
Q3 MATLAB and Simulink Basics

Prove your skill set in using tools for analytical calculations.

Q3.5 Matrices by TI-XX calculator and MATLAB

I can find the solutions for linear independent equations using the matrix function on my personal calculator (TI-XX) and compare it to the calculation in MATLAB. I was able to create a 4x3 matrix in MATLAB using the function a = [3 5 1 6; 2 9 3 7; 8 0 2 4;]. I then used the function rref(a) which solves the matrix shown to the right of the highlighted part of the matrix. I then used my TI-84 calculator and created the same matrix stored as the variable A and used its rref function which resulted in the same solutions as MATLAB.

martif5 > Documents > MATLAB																
) 📝 Editor - C:\Users\martif5\Documents\MATLAB\MatrixPar 🗇 🗙 🌠 Variables - ans															⊙×	
Regresio	onLine.m 🗙 MatrixPart4.m 🗙 🕂		ans 🛛													
1																
J. 2	<pre>rref(a);</pre>		1	2	3		4	5	6	7	8	9	10	11	12	
		1	1		0	0	0.7561									
1.1.1		2	0		1	0	0.9512									
		3	0		0	1	-1.0244									
		4														
		5														
		6														
		7														_
		8														
		9														_
1		10														
		11														

