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Communication of Energy Harvesting Tags
Zhe Wang, Ali Tajer, Member, IEEE, and Xiaodong Wang, Fellow, IEEE

Abstract—We solve the problem of designing an affordable
optimal transmission strategy for the recently proposed sys-
tem of energy-harvesting active networked tags (EnHANTs),
that is adapted to the identification request and the energy
harvesting dynamic. We assume that the system operates in
a time-slotted fashion, so that the problem is formulated as a
Markov decision process (MDP). Both a static exhaustive search
method and a modified policy iteration algorithm are employed
to obtain the optimal transmission policy. Simulation results are
provided to demonstrate that the obtained transmission policy
can considerably improve the overall system performance which
takes into consideration of both the system activity-time and the
communication reliability.

Index Terms—Energy harvesting tags, transmission strategy,
Markov decision process, policy iteration.

I. INTRODUCTION

THE system of energy-harvesting active networked tags
(EnHANTs) has been recently proposed as small devices

that can be attached to small objects that are not tradition-
ally networked, e.g., books, clothes, and keys [1], [2]. The
EnHANTs system represents a futuristic transition from the
radio frequency identification (RFID) technology [3] to a novel
one with two main features. First, it enables communications
among tag-equipped objects and secondly, the objects are
autonomous and self-sufficient from an energy consumption
perspective as they harvest and store energy from ambient
light, motion, and temperature gradients.

The EnHANTs system mainly facilitates object tracking
applications that are not viable through the existing technolo-
gies that either lack networking capability (e.g., RFID) or
do not satisfy the size or energy autonomy constraints (e.g.,
Bluetooth). Examples of such tracking applications by en-
ergy autonomous networked objects include disaster recovery,
emergency alert, and collecting temporal and spatial proximity
information. This system enjoys the main features of both the
RFID and wireless sensor network (WSN) technologies. In
particular, the tags are designed to provide a timely response
to any request for their identification information, as done
by RFIDs, and also to report their functioning states and
surrounding environment information, as done in a WSN.
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The major challenge in designing the communication pro-
tocols for EnHANTs pertains to managing the energy re-
sources. For such energy management, there exists a tension
between maximizing the activity-time1 of the tags on one
hand, which necessitates a conservative consumption of the
energy resources, and increasing the communication reliability
on the other hand, which suggests consuming more energy.
The optimal consumption of the energy resources, therefore,
requires striking a balance between maximizing the activity-
time and communication reliability. Maintaining such a bal-
ance becomes more complicated due to the fact that the tags
harvest energy on an ad-hoc basis, depending on the physical
conditions of the environment (e.g., light, temperature, or mo-
tion). Therefore, an object might not have adequate energy for
responding to any communication request it receives, and more
importantly, even if it does, it might not be necessarily optimal
to respond to such a request as preserving the energy for
subsequent communications might bring about more overall
communication reliability and activity-time.

The problems of activity-time maximization and reliability
maximization have been treated independently in the contexts
of RFID and WSN, respectively. For example, [4] and [5]
consider maximizing the activity-time and coverage range
(readability) of the RFID tags, respectively. Specifically, [4]
proposes a mechanism for jointly energy harvesting and en-
ergy saving and [5] introduces a passive RFID system whose
tags are equipped with power amplifiers and energy storage
devices. Both systems are designed for typical application of
tag identification information reading and do not support state
information exchange among the tags. On the other hand,
[6]–[8] discuss energy optimization for the WSNs, where the
optimal transmission schemes subject to the battery state and
delay constraints are developed.

In this paper, we propose a transmission strategy for En-
HANTs that optimizes a long-term average of the communi-
cation reliability. The reliability part of this objective reflects
the impact of energy management on communications and
the long-term average implicitly incorporates the activity-time
maximization goal. We show that the energy-spending policy
associated with the information transmission can be cast as a
Markov decision process (MDP), and we provide an efficient
algorithm for computing the optimal policy.

The remainder of the paper is organized as follows. In
Section II, we describe the energy harvesting and communi-

1The meaning of lifetime for energy-harvesting tags is slightly different
from that of more conventional tags. For this reason we have adopted the
term “activity-time”, which similar to the traditional definitions of lifetime,
refers to the time spans during which the tag has enough energy to respond to
the inquiries. Its difference, nevertheless, is that activity-time is not of finite-
horizon and can potentially extend for a long duration given that the tag is
capable of harvesting adequate energy.
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cation models of the system. In Section III, we formulate the
problem of optimizing the long-term average communication
reliability, and show that it has an inherent MDP structure. In
Section IV, we provide an iterative algorithm for solving the
MDP problem and analyze its convergence. Simulation results
are provided in Section V. Finally, Section VI concludes the
paper.

II. SYSTEM DESCRIPTIONS

A. Communication Model

Consider a network of objects equipped with EnHANTs that
communicate with a tag reader. Upon the request of the reader,
the objects provide it with their identity and state information
about their surrounding conditions. The communications occur
in a time-slotted fashion with slots of equal durations. The
beginning of a time slot is reserved for the reader to broadcast
its inquiries for collecting identification and information. Upon
receiving the inquiries, the objects promptly respond to the
reader, where they are allowed to use the remaining portion
of the time slot for transmitting their information to the reader.
A communication error occurs when either the objects fail to
respond to the reader’s inquires, or the reader fails to correctly
decode the data from the objects.

To ensure low energy consumption, we assume that the
ultra wideband (UWB)-based the pulse-position modulation
(PPM) [9] is employed at each tag for sending information
to the reader. Specifically, the information is encoded to the
different positions of a single pulse (or a group of pulses)
within a given time interval T . Given an encoded PPM symbol

s = [s1, s2, . . . , sJ ], si ∈ {0, 1} ,

and a pulse p(t) of duration Tp, where Tp < T/J , the received
signal corresponding to s is given by

x(t) =

J∑
i=1

sip(t− iT/J) + v(t), 0 ≤ t ≤ T , (1)

where v(t) is the ambient Gaussian noise. We assume that
all encoded symbols are mutually orthogonal. Assuming that
the pulses in a symbol are all unit pulses, i.e.,

∫
p2(t)dt = 1,

then we define the weight w of the symbol as the number of
non-zero pulses in the symbol, which is also the energy of the
symbol.

In order for the reader to process the received PPM sig-
nal from the tagged object, conventionally a front-end A/D
converter is employed which requires a very high-sampling
rate for the UWB PPM signal. In particular, the sampling rate
is the inverse of the pulse width Tp, e.g., 1/Tp = 5GHz,
which is prohibitively high. Alternatively, given the sparsity
of the PPM signal, the compressive sensing technique [10]
together with the signal detection method with compressive
measurements [11] can be employed at the reader to signifi-
cantly reduce the sampling rate. The basic idea is to project the
received UWB PPM signal to some (random) basis waveforms
at the analog front-end. The resulting projections constitute
the compressive measurements based on which the original
transmitted PPM signal can be detected. Mathematically the
projection operation is characterized by a (random) projection
matrix Φ ∈ R

M×N [10]. After projection, the original

received PPM signal x ∈ R
N , corresponding to the samples

of the received PPM waveform x(t) at the 1/Tp sampling rate,
is converted to the compressed samples x̃ = Φx ∈ R

M with
a compression ratio of M/N . Note that no sampling at rate
1/Tp is needed; instead, we obtain the compressed samples x̃
directly by the analog projection operation.

Assume that there are totally K PPM symbols
s1, s2, . . . , sK . Denote their corresponding projections
as x̃i = Φxi, i = 1, 2, . . . ,K . Then the receiver implements
the following decision rule on the compressed signal to
decide the PPM symbol that was transmitted:

î = arg min
1≤i≤K

(x̃− x̃i)
TΨ(x̃− x̃i) , (2)

where Ψ = (ΦΦT )−1. Under this classification method, the
probability of mis-detecting a symbol of weight w, denoted
by Pmd(w), is well-approximated by [11]

Pmd(w) = 1−Q

(
−
√

M

N

w

σ2

)K−1

, (3)

where σ2 is the variance the additive white Gaussian noise,
and Q(x) = 1√

2π

∫ x

−∞ e−t2/2dt.
A good timer synchronization is necessary for the En-

HANTs as they work on a time-slot basis. Designing the
appropriate synchronizers follow the same principles as those
needed in the more conventional RFID systems. The system
architectures provided in [1] and [2] employ a simple schemes
in which the tags and readers use an analog circuit to detect
the reader’s inquiries and the tag’s responses. These inquires
and responses occur in the forms of a single pulse or a train of
pulses. By locating the positions of the pulses, the system can
obtain the underlying time reference, which in turn serves as
the basis for synchronized communication. More information
on implementing these synchronization methods is available
in [12] and [13].

B. Energy Harvesting Model

We assume that the reader has a passive and continuous
power source and has no power constraint. For the tags, we
assume that they are equipped with rechargeable batteries and
light energy harvesting devices. Due to the size constraints, the
batteries must be small and consequently, have low capacity.
Therefore, a considerable portion of the energy consumed by
the tags should be harvested from the environment and the
battery essentially functions as an energy buffer.

We consider probabilistic models for inquiries made by
the reader as well as the energy harvesting dynamics of the
devices. We aim to optimize the transmission policy from the
perspective of each object and therefore restrict the analysis
to the case of one reader and one EnHANT equipped object.
To model the identification request state of the reader at the
beginning of the k-th time slot, for k ∈ N, we define the
random variable

ak ∼ Bernoulli(r) ,

where ak = 1, occurring with probability r, indicates that the
reader inquires about the tag’s information at the beginning
of the k-th time-slot and ak = 0, that occurs with probability
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(1 − r), indicates otherwise. We also define the indicator bk
to reflect whether the tag is harvesting energy in the k-th time
slot (bk = 1) or it is not harvesting energy (bk = 0). Moreover,
we model the energy harvesting process as a correlated, two-
state process [14]. If the tag harvests energy in a time slot,
it will continue to harvest energy in the subsequent time slot
with probability p and if no energy is harvested in a time slot,
the probability of not harvesting any energy in the subsequent
time slot either is q.

We denote the energy level that a tag can harvest and
consume in the subsequent time slots by Eh. We also denote
the capacity of the battery by Bmax and denote the energy
level restored in the battery of the object at the beginning of
the k-th time slot by Bk, with Bk ≤ Bmax. By defining Wk

as the weight of the symbol transmitted in the k-th time slots,
we get the following recursive relationship between the energy
levels at the beginning of two consecutive time slots

Bk+1 = min
{
Bk − ak ·Wk · 1{Bk·≥Wk} + bk ·Eh , Bmax

}
,

(4)
where the indicator function 1{A} is defined as 1{A} = 1 if
A is true, and 0 otherwise. We remark that Wk, for all k ∈ N,
take discrete values from W = {0, w1, . . . , wm} which are
determined by the design of the hardware.

III. PROBLEM STATEMENT

A. Performance Measure

We define Sk � (Bk, ak, bk), as the state of the tag in
the k-th time slot. Since all components of Sk, i.e., Bk, ak,
and bk, take discrete values and are all bounded, there are
a finite number of possible states. We denote the number of
such possible states by |S| and the set of possible states by
S � {s1, . . . , s|S|}. Due to the structure of PPM that encodes
the data in the positions of the non-zero pulses, the data to be
transmitted govern the positions of the pulses, and the state
of the tag determines the energy of the pulse. As a result,
irrespective of the data content to be conveyed to the reader,
the energy of the tag in the k-th time interval is uniquely
determined by Sk. Therefore, identical states Sk = Sl for
k �= l will give rise to identical symbol weights. We denote a
transmission policy φ as a mapping from the set of states S
to the set of weights W , so that φ(sk) is the symbol weight
corresponding to the state sk. Our objective is to determine
the optimal design of φ(·) such that a performance measure,
that incorporates both the tag activity-time and communication
reliability, is optimized.

Erroneous communication has two origins, namely no-
response errors and mis-detection errors. The no-response
error in the k-th time slot occurs when the battery cannot
afford the energy required for sending a response to the reader,
i.e., Bk < Wk , or when the tag operates under a certain
policy that may voluntarily give up responding to the reader’s
request. For this reason, in order to allow for the possibility
of letting φ(sk) = 0, we must have 0 ∈ W . For any given
transmission policy φ, these two factors combined give rise to
the following long-term average no-response error, where the
average is taken over all time-slots,

P̂ nr(φ) = lim
N→∞

∑N
k=1 1{Wk=0} · ak∑N

k=1 ak
, (5)

where Wk = φ(Sk). The mis-detection errors take place when
the reader cannot successfully decode the data transmitted by
the object and its pertinent infinite-horizon average error for
the given transmission policy φ is

P̂md(φ) = lim
N→∞

∑N
k=1 Pmd(Wk) · 1{Wk>0} · ak∑N

k=1 ak
, (6)

where Wk = φ(Sk). Finally, in order to incorporate the no-
response and mis-detection error probabilities under the same
performance measure, we define a weighed average of the two
error probabilities as

Perr(φ) = βP̂ nr(φ) + (1− β)P̂md(φ) , (7)

where β ∈ [0, 1] is the weighting factor. By changing β
one can adjust the error probability Perr(φ) based on the
application of interest depending on whether the no-response
or mis-detection error is more important. Equations (5)-(7)
provide the equation (8)

Therefore, the optimization problem that we strive to solve
can be formalized as follows:

P =

{
minφ Perr(φ)
s.t. the battery states satisfy (4)

. (9)

B. Markov Decision Process

The optimization problem as formulated in (9) designs the
optimal policy φ, which is valid throughout the activity-time
of the tag. In other words, the solution we have is stationary
in the sense that it does not change over time. This means
that we can solve (9) offline and provide the tags with the
corresponding look-up tables, without requiring them to spend
their energy resources on computations. We next show that the
optimization problem that finds a stationary policy, which is
the mapping from the states in S to the weights in W , can
be modeled as a standard Markov decision process (MDP)
problem.

A standard MDP, which provides a framework for decision-
making in situations where outcomes are partly random, can
be defined via a quadruplet

(S,W , pwi(si, sj), Rwi(si, sj)
)
,

where in our settings S denotes the set of states S; W is the
set of actions taken based on the states, i.e., the set of weights
assigned to the states; pwi(si, sj) denotes the probability of
transition from state si to state sj when action wi ∈ W is
taken. Note that the transition probabilities satisfy

∀wi ∈ W , ∀i ∈ {1, 2, . . . ,M} :
∑
j=1

pwi(si, sj) = 1 .

Finally, Rwi(si, sj) denotes the penalty (or reward) asso-
ciated with the transition from si to sj under action wi. The
objective of an MDP is to choose a policy φ : S → W that
assigns an action to each state such that the average penalty is
minimized. Specifically, the policy of interest minimizes the
infinite horizon penalty

Rih(φ) � lim
N→∞

1

N

N∑
k=1

RWk
(Sk, Sk+1) , (10)

where Wk = φ(Sk).
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Perr(φ) = lim
N→∞

∑N
k=1

(
β · 1{Wk=0} + (1− β) · Pmd(Wk) · 1{Wk>0}

)
· ak∑N

k=1 ak
. (8)

C. The MDP Formulation

As described in Section II, the reader operates in a time-
slotted fashion with slots of equal durations. During the k-th
time slot, the tag selects the symbol weight Wk = φ(Sk)
for the signal to be sent to the reader. Under the choice of
Wk the tag’s state changes from Sk to Sk+1, as shown in
Fig. 1. Therefore, the penalty associated with this transition is
RWk

(Sk, Sk+1).
A natural choice for the penalty term RWk

(Sk, Sk+1) is
the probability that such a transition is sensed by the reader
erroneously. In particular, we aim to associate RWk

(Sk, Sk+1)
with the communication error probability given by

RWk
(Sk, Sk+1) =(

β · 1{Wk=0} + (1− β) · Pmd(Wk) · 1{Wk>0}
)
· ak . (11)

By invoking (10), the infinite-horizon penalty becomes

Rih(φ) =

lim
N→∞

1

N

N∑
k=1

(
β · 1{Wk=0} + (1− β) · Pmd(Wk) · 1{Wk>0}

)
· ak.

(12)

By comparing (12) and Perr(φ) in (8), we find that Rih(φ)
and Perr(φ) are identical up to a scaling factor. This scaling
factor is limN→∞

∑N
K=1 ak/N , which by considering the

distribution of ai and the law of large numbers is equal to Nr.
Therefore, the optimal weight assignment policy φ, which is
the solution to (9) can be equivalently found by solving the
following the MDP problem

P̂ =

{
minφ Rih(φ)
s.t. the battery states satisfy (4)

. (13)

This statement is formalized in the following proposition.
Proposition 1: The solution to the optimization problem in

(9) can be obtained by solving the MDP problem in (13).

IV. COMPUTING THE OPTIMAL TRANSMISSION POLICY

In this section we discuss how to solve (9). We denote the
set of all possible transmission policies as Φ = {φ : S → W}.
Then we have |Φ| = |W||S|.

We first consider a naive exhaustive search method. As-
suming the MDP process starts form the 0-th time slot and is
continuously observed for N time slots, we can simulate the
{a0, a1, . . . , aN}, which is the sequence of the identification
request state of each time slot, and {b0, b1, . . . , bN}, which
is the sequence of the energy harvesting state of each time
slot, based on their respective underlying statistical models.
Based on the battery state transition process in (4), a finite-
horizon state sequence S(φ) = {S0, S1, . . . , SN} can then be
generated under each possible policy φ ∈ Φ.

Using (8) for finite N , we can calculate the average penalty
associated with the state-sequence S(φ), which we denote as
Perr(φ). The optimal policy is then

φ∗ = argmin
φ∈Φ

Perr(φ) . (14)

Obviously if we choose the sequence length N to be large
enough, φ∗ can be considered as a close approximation to the
solution to the original problem in (9).

A. Modified Policy Iteration Algorithm

The complexity of the exhaustive search method becomes
prohibitive when |W| or |S| is large. We next apply the
modified policy iteration (MPI) algorithm [17] to compute
the optimal transmission policy. The basic idea is to iterate
the policy search process until an iteration variable converges.
This variable is calculated in each iteration by another value
iteration process.

All iterations in the MPI algorithm are based on the state
transition probabilities. According to the state definition and
the battery state transition process in (4), at any state Sk an
action wk leads to a transition to the following four possible
next state Sk+1, S1

k+1 = (Bk+1, 0, 0), S2
k+1 = (Bk+1, 0, 1),

S3
k+1 = (Bk+1, 1, 0), and S4

k+1 = (Bk+1, 1, 1), where

Bk+1 = min{Bk + Ehbk − wkak, Bmax} . (15)

The transition probabilities from Sk to Sj
k+1, j = 1, 2, 3, 4,

depend on the state Sk and the system parameters r, p and
q. Assuming that the current state is Sk = (Bk, ak, bk) and
the next state is Sk+1 = (Bk+1, ak+1, bk+1), when the action
wk = φ(Sk) is taken, we have

pwk
(Sk, Sk+1) = p(ak+1)p(bk+1 | bk) . (16)

The transition probabilities are summarized in Table I.
The MPI algorithm consists of two phases, policy improve-

ment and partial policy evaluation. In the policy improvement
phase, the algorithm searches for a policy based on the
iteration variable, the current penalty iteration value. Specif-
ically, at the n-th iteration, we have the iteration variables
v(n−1)(si), si ∈ S, which are the penalty iteration values
corresponding to different states calculated in the previous
iteration (We set v(0)(si) = 0, si ∈ S). Denote

v(n) �
[
v(n)(s1), v

(n)(s2), . . . .v
(n)(s|S|)

]
,

and the equation (17).
Then the policy φ(n) at this iteration is computed as

φ(n)(s) = arg min
w∈W

f(s, w,v(n−1)), s ∈ S . (18)

And the penalty iteration value is updated as

v(n)(s) = f(s, φ(n)(s),v(n−1)), s ∈ S . (19)

In the partial policy evaluation phase, the algorithm deter-
mines whether φ(n) found in the policy improvement phase



WANG et al.: COMMUNICATION OF ENERGY HARVESTING TAGS 1163

Fig. 1. The state transition diagram.

TABLE I
STATE TRANSITION PROBABILITIES pwk (Sk, Sk+1).

Sk = (Bk , 0, 0) Sk = (Bk , 0, 1) Sk = (Bk, 1, 0) Sk = (Bk , 1, 1)
S1
k+1 = (Bk+1, 0, 0) (1− r)q (1 − r)(1 − p) (1 − r)q (1− r)(1− p)

S2
k+1 = (Bk+1, 0, 1) (1− r)(1 − q) (1 − r)p (1 − r)(1 − q) (1− r)p

S3
k+1 = (Bk+1, 1, 0) rq r(1− p) rq r(1− p)

S4
k+1 = (Bk+1, 1, 1) r(1− q) rp r(1 − q) rp

f(Sk, w,v
(n−1)) =

4∑
j=1

pw(Sk, S
j
k+1)

(
Rw(Sk, S

j
k+1) + v(n−1)(Sj

k+1)
)
, Sk ∈ S, w ∈ W . (17)

is the overall optimal policy. If not, the algorithm starts a
sub-iteration process to update the penalty iteration values
v(n)(si) and then goes back to the policy improvement phase
for another iteration. In order to determine whether φ(n) is the
optimal policy, we compute

u(1)(s) � f(s, φ(n)(s),v(n)), s ∈ S . (20)

Denote u(n) = [u(n)(s1), u
(n)(s2), . . . , u

(n)(s|S|)]. Given a
small value ε, if

‖u(1) − v(n)‖ < ε , (21)

then we consider φ(n) as the overall optimal policy φ∗.
Otherwise, we perform the following iteration to update the
penalty iteration value,

u(m)(s) = f(s, φ(n)(s),u(m−1)), s ∈ S, m = 1, 2, . . . ,M .
(22)

Finally we set v(n)(si) = u(M)(si), si ∈ S and go back to
the policy improvement phase for another iteration.

The MPI algorithm for solving the MDP problem in (13)
is summarized as follows.

Algorithm - Modified Policy Iteration Algorithm for Solving (13)

1: Initialization
v(0) = 0
n = 1

2: Policy Improvement
FOR s ∈ S
φ(n)(s) = argminw∈W f(s, w,v(n−1))

v(n)(s) = f(s, φ(n)(s),v(n−1))
ENDFOR

3: Partial Policy Evaluation
FOR s ∈ S
u(1)(s) = f(Sk, φ

(n)(s),v(n))

IF ‖(u(1) − v(n+1)‖ < ε, GOTO STEP 4
ELSE FOR m = 1, 2, . . . ,M

FOR s ∈ S
u(m)(s) = f(s, φ(n)(s),u(m−1))

ENDFOR
ENDFOR, ENDIF
v(n) = u(M)

n← n+ 1, GOTO STEP 2
4: Choose Policy

φ∗ = φ(n)
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TABLE II
SYMBOL MIS-DETECTION PROBABILITIES FOR DIFFERENT SYMBOL

WEIGHTS.

w 0 1 2 4
Pmd(w) 1.0000 0.6874 0.1625 0.0054

This algorithm combines the features of both policy iter-
ation and value iteration. The most significant feature is its
low computational complexity, compared to the exhaustive
search. On the other hand, as will be shown in Section V,
its performance is similar to that of the exhaustive search.

B. Convergence of the MPI Algorithm

The MPI algorithm is designed for solving a class of MDP
problems that has finite state space, finite decision space, non-
discount average reward, and infinite-horizon [17]. Obviously,
the MDP problem in (13) belongs to this class.

A sufficient condition for the MPI algorithm to converge is
given in [17]. In particular, if

min
φ1,φ2∈Φ

min
(u,v)∈S×S

∑
j∈S

min
{
pJφ1

(j | u), pJφ2
(j | v)} > 0 ,

(23)
where pJφ(j | u) is the transition probability from u ∈ S
to j ∈ S after J state transitions under the policy φ, then
the optimal policy can be found by the MPI algorithm within
a finite number of iterations. For our problem, we make the
reasonable assumption that the rates of both energy harvesting
and identification request are positive, i.e., 0 < p, q < 1 and
0 < r < 1, and the tag will be silent if there is no request,
i.e., ak = 0. Then we have the following convergence result.

Proposition 2: The ε-optimal solution to the MDP problem
in (13) can be obtained by performing the MPI algorithm
within a finite number of iterations.

Proof: According to (4) and the system state definition
S, if 0 < p, q < 1 and 0 < r < 1, and the tag consumes no
energy when there is no request, for any stationary policy ∀s ∈
S can transit to s′ = (Bmax, 0, 1) within a finite number of
transitions, i.e., pjφ(s

′ | s) > 0. Therefore, (23) is satisfied and
the MDP problem in (13) can be solved by the MPI algorithm.

V. SIMULATION RESULTS

We assume that each response message from the tag is
encoded using 15 bits, transmitted in 3 PPM symbols with
the symbol modulation order of K = 32. Each symbol may
contain 1, 2 or 4 non-zero pulses, i.e., W = {0, 1, 2, 4}. The
durations of the pulse and the symbol are Tp = 5ns and
T = 6.4μs respectively. Assuming a compression ratio of
M/N = 0.1, we obtain the compressed signal samples at the
affordable rate of 200MHz. The symbol mis-detection prob-
abilities Pmd(w) corresponding to different symbol weights
are calculated using (3) and given in Table II, for the pulse
SNR 1

σ2 = 6dB. Furthermore, we set the battery capacity
Bmax = 10 and the error weight parameter β = 0.5.

For the purpose of performance comparison, we consider
two simple transmission strategies, a conservative policy and
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Fig. 2. Performance comparisons for the energy-balanced scenario.

a greedy policy. The conservative policy always chooses the
minimum available energy w ∈ W to transmit the response,
such that the probability of no-response is minimized. On the
other hand, the greedy policy targets for the best detection per-
formance and always chooses the maximum available w ∈ W
for responding to the reader’s inquiry. For each simulation, the
number of simulated time slots is N = 106. The convergence
threshold of the MPI algorithm is ε = 10−5.

We first consider an energy-balanced scenario where the
energy harvesting parameters are p = q = 0.5 and Eh = 3.
Under such a condition, the battery is neither empty nor full
in most time slots. The battery acts as an energy buffer and
the scheduling algorithm pursues the best trade-off between
the mis-detection errors and the no-response errors. The sim-
ulation results for this scenario are shown in Fig. 2. For the
second scenario, we consider an energy-deficient environment,
where p = 0.3, q = 0.7 and Eh = 3, corresponding to
the case that a tag has a small probability to obtain energy
from its environment at any time slot. In this case, the battery
is empty in most time slots and the scheduling algorithm is
apt to trade the detection performance for the activity-time.
The simulation results for this scenario are shown in Fig. 3.
In the last scenario, we simulate the policies in the energy-
overflow environment, where p = 0.7, q = 0.3 and Eh = 6.
This environment ensures that the tags are strongly capable
of being over-charged in most time slots. So the scheduling
algorithm is apt to spend more energy to reduce the mis-
detection errors. The simulation results for this scenario are
shown in Fig. 4. The optimality of the proposed scheme relies
on the knowledge about p and q, which in practice might not
be known accurately. Further simulations on the sensitivity of
the performance on the design values p and q are demonstrated
in Fig. 5. This figures shows that perturbations the values of p
and q by as much as 30% imposes only negligible performance
losses.

It is seen from Fig. 2–4 that the optimal polices based
on the MPI algorithm and exhaustive search give the best
performance for all three scenarios. And the conservative
policy gives the worst performance. Moreover, the greedy
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Fig. 3. Performance comparisons for the energy-deficient scenario.
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Fig. 4. Performance comparisons for the energy-overflow scenario.

policy performs worse than the optimal policy because it
fails to balance the mis-detection errors and the no-response
errors by simply ignoring the latter. On the other hand, as
the identification request rate increases, the performances of
both the optimal policy and the greedy policy degrade due
to the energy constraints. Another observation is that when
the tag’s energy harvesting capability becomes stronger, the
performances of all these policies improve, since the tag can
use more energy to reduce the no-response errors and to
improve the detection performance. In addition, by comparing
the optimal transmission policies found by the MPI algorithm
and the exhaustive search method, it is observed that their
performance conform precisely in most simulation scenarios
and there exist slight discrepancy in rare situations.

Fig. 6 shows the MPI algorithm’s convergence under the
energy-balanced scenario. The number of iterations for the
partial policy evaluation phase is M = 200. It is seen that
the optimal policies are obtained at the 4-th and 5-th policy
improvement iterations for r = 0.7 and r = 0.3, respectively.
At each policy improvement iteration, the policy is updated
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Fig. 5. Performance comparisons for inaccurate p and q.
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Fig. 6. The convergence of the MPI algorithm under the energy-balanced
scenario.

based on the current penalty values, which are converged
in the previous evaluation phase. Then, the penalty values
are updated for the updated policy. Also, at the last policy
improvement iteration, the total error is below the threshold ε
and the algorithm stops.

VI. CONCLUSIONS

We have formed a system model for the recently pro-
posed system of energy-harvesting active networked tags
(EnHANTs), including the communication model and the
energy harvesting model, where the events of identification
request and energy harvesting are assumed to follow simple
Markov processes. A typical application of the EnHANTs
system is for the tags to respond to the request by sending
some simple information about their own identifications and
their surrounding environment. For such an application, we
formulate the problem of optimizing the transmission policy
to maximize both the reliability and activity-time of the
system. We have shown that the optimization problem has an
inherent MDP structure and therefore can be solved using the
modified policy iteration method. Finally simulation studies
have demonstrated the effectiveness of the proposed optimal
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transmission policy in terms of making efficient use of the
limited energy to improve the system reliability.
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