four parts:

(40)
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TABLE I
SUMMARY OF NOTATIONS IN THE PROPOSED DISTRIBUTED NEWTON’S

ALGORITHM

,
corresponding to the constraints (30), (31), (32), (33), (34), and
(35), respectively.
Considering the update of dual variables according to (53),

we define the following auxiliary variables. Let be the sum of
all rows of .
• For and , define

, and

.
• For and , define

, and

.
• For , and , define

, and

.
• For , and , define

, and

.

• For , define
, and .

• For , define
, and .

The linear constraints, the dual variables, and the auxiliary vari-
ables are summarized in Table I.

B. Distributed Newton’s Algorithm

1) Initialization: We initialize the primal variables
, and as a feasible solution subject to the

constraint of optimization problem (29).
When updating the direction based on the initial primal

value , we initialize the dual ; and when updating
the direction for , we initialize as the
final value of the dual in the previous iteration.
2) First and Second-Order Derivatives of Primal Variables:

The first and second derivatives of the primal variables in (37)
are specified as follows:

(41)

3) Dual Variable Update: First, the auxiliary variables are
computed according to Appendix, Section D. Note that the dis-
tributed implementation can be facilitated via computing the
variables , and at each energy consumer, and

passing them to the energy source to compute
, and .

According to (26), the update of the dual variables can be
expressed via the auxiliary variables as follows:

(42)

4) Primal Variable Update: After the iterative dual variable
update in (42) reaches convergence, we compute the directions
for the primal variable updates as follows:
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(43)

We then update the primal variables as for
, or . When computing the step

size according to (27), the parameter is given by

(44)

where the contribution from energy consumer , denoted as
for , is given by

(45)

C. Message Passing Scheme

We now elaborate on the message passing scheme between
the energy source and the energy consumers during the dis-
tributed implementation of the Newton’s algorithm given in
Section V-B.
First we describe the storage scheme for the primal, dual, and

auxiliary variables as follows.
• Energy Consumers: For , each energy
consumer stores the energy consumption

, the slack and dual variables

for tasks and .
• Energy source: The energy source stores the
energy generation, the slack and dual variables

for time slots
.

Next we describe the message passing mechanism for the dis-
tributed Newton’s algorithm, which is illustrated in Fig. 1, in-
cluding the problem transformation step , the primal vari-
able initialization steps – , the dual variable update steps

– , and the primal variable update steps – .
The messages being passed at each step are also shown in Fig. 1.
We elaborate on these steps as follows.
1) Problem Transformation:

: For , each energy consumer passes
and to the energy source. The energy source computes

and , and obtains the expected cost
according to (17).

2) Primal Variable Initialization:
: Each energy consumer , passes and

for , and for ,
to the energy source.

: The energy source broadcasts feasible solution of
and to all energy consumers for initialization.
3) Dual Variable Update:

: The energy source broadcasts
, to all energy consumers. Then

each energy consumer updates the auxiliary variables
, and

, according to (58), (59) and (60);

and then updates the dual variables , and

, according to (42).

: Each energy consumer passes to
the energy source. Then the energy source updates the aux-
iliary variables , and
according to (58), (59), and (60), and then updates the dual
variables and according to (42).
4) Primal Variable Update:

: After updating the dual variables , the energy source
broadcasts the updated , to
all energy consumers. Then each energy consumer obtains the
update direction for and for

, according to (43).
: Each energy consumer computes according to (45)

and passes it to the energy source. Then the energy source com-
putes the step size based on the received from all energy
consumers.

: The energy source broadcasts the step size to all
energy consumers. Then each energy consumer updates the en-
ergy consumption and using the received step size.

: Each energy consumer , computes the
variables , and , and then passes its sum energy con-
sumption corresponding to each time
slot to the energy source. Then the energy
source obtains and for according to
(34) and (35).
Remark: In this work, we have considered two types of dy-

namic tasks, and have proposed a distributed Newton’s method
for solving an energy scheduling problem. However, it is note-
worthy that the proposed framework is not limited to the two
types of dynamic tasks under consideration. Specifically, based
on the needs of the scheduler and in the circumstances that there
exist additional dynamic tasks that satisfy the linear energy con-
straint, the framework can accommodate such additional dy-
namic tasks as well without affecting the basic structures of the
approximations and message passing processes.
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Fig. 1. The detailed message-passing mechanism for the proposed distributed Newton’s algorithm.

VI. NUMERICAL RESULTS

We consider an electrical power network with a single
energy source and 40 energy consumers, during the time slots
for . Assume that for each energy consumer
there are 10 background tasks, i.e., for .
The energy consumption of each background task
is uniformly distributed over [0.05, 0.1]. Both probabilities

and are uniformly distributed over [0.8, 0.9] for
, and over [0.7, 0.8] for . For both

types of dynamic tasks, assume that the number of new tasks
starting at each time slot is uniformly distributed over ,
and the length of each dynamic task is uniformly distributed
over . Assume that the upper bound of energy
consumption all dynamic tasks satisfies the uniform distri-
bution over [0.2, 0.4]. For each type-1 dynamic task ,
assume that the utility coefficients , and is
uniformly distributed over [0.8, 1.2]. For each type-2 dynamic
task , assume that the total energy consumption satisfy

where is uniformly distributed over [0.05,
0.15]. The maximum energy generation . Let the
cost function of the energy source . The
threshold for outage probability . In the simulations,
we ran three iterations of dual variable update for each update
of primal variables.
We consider the optimization results of problem (18) for dif-

ferent log-barrier coefficients , and 1.00, using
the distributed Newton’s method. Fig. 2 plots the values of the

Fig. 2. Convergence of the proposed distributed Newton’s algorithm under dif-
ferent .

objective function against the number of primal variable iter-
ations for the above values of . It is seen that a larger ex-
hibits faster convergence but poorer final convergence perfor-
mance, while a smaller exhibits slower convergence but better
final convergence performance. This is because larger signif-
icantly changes the original problem [cf. (20) and (21)]. In the
following we set the log-barrier parameter , and fast
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Fig. 3. The total system utility under different window lengths.

convergence is always observed in all simulations. Usually 50
iterations are sufficient for convergence.
We now consider the solution to the optimization problem

(18) using different window lengths in the rolling horizon opti-
mization. Fig. 3 shows the final values of the objective function
values for window lengths and 3 in time slots
1 to 20. The intuitive reason behind this observation is that at
each certain time slot, when optimization is carried out there ex-
ists some uncertainties about the dynamic tasks generated after
that slot (and thus unknown during optimization). Such uncer-
tainties will increase by increasing the window length, which
subsequently degrades the system performance. As a result, it
is most efficient to set the window length to be one. In practice,
the window length can be set to , i.e., the energy
scheduling at each time slot is just for the current slot.
Finally, using , we test the fidelity of the Gaussian

approximation for the background tasks. We consider a hypo-
thetical case that the energy consumption of the background
tasks are known, such that the energy generation and thus the
energy cost are both deterministic and known. In Fig. 4,
we compare the optimization results based on such hypothetical
deterministic model for the background tasks, and those based
on the proposed stochastic model using Gaussian approxima-
tion. It is seen that the two results are very close, corroborating
the validity of the Gaussian assumption employed in the pro-
posed model.
Finally we adopt the distributed solution based on the dual

decomposition method to solve the energy scheduling problem.
Unfortunately, the dual decomposition-based distributed solu-
tion does not converge to a primal feasible solution. The conver-
gence conditions of the dual decomposition-based distributed
solution are not satisfied for the current optimization problem.

VII. CONCLUSION

We have developed a stochastic model for a local-area
smart-grid network, and formulated an energy scheduling
problem. To obtain a real-time fast solution, we have trans-
formed the original stochastic optimization into a convex
optimization with linear constraints using rolling horizon

Fig. 4. Validity of Gaussian assumption.

optimization and Gaussian approximation. Furthermore, we
have developed a distributed Newton’s method and designed
the corresponding message passing mechanism between the
energy source and energy consumers. Numerical results show
that the proposed online energy scheduling framework has a
fast convergence, and thus it is a promising practical solution
for smart-grid systems.

APPENDIX

A. Justification of Gaussian Approximation

We first outline the Lindeberg condition [18] of central
limit theorem for independent but not necessarily identically
distributed random variables. Assume random variables

, with the expectation and
the variance . Let . Then, the
distribution of the following standard sums

(46)

converges to the normal distribution if the following
Lindeberg condition is satisfied:

(47)

We prove that for any , and
. Note that , and from (13) we

have that

(48)

On the other hand, for any , we have that for any
background task , we have that and

. Note that, since ,
we have that

(49)
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Then, for background tasks, we have that the sum variance
. Note that, for any and suf-

ficient large and thus ,
and thus the Lindeberg condition (47) is satisfied. Therefore, the
Gaussian approximation for the sum of the background tasks is
justified.

B. Proof of (26)

Then for , denote

(50)

Hence . The elements of are
given by

(51)

Thus denoting and
, we have

(52)

Therefore, (23) can be rewritten as

(53)

C. Proof of Theorem 2

Consider the following linear constraints:

(54)

For each , let and
. Then (54) can be rewritten as

(55)

Let . The key step is to introduce auxiliary vari-
ables for , and replace with for
in constraint . Therefore we
have

(56)

with the additional linear constraints

(57)

Thus, the signs of are for in (56) and 1 in (57)
and thus all positive; the signs of are for in (56)
and in (57) and thus all negative. In this way, the original
arbitrary linear constraint (54) is transformed into the form of
(56) and (57) such that for each column of all coefficients are
of the same sign.

D. Computation of Auxiliary Variables

Let

. Then, for

, and , we have

(58)

Let . Then, for

, and , we have
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(59)

Let . Then, for

, and , we have

(60)

(61)

Finally from (44) we have

(62)
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