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smart grid improves the efficiency of power grids 
via the aid of modern communication, signal 

processing, and control technologies. While 
smart grid integration enables power grid net-
works to be smarter, it also increases the risk of 

cyberattacks due to the strong dependence on the cyberinfra-
structure in the overall system. In this article, the coordinated data-
injection attack detection problem in the smart grid is considered. 
Specifically, the data-injection attack model is first introduced and a 
thorough survey of existing detection methods is then given. Afterward, 
three important efforts to enrich the detection solution are presented in detail: 

1) attacker versus defender dynamics, where possible interactive attack and defense 
strategies are discussed in the context of secure phasor measurement unit (PMU) placement
2) distributed attack detection and state recovery, where the focus is how to achieve the optimal centralized per-
formance with a distributed approach
3) quickest detection (QD), where the tradeoff between the detection speed and detection performance is studied. 

A list of associated key open problems in this area is then presented to conclude this article. 

MOTIVATION AND INTRODUCTION
The electric power industry is undergoing profound changes as our society increasingly emphasizes the impor-
tance of a smarter grid in support of clean and sustainable energy utilization. Technically, enabled by advances in 
sensing, communication, and actuation, power system operations are likely to involve many more distributed 

[A detailed look at enriching  

 detection solutions]
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 real-time information gathering and processing devices. 
Institutionally, the increasing presence of smart metering 
and demand response programs may open the door to more 
intelligent supervisory control and data acquisition (SCADA) 
networks and end-user networks. Meanwhile, the deregula-
tion of the electric power industry has unbundled generation 
and transmission, allowing a broad range of market partici-
pants (e.g., load-serving entities and independent power pro-
ducers) to make decisions in coordination to keep a balanced 
power market. On the other hand, the stronger coupling 
between cyber- and physical operations makes power systems 
more vulnerable to cyberattacks. Such malicious attacks 
could often be coordinated across the whole network such 
that classic bad data detection approaches become ineffective 
[1]. As such, we envision that the issues arising in smart grid 
development demand novel information processing schemes. 

We focus on the fundamental problems in identifying and 
mitigating the impact of malicious cyberattacks, especially 
data-injection attacks during the state estimation process. In 
particular, we consider the case of a large interconnected 
power system, in which the whole grid is composed of multi-
ple subnets as shown in Figure 1 (note the dotted-line links 
for the cybercontrolling part). In the system diagram, each 
subnet has a control center, 
which controls the nodes within 
its subnet along with the inter-
faces with other subnets, and 
coordinates with other subnet 
control centers to jointly detect 
system-wide cyberattacks. 
Among the subnet controllers, 
we assume a mesh backbone 
connection to exchange system 
information and computation 
results. It is clear that to protect against system-wide coordi-
nated cyberattacks, different subnets should collaborate. 

State estimation was initially developed for power sys-
tems in the 1970s. Fred Schweppe, a pioneer in this area, 
defined power system state estimation as “a data processing 
algorithm for converting redundant meter readings and 
other available information into the estimate of the state of 
an electric power system” [2]. In other words, the main func-
tion of state estimation is to estimate, through processing 
the set of real-time redundant measurements, the electrical 
states of power systems, typically bus voltage magnitudes 
and phase angles. State estimation is a key function in build-
ing a real-time network model in the energy management 
system (EMS) [3], [4]. Specifically, the main tasks of a state 
estimator are listed below [5], for which we focus on the last 
one of bad data processing: 

 ■ Observability analysis: To determine whether a unique 
estimate can be found for the system state, generally prior 
to state estimation. 

 ■ State estimation: To determine the optimal estimate for 
the complex voltages at each bus based on the real-time 
analog measurements. 

 ■ Bad data processing: To detect measurement errors and 
bad data injections; to identify and eliminate them if 
 possible.

Conventional bad data detec-
tion techniques are typically 
based on gross errors appearing 
in the measurement residuals 
[5]. While relatively effective 
against random noises, these 
detectors lack the ability to 
detect highly structured bad data 
that conforms to the network 
topology and some particular 
physical laws. This raises serious 

security concerns about intentional stealth cyberattacks that 
can tamper with the measurements without being detected. As 

[FIG1] Distributed topology for the future smart grid (dotted lines depict the cyberpart). 
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more and more advanced cybertechnologies are being integrat-
ed into the EMS, such potential cyberattack threats are becom-
ing a major security concern for regional transmission 
organizations (RTOs) [6]. 

SYSTEM MODEL AND INJECTED DATA DETECTION
In this section, we first discuss the system model for state 
 estimation and introduce the 
linearized model. Then, we 
focus on the data-injection 
attack and the classic detection 
mechanism. Finally, we define a 
special type of stealthy attack. 

SYSTEM MODEL
We adopt the direct current (dc) power flow model (widely uti-
lized to simplify the system analysis; see [1], [2], [5], and [10]) 

 z5Hx1 e,

where H [ RM3N is the dc power flow matrix, z [ RM, x [ RN, 
and e [ RM are the measurement signal vector, the system 
state vector, and the measurement noise vector, respectively, 
with the covariance matrix for e given as Se. 

BAD DATA INJECTION AND DETECTION
We now introduce the general data-injection attack problem. 
Based on the linearized model, the cyberdata injection attacks 
can be modeled as [1] 

 z5Hx1 c1 e, (1)

where c accounts for the bad data injected by the attacker. The 
attack could be launched by one single attacker, or by a group 
of coordinated attackers that inject the bad data based on their 
collective information about the network. We assume that H is 
fully known to the system operators, and may or may not be 
known to the attackers. The objective of the defender (system 
operators) is to reliably detect an injection attack (the exis-
tence of c) in the event of an attack. 

The detection dynamics can be expressed by the following 
composite hypothesis testing problem with H0 representing 
the no-attack hypothesis and H1 representing the attack 
hypothesis: 

 H0: c5 0 versus H1: c 2 0.

We seek to devise a mechanism that distinguishes between H0 
and H1 reliably. We denote the true hypothesis and the deci-
sion of the detector by T [ 5H0, H16  and D [ 5H0, H16, 
respectively. Therefore, the probabilities of misdetection 
and false alarm are respectively given by Pmis5  
P 1D5H0 | T5H1 2  and Pfa5 P 1D5H1 | T5H0 2 . 
STEALTH ATTACK
From the data-injection attack model given in the previous 
subsection, we observe that if the attacker has knowledge on 
H, it can add c5Hb. As a result, we have 

 z5H 1x1 b 2 1 e, (2)

such that the control center believes that the true state is 
x1 b. This is called stealth bad data injection [5], i.e., if the 
attack vector lies in the range of H, it is not detectable by 
traditional statistical tests. In the section “Three New 
Perspectives on Future Detection Approaches,” we will discuss 

how to mitigate this issue. 

CLASSICAL APPROACHES 
AGAINST DATA-INJECTION 
ATTACKS
In this section, we give a survey 
of the various classical approach-

es against data-injection attacks. The objectives of the adver-
saries are not only to obtain some unauthorized information 
but also to paralyze the power facility by misleading the EMS 
with injected bad data. The EMS in the control center depends 
critically on estimating the system states based on data period-
ically collected from remote meters. If the adversaries are able 
to hack into the power grid and inject malicious data, the EMS 
may produce a false state estimate, which could potentially 
lead to wrong control decisions and may cause large-scale 
malfunction. Thus, the smart grid needs to be capable of 
detecting and preventing such attacks. The classical approach-
es are mainly based on two mechanisms: 1) adopting advanced 
signal processing techniques in the control center to detect 
data-injection attacks and 2) deploying advanced measure-
ment units such as PMUs at various locations to reduce the 
chance of being subject to data-injection attacks. Such mecha-
nisms will be reviewed next. 

BAD DATA DETECTION AT CONTROL CENTER
In practice, bad data in the state estimates may be caused by 
two possible sources: 1) nature (e.g., some extreme weather 
conditions) or some faulty nodes and 2) man-made data injec-
tion. Although today’s data-injection attacks usually refer to 
the second case, most classical approaches for detecting such 
attacks are based on the results developed for the first case. As 
such, we first review the results for the first case in the follow-
ing before we review the results for the second case. 

CLASSIC BAD DATA DETECTION
Classic bad data detection techniques try to detect the abnor-
mality in the state vector estimates, which are usually caused 
by either nature or some faulty nodes [7]. Given the power 
flow measurements z, the estimated state vector x̂ can be 
computed as [7] 

 x̂5 1HTSe
21H 221HTSe

21z. (3)

Thus, the residue vector r can be computed as the difference 
between the measured quality and the calculated value from 
the estimated state 
 r5 z2Hx̂. (4)

STATE ESTIMATION IS A KEY 
FUNCTION IN BUILDING A REAL-TIME 

NETWORK MODEL IN THE ENERGY 
MANAGEMENT SYSTEM.
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Therefore, the expected value and the covariance of the residu-
al are 

 E 1r 2 5 0

and 

 cov 1r 2 5 3I2H 1HTSe
21H221HTSe

214Se,

respectively. 
Bad data detection due to faulty sensors and topological 

errors can be performed using a threshold test over r [7], in 
which the normal state hypothesis is accepted if maxi |ri| # g, 
where g is the threshold and ri 
is the component of r ; other-
wise ,  the  abnormal  state 
hypothesis is accepted. Other 
methods such as the x2 method 
have also been proposed in the 
literature [5]. 

DATA-INJECTION ATTACK 
DETECTION
Man-made data-injection attacks against power grid state esti-
mation were introduced in [1]. By leveraging the knowledge of 
the power network topology, it was shown [1] that a stealth 
data-injection attack could bypass the bad data detection 
scheme in today’s SCADA system, which is similar to that 
described in the previous subsection. 

To overcome this security challenge, the network designer 
needs to quantify the security level against the data-injection 
attacks. In [8] and [9], security indices were introduced for state 
estimators in power networks. Such indices help with locating 
power flows whose measurements are potentially easy to manip-
ulate, where a larger index value indicates that a stronger coordi-
nated attack is needed in order not to trigger an alarm in the 
control center. With such indices, the security bottleneck in the 
smart grid could be identified. Meanwhile, algorithms were pro-
posed in [9] to place encrypted devices in the system to maximize 
the system security index level against stealth attacks. 

On the other hand, various practical data-injection attack 
detection algorithms have been designed, mainly with a focus 
on the detection probability maximization, attack damage con-
trol, and stealth attack recovery. In [10], the adversary is 
assumed to use a graph theoretic approach to launch stealthy 
malicious data attacks. When a stealth attack vector does not 
exist due to meter access restrictions, attacks are constructed 
to minimize the residue [defined in (4)] energy while guaran-
teeing a certain increase in the mean square error for the state 
estimate. From the defender’s point of view, a computationally 
efficient algorithm was derived to detect and localize attacks 
using the generalized likelihood ratio test regularized by an l1-
norm penalty on the strength of the attack. 

ADVANCED MEASUREMENT UNITS
As discussed above, in addition to signal processing-based 
measures to detect data-injection attacks, advanced measure-

ment units could also be deployed to reduce the chance of 
being attacked. Compared with traditional voltage meters, 
PMUs [11]–[13] are more advanced (and more expensive) units 
that are equipped with various security measures. In practice, 
PMU data is sampled from widely dispersed locations in the 
smart grid and synchronized from a common time source 
based on a global positioning system (GPS) radio clock, where 
a PMU can be a dedicated device or its function can be incor-
porated into a protective relay or other devices. As such, PMU 
technologies provide a tool for system operators and planners 
to measure the state of the electrical system and manage 

power quality with accurate and 
c o h e r e n t  t i m e  s t a m p s . 
Consequently, synchronized 
comparison of the measure-
ments across different locations 
is possible in real time, which 
bears inherent robustness 
against data-injection attacks. 
Moreover, the communication 
links between PMUs and data 

centers are usually secured and encrypted. 
Many applications of PMUs in power systems have been 

studied in the literature. Specifically, the analysis of power 
system observability with PMUs was conducted in [14]. The 
optimal placement of PMUs was studied in [15] and [16] to 
maximize the measurement redundancy at the power system 
buses with a given number of PMUs. In [17], the nonlinear 
power system state estimation problem was solved with PMUs 
making the network completely observable. In [18], PMU lin-
ear measurement equations are directly applied and PMU data 
is incorporated into power flow (current) equations to accom-
plish the power system state estimation. The placement of 
PMUs in the power system was further explored in [19] and 
[20] to enhance power system state estimation, which in turn 
improves the ability to defend bad data injection. 

THREE NEW PERSPECTIVES 
ON FUTURE DETECTION APPROACHES
In this section, three important aspects to enrich the detec-
tion results against data-injection attacks are presented in 
detail: 1) attacker versus defender dynamics (along the line of 
[10]), where possible interactive attack and detection strate-
gies are discussed in the context of secured PMU placement; 
2) distributed attack detection and state recovery, where the 
focus is on how to achieve the optimal centralized perfor-
mance with a distributed approach; and 3) QD, where the 
tradeoff between the detection speed and detection perfor-
mance is studied. 

ATTACKER VERSUS DEFENDER DYNAMICS
From the section “System Model and Injected Data Detection,” 
we recall that the injected attack vector c is not detectable if it 
fully lies in the range of H. In this subsection, we discuss some 
possible schemes to mitigate this issue; for example, we could 

PMU TECHNOLOGIES PROVIDE A 
TOOL FOR SYSTEM OPERATORS AND 
PLANNERS TO MEASURE THE STATE 
OF THE ELECTRICAL SYSTEM AND 
MANAGE POWER QUALITY WITH 

ACCURATE AND COHERENT 
TIME STAMPS.
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assume perfectly secured loca-
tions within the measurement 
vector by installing fully secured 
PMUs in the system. However, if 
the attackers have certain knowl-
edge about such possible security 
measures, they could also opti-
mize their strategies of choosing 
c. On the other hand, the defender can take counteractions to 
minimize the worst-case scenario caused by the attackers. 
These interesting attacker versus defender dynamics need to be 
carefully addressed to design a smart grid that is robust against 
data-injection attacks. 

We discuss this issue based on our results from [21], where 
we assume that the attacker has full knowledge of H as well as 
the defender’s strategy. We also assume that it is possible to 
use some idealized PMUs to securely protect a subset of the 
measurements, preventing the attacker from changing those 
measurement values in such a subset. In other words, we have 
some trusted reference points in the measurement vector z. 
However, the large number of meters in the smart grid makes 
it impossible to protect all of them with idealized PMUs in 
practice. Let S denote the set of indices corresponding to the 
measurements that are protected, and let S denote the com-
plementary set of S. It is shown in [1] that as long as c5Hb 
holds for any b, the injection attack in (1) does not change the 
measurement residuals, thereby defeating conventional detec-
tion techniques based on statistical tests [5]. However, with 
the secured set S, the attackers have to guarantee the follow-
ing countersecurity constraint when they choose the attack 
vector HSb5 0, where HS is the matrix composed of the rows 
in H indexed by S. It is clear that given an H, as we increase 
|S| (the cardinality of S), it is possible to make the above lin-
ear equation overdetermined such that the only feasible attack 
strategy is the trivial choice of c5 0 and b5 0, i.e., no attack. 

ATTACKER’S STRATEGY
However, since the installation and maintenance cost for 
secured measurement points is high, |S| is usually small. This 
leads to some sparseness properties, and consequently there 
usually exist many feasible attack strategies for c. Some recent 
work on how to find |S| is given in [22]. Accordingly, the 
attackers may choose an objective to optimize under some 
other extra constraints. For example, the attacker may choose 
to minimize the number of meters that it tampers with to 
reduce the probability of being detected; meanwhile, the 
attacker tries to guarantee a minimum distortion at at least 
one attack position, i.e., ||b||` $ t, where t is a predefined 
threshold. As such, the optimization problem for the single 
attack case can be constructed as 

 min
b
7HSb 7 0  s.t. HSb5 0 and 7b 7` $ t. (5)

The major issue for the attacker is that finding sparse 
solutions for the above ,0-minimization problem is in gen-

eral NP-hard. It is well known, 
however, that optimizing the 
,1 norm helps with promoting 
sparsity. With some transfor-
mation, it has been shown 
in [21]  that  a  reasonable 
approach for the attacker is to 
solve the following ,1 convex 

relaxation problem: 

 min
bi

7Hi
Sbi1 hi

S 7 1  s.t. Hi
Sbi1 hi

S5 0, (6)

where hi denotes the ith column of H, Hi denotes the 
M 3 1N2 1 2  matrix formed by removing the ith column 
from H, and bi [ RN21 denotes the vector formed by remov-
ing the ith component bi from b. 

We refer to (6) as a naive ,1-relaxation approach. It is 
worth pointing out that the relaxation from ,0 to ,1 does 
not change the constraints that make the attacker success-
fully evade detection by adopting Hi

Sbi1 hi
S5 0. The only 

suboptimality that the attacker may suffer is that the solu-
tion may not be the sparsest, i.e., there may exist other sets 
of indices to attack with a smaller cardinality. 

To mitigate the above issue, as shown in [21], we 
could instead solve the following weighted optimization 
problem [23]: 

 min
bi

7diag 1w i 2 1Hi
Sbi1 hi

S 2 7 1 s.t. Hi
Sbi1 hi

S5 0, (7)

where diag 1wi 2  denotes a diagonal matrix whose diagonal 
entries are given by a weight vector w i [ R 

M2NS . 0 with NS 
the size of set S. Note that with w i5 1, (7) is reduced to (6). 
The attacker may incorporate certain prior knowledge to set 
the weights in w i. It can also try to improve the performance 
by repeating the process for multiple iterations, with the spe-
cific strategy listed in Algorithm 1, where the fixed P . 0 is to 
regularize division by (near) zero [23]. 

DEFENDER’S STRATEGY
If the defender is aware of the possible strategies that the 
attacker chooses, the defender can search all possible subsets 
of S to protect to optimize certain detection performance. In 
[21], we chose to construct an optimization problem as 

ALGORITHM 1: AN ATTACKER’S STRATEGY
 for i5 1, c, N do 
 Obtain the initial bi 

; 
 for a fixed number of iterations do 
 Compute xi5Hi

Sbi1 hSi ; 
 Compute wk

i 5
10 xk

i 0 1 P , k5 1, c, M2NS ;

 Solve the weighted problem (7) to obtain bi;
 end for 
 end for 

THESE INTERESTING ATTACKER 
VERSUS DEFENDER DYNAMICS NEED 

TO BE CAREFULLY ADDRESSED TO 
DESIGN A SMART GRID THAT 

IS ROBUST AGAINST 
DATA-INJECTION ATTACKS. 
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 follows. Given an attacker strategy, let NA i be the minimum 
number of measurements that the attacker needs to control to 
inject bad data into the state of bus i without being detected. 
We seek to solve 

 min
S

 |S|  s.t.  min
i[51,c, N6NA i $ NA, (8)

where NA is a positive integer as the threshold. Thus, the 
above formulation attempts to meet a certain level of resil-
ience with the minimum protection cost. 

To solve the above combina-
torial problem, we propose a sub-
optimal but efficient algorithm 
that adds one measurement into 
the set S at a time, until all the 
conditions of NA i $ NA are met. 
The algorithm is presented in 
Algorithm 2. 

At each iteration, the algorithm emulates attacks under 
the current secured subset S, which is initialized to be 
empty, assuming a specific attacking strategy. The key idea of 
the algorithm is that it maintains an array of counters, 
MeasureArr, counting the number of times that each mea-
surement is manipulated by the attacker. We count only 
when NA i , NA, i.e., when the condition on the minimum 
number of measurements being attacked is not met. The 
algorithm then determines which measurement is modified 
the most and moves it to the protected set S. The maximizer 
may not be unique. In such cases, the algorithm chooses a 
random index among all the optimizers. The complexity 
order of the algorithm is equivalent to that of solving N 3 NS 
linear programs, as compared to solving Q M

NS
R  linear pro-

grams in the exhaustive search. Note that the proposed algo-
rithm does not necessarily converge to a global optimum. In 
the numerical results, we run the algorithm several times 
with random initializations for each NA and choose the out-
put S with the smallest cardinality. 

For simulation, we use MATPOWER 4.0, which is widely 
accepted as a valid simulation tool in power system analysis. In 
Figure 2, we plot the minimum number of measurements that 
the attacker needs to manipulate to change at least one state 

variable without being detected as a function of the measure-
ment faction being protected. The sets of protected measure-
ments are designed by Algorithm 2. For each value of NA, we 
run the algorithm three times. As can be seen, all the test sys-
tems display a relatively similar behavior. At first it is fairly 
expensive to protect the systems, as the attacker needs to con-
trol only a few more meters to evade detection even if the 
designer can protect up to 10% of the measurements. 
Afterward, the cost of protection decreases significantly as indi-
cated by the steeper slopes of the curves. For example, by pro-
tecting 25% of the measurements on the IEEE 57-bus system, 
we can force the attacker to control at least 15 m to succeed, a 
fivefold increase over not using any form of protection. The 
high initial cost of protection perhaps can be attributed to the 
fact that there typically is a large fraction of the states having 
very few associated measurements as illustrated in Figure 3. In 
other words, since electric grids are typically sparse, protecting 
one measurement can typically impact only a few states. 

DISTRIBUTED DETECTION AND STATE RECOVERY
For a large grid, the attack detection and the associated state 
estimation problem can be computationally sophisticated 
since the number of the states can be large [24], which can be 
alleviated by distributing the computation into several pro-

cessing nodes. The goal of this 
subsection is to introduce a dis-
tributed algorithm (denoted as 
DA) from [24], in which each 
node converges almost surely to 
the optimal solution under cer-
tain  conditions. 

As we discussed earlier, if the 
attack vector c lies in the span of H, it is not detectable. 
Therefore, all the useful information for detection is contained 
in the projection of z onto the null space of H, which is denot-
ed as y and given as 

ALGORITHM 2: SUBSET SELECTION
 S5[;
 repeat 
 MeasureArr 151, c, M62 5 0;
 for i5 1 to N do 
 Find Si and NA i;
 if NA i , NA then
 MeasureArr 1Si 2 B MeasureArr 1Si 2 1 1;
 end if 
 end for 
 kw5 argmaxkMeasureArr 1k 2 ;
 Add kw to S; 
 until NA i $ NA, 4i 

IN OTHER WORDS, SINCE ELECTRIC 
GRIDS ARE TYPICALLY SPARSE, 

PROTECTING ONE MEASUREMENT 
CAN TYPICALLY IMPACT ONLY 

A FEW STATES. 

[FIG2] NA versus the fraction of protected measurements.
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 y5 3I2H 1HTH 221HT 4z,  (9)

by assuming H is full rank, i.e., the system is observable. The 
overall detection performance is then dependent on the suffi-
cient statistic y. From now on, we focus on a distributed 
approach to estimate y, and leave the other details on the joint 
detection and estimation problem to [24]. 

The distributed observation model at the ith node is give by 

 zi5H|ix1 ei1 ci , (10)

where zi is the local observation vector at the ith node, H|i cor-
responds to the local Jacobian matrix, with ei and ci being the 
noise and attack vector respectively influencing the measure-
ments at node i.

We make the following as  sumption on global observability. 
(E.1)–Observability: The ma  trix G5a

N

i51
H| i

T H|i  is of 
 full-rank. 

Starting from an initial deterministic estimate of y (the 
initial state may be random, 
but here we assume that it is 
 deterministic for notational 
simplicity) at node i, denoted 
by yi 10 2 , each node generates 
by a distributed iterative algo-
rithm a sequence of estimates, 
5yi 1n 26n$0.  T h e  e s t i m a t e 
yi 1n1 12  of y in the ith node at 
time n1 1 is a function of

 ■ its previous estimate
 ■ the communicated estimates at time n from its neigh-

boring nodes
 ■ the local observation zi. 

ALGORITHM DA 
Based on the current state yi 1n 2 , the exchanged data 
5yl 1n 26l[Vn

 from the communication neighborhood node set 
Vn, and the observation zi, we update the estimate at the ith 
node by the following distributed iterative algorithm: 

 yi 1n1 1 2 5 yi 1n2 2 eg 1n 2 a
l[Vn

3yi 1n2 2 yl 1n24f
 2g 1n 2Pi

T Szi2H|iŷi 1n2 2Piyi 1n2T,  (11)

where Pi is an Mi 3 M selection matrix that selects the com-
ponents of yi 1n 2  corresponding to the location of zi in the vec-
tor z, with zi [ R

Mi and z [ RM, and the auxiliary state 
sequence 5ŷi 1n 2 6 at node i is generated according to a distrib-
uted scheme, 

 ŷi 1n1 1 2 5 ŷi 1n 22 eb 1n 2 a
l[V i

3 ŷi 1n 2 2 ŷl 1n 24
 2a 1n 2H|i

T Szi2H|i ŷi 1n 2Tf . (12)

In (12), 5g 1n 2 6, 5a 1n 2 6, and 
5b 1n 2 6  are appropriately cho-
sen  t ime-vary ing  we ight 
sequences, which we will dis-
cuss later. Algorithm DA is dis-
tributed since at node i  it 
involves only the data from the 
nodes in its communication 

neighborhood Vi. To implement DA, each node stores and 
updates two states: yi 1n 2 , the estimate of z; and ŷi 1n 2 , an aux-
iliary state used for the update of yi 1n 2 . 

We note that the estimate sequence 5yi 1n 2 6 is random, due 
to the stochasticity of the noise. The following assumptions 

on the connectivity of the inter-node com-
munication network are assumed. 

(E.2)–Connectivity: The internode com-
munication network determined by the 
communication neighborhoods Vi  is 
 connected. 

(E.3)–Time varying weights: The sequences 
5a 1n 2 6 and 5b 1n 2 6 are of the forms a 1n2 5 
11a2 / 1n1 1 2 t1 2  and b 1n2 5 11b2 / 1n1 1 2 t2 2  
respectively, where a, b . 0 are constants and 
the exponents t1 and t2 satisfy 0 , t1 # 1 
and 0 , t2 , t1 . The sequence g 1n 2  is of the 
form g 1n2 5 11c2 / 1n1 1 2 t3 2 , where c. 0 is 
a con  stant and the exponent t3 satisfies 
0,t3# 1 .

A key thing to note is that, although the 
weights are de  caying over time, i.e., g 1n 2 ,
a 1n 2 , b 1n 2 S 0 as n S `, they are persis-
tent, i.e., an$0

a 1n25`, an$0
b 1n25`, and 

an$0
g 1n2 5 `.  Whereas the decaying 

nature of the weight sequences guarantee 
convergence, the persistence condition is 

[FIG3] The fraction of states as a function of the number of associated 
measurements for different test systems.
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necessary to drive the estimators to y from arbitrary initial 
 conditions. 

The following result characterizes the convergence 
property of the proposed algorithm DA. 

THEOREM 1
Consider the DA under (E.1)–(E.3). Then, for each i, the esti-
mate sequence 5yi 1n 2 6 converges almost surely to the sufficient 
statistic as n S `. 

The convergence rate in 
Theorem 1 depends on the 
choice of the various weight 
sequences. The proven conver-
gence [24] of the above theorem 
allows each node to compute in 
a distributed way the centralized sufficient statistic needed for 
the construction of the optimal detector-estimator of the 
attack vector c. For further details, please refer to [24]. 

QUICKEST DETECTION
For attack detection, in many scenarios the detection speed is 
critical to guarantee a timely response in the grid. As such, it 
is important to study the tradeoff between the detection reli-
ability and the detection speed and to operate on the optimal 
tradeoff curve. Such a goal can be fulfilled within the QD 
framework [25]. Specifically, QD attempts to determine an 
abnormal state change as quickly as possible based on 
 real-time observations such that certain user-defined condi-
tions are satisfied while maintaining a certain level of detec-
tion accuracy. The user-defined conditions are known as 
decision rules, which optimize the tradeoff between the stop-
ping time and the decision accuracy. Here, we formulate the 
bad data detection problem as an adversary detection problem. 
The techniques to cover are mainly the cumulative sum test 
and the generalized likelihood ratio test (for others 
please refer to [25]). 

Suppose that the control center monitors a sub-
division of a smart grid with active buses. Here, we 
assume that the attacker does not know H. When 
the system is in the normal state (no adversary), we 
assume a Bayesian model of the random state vari-
able z with a multivariate Gaussian distribution 
N 1mz, Sz 2 .  Here mz5 0,  and Sz5HSxH

T1Se 
with covariance Sx of the state x and covariance Se 
of the noise e. We use n to denote the observation 
time index. The adversary is assumed to be inactive 
initially; at a random and unknown observation 
time t, it becomes active to inject the malicious 
data. The binary hypotheses can be formulated as 

 eH0 : zn|N 10, Sz 2 , 
H1 : zn|N 1an, Sz 2 ,

where  a n5 3an,1, an,2, c, an, M 4T [ RM  i s  the 
unknown attack vector to inject malicious data at 
observation time n. In other words, we need to 

detect a change of the distribution from N 10, Sz 2  to N 1an, Sz 2  
at an unknown time t. 

Based on Lorden’s formulation [25], we minimize the worst 
case of detection delay Td, which can be described as 

 Td5 supt$1Et 3Th2t|Th $ t 4,  (13)

where Th is the decision time. To find the minimum Td, Page’s 
cumulative sum (CUSUM) algorithm is the best-known tech-

nique [25]. However, most 
CUSUM-based models assume 
perfect knowledge of the likeli-
hood functions. In the scenario 
of attacks, the parameters of the 
H1 distribution usually cannot 
be completely defined. Thus, we 

need to deploy certain adaptive techniques to solve the 
unknown parameter issue in Page’s CUSUM detection scheme, 
which we call the adaptive CUSUM test. 

The proposed QD algorithm, the adaptive CUSUM test, is 
recursive in nature, where each recursion comprises two 
interleaved steps: 1) a linear unknown parameter solver and 2) 
a nonparametric multithread CUSUM, with the multithread 
CUSUM test modified from Page’s CUSUM algorithm. The non-
parametric multithread CUSUM test considers and incorpo-
rates the likelihood ratio terms of M  measurements at 
observation time n to determine the stopping time Th. The 
cumulative statistic at observation n is given by 

  Sn5 max
1$k$Th

a
Th

n5k
Ln,  Ln 1zn 2 5 a

M

l51
log 

f1 1zn|an 2
f0 1zn 2 ,

where Ln is the sum of the likelihood ratios for all measure-
ments (zn, l, l [ 1, 2, c, M) of the vector zn at observation 
time n, f1 1z n|a n2  is the H1 multivariate normal distribution 

[FIG4] Example of QD for bad data injection.
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while the adversary actively 
injects malicious data with 
mean an, and f0 1zn 2  is the H0 
multivariate normal distribu-
tion in the normal state. At 
observation time n, the cumula-
tive statistic Sn can be computed recursively and described as 

 Sn5max 3Sn211 Lt 1zn 2 , 0 4, (14)

where S05 0. The control center declares an alarm when the 
accumulation crosses a certain threshold h, i.e., 

 e declare H1,  if  Sn $ h;
declare H0,  otherwise.

Notice that the value of h determines the accuracy of detection. 
If we require a higher accuracy level, h should be larger. 

However, in practice we do not know the value of an, i.e., 
how the attacker attacks. To overcome this problem, we 
 consider the Rao test [26], which is asymptotically equivalent 
to the generalized likelihood ratio test. The derivation of the 
Rao test is similar to that of the locally most powerful test, 
where the Rao test involves straightforward calculation by tak-
ing derivatives with respect to the unknown parameter evalu-
ated at zero, leading to much lower complexity than that for 
maximum likelihood estimation. 

The CUSUM performance is illustrated in Figure 4, which 
shows the evolution of the CUSUM statistic versus the obser-
vation time n. Specifically, Case 1 with false alarm rate (FAR) 
of 1% corresponds to threshold h1, and Case 2 with FAR of 
0.1% corresponds to threshold h2. The attack starts from 
Time 6. The proposed algorithm signals the alarm and then 
terminates the process at Th = 7 and 8 respectively, when Sn 
passes the thresholds. 

CONCLUSIONS
In this article, we have discussed the coordinated data-
injection attack and detection problem in the smart grid. In 
addition to the basic problem formulation and a literature 
survey on existing solutions, we have presented three 
important aspects through which we can enrich the detec-
tion solutions. Specifically, we first discussed the possible 
attacker versus defender dynamics in the context of bad 
data injection and detection, where an optimal formulation 
and heuristic algorithms are given to derive various strate-
gies. We then focused on the distributed implementation 
issue, where a distributed algorithm is proposed with a 
guaranteed convergence to the centralized solution. Finally, 
we introduced the QD approach, with which we could 
explore the optimal tradeoff between the detection speed 
and reliability. 

The bad data detection problem is a challenging one with 
the general cases still open. In the following, we list several 
possible directions for future work: 

1) In most current approaches, for the system measurement 
model, the statistics of the measurement noise are usually 

assumed to be perfectly known. 
The more practical cases with 
unknown or nonperfectly known 
noise statistics are of interest. 
2) In the attacker versus de -
fender dynamics, the more gen-

eral cases where the attacker knows only partial 
information about H and/or where the defender knows 
only partial information about the attacker’s strategies are 
worth investigation. 
3) In the QD approach, methods for designing a distributed 
scheme to implement the proposed algorithm is another 
promising direction.
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