
Exam 1 Crib Sheet 

 

Ohm’s Law – Linear relationship 

between voltage and current in a 

resistor 

    V = I R 

V – Voltage, Volts [V] 

I – Current, Amps [A] 

R – Resistance, Ohms [Ω] 

Power 

    P = V I 

P – Power, Watts [W] 

Using the above polarities (which may ot be correct) 

For P > 0, the component consumes power 

For P < 0, the component produces power 

V
-

I

+

Node – a connection between two or 

more components 

Loop – a closed path through which 

current can flow 

KCL – Kirchoff’s Current Law 
N

n

n 1

0I




The sum of the currents leaving a node is zero 

(signs determined by polarity). 

I1 - I2 + I3 = 0 

I2I1

I3

KVL – Kirchoff’s Voltage Law 
N

n

n 1

0V




The sum of the voltages around any closed loop 

is zero (signs determined by polarity). 

V1 + V2 - V3 = 0 

+

V2

-

-

V1
+

+

-

V3

Superposition – For each independent source, turn off all other independent sources (to turn off: 

Voltage source becomes a short circuit and Current source becomes an open circuit) and find the 

contribution from that source. Sum the contribution from each source to get the parameter of interest. 

Source transformation 

Rs

Is=Vs/RsVs Rs

Resistors in series – 1 2EQR R R 

R1 R2

Resistors in parallel - 

1
1 1

1 2
EQR

R R



 
  
 

R1 R2

Voltage divider (two resistors in series) 
VR1= Vsource x [R1/(R1+R2)] 

Current divider (two resistors in parallel) 
IR1 = Isource x [R2/ (R1+R2)] 
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Example includes a Current Controlled Voltage Source (CCVS) as a dependent source and I1 as an 

independent source. 
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Node Analysis 

# of KCL Equations = 

Total # of nodes –

voltage sources -1   

 

Mesh Analysis 

# of KVL Equations 

= Total # mesh 

loops – current 

sources  

 

 
     1 1 1 21 3 2 0i R i R i i R      

   3 2 12000 4 2 0xI i R i i R      

3 2 1i i I   

1 2 xi i I   

 

Thevenin voltage (VTH) – Open circuit the load, find the voltage across the load nodes 

Norton current (IN)– Short circuit the load, find the current through that short circuit 

Thevenin resistance (RTH)  – Turn off all independent sources, replace the load with a test voltage 

(Vtest), find the current (Itest) through the test voltage, RTH = Vtest/Itest. 

 

VTH = IN RTH    (Ohm’s Law relationship) 

  

Comparator 

 

 
 

If V1 < V2 , Vout = V+
saturation 

If V1 > V2 , Vout = V-
saturation 

 

 

V1

Vout

U1
+

-

OUT

V2

Inverting amplifier circuit 

 
2

nn
1

R
Vout Vi

R
   

U2

OPAMP

+

-

OUT

R1

R2

0

Vin

Vout

Non-inverting amplifier circuit 

 
2

1 nn
1

R
Vout Vi

R

 
  
 

 

 

U1
+

-

OUT

R1

R2

0

Vout

Vin

Summing amplifier circuit 

 

1 2
1 2

Rf Rf
Vout V V

R R
    

U2
+

-

OUT

R1

V2

V1

0

R2 Rf

Vout

Ideal op amp equations 
IN = IP = 0 no current draw Rin = ∞ 

VP = VN (A -> ∞) 
Rout = 0 



Exam 2 Crib Sheet 
IV Characteristics – Time domain 

   

Continuity conditions 

    L o L oI t I t      C o C oV t V t   

 

IV Characteristics – Laplace domain 

RZ R  LZ sL  

1
CZ

sC
  

 

 

Impedance, Z [Ω], properties have the same characteristics as resistance 
             Impedances in series add, 1 2EQZ Z Z    

             Impedances in parallel have an inverse relationship, 

1

1 2

1 2 1 2

1 1
EQ

Z Z
Z

Z Z Z Z


 

     
 

Initial Value Theorem            lim
0sF s f t

s
 


 Final Value Theorem            

lim

0
sF s f t

s
 


 

Resistors –  

               RV s Z I s  

 

 VR(s)+ -
RIR(s)

Inductors –  

       0L L LV s Z I s LI     

 

VL(s)

IL(s)

LI(0+)

+-

-sL+

-

IL(0+)/s

sL

+

Resistors –  

               V t I t R  

 

-

IR(t)

+
VR(t)

R

Inductors –  

              L
L

dI
V t L

dt
   

IL(t)

+

L

VL(t)
-

Capacitors –  

              C
C

dV
I t C

dt
  

-

IC(t)

+
C

VC(t)

Capacitors –  

      0C

C C C

V
V s Z I s

s



   

 

IC(s)

VC(0+)/s -1/sC

VC(s)
+

+ -

1/sC

+ -

CVc(0+)
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First order circuits 

 Differential equation:  dy
y f t

dt
    , with solution      h py t y t y t   

  f t  represents a source function or nth derivative of the source function, with appropriate   

 coefficients 

  hy t  represents the homogeneous/transient part of the solution 

  For first order circuits, the homogeneous solution always takes the form   
t

hy t Ae 


   

  py t  represents the particular/forced part of the solution. 

  The particular solution is always the same type of function as the source. 
 τ is the time constant 
  For RC circuits, RC   

  For RL circuits, L
R   

Second order circuits 

 Differential equation:  
2

2
2

2 o

d y dy
y f t

dt dt
     , with solution      h py t y t y t   

 s-domain        2 22 os Y s sY s Y s F s     

  hy t  represents the homogeneous/transient part of the solution 

  The form of the homogeneous solution depends on the damping 

  py t  represents the particular/forced part of the solution. 

  The particular solution is always the same type of function as the source. 

  f t  represents a source function or nth derivative of the source function 

  F s  represents the Laplace transform of the function f(t) 

Overdamped  
(α > ωo) 

  1 2
1 2

t t
hy t A e A e     2 2

1 2, o           

   1 20 0py A A y     
   

1 1 2 2

0 0pdy dy
A A

dt dt
 

 

     

Critically 
Damped  
(α = ωo) 

  1 2
t t

hy t A e A te      from the differential equation 

   10 0py A y    
   

1 2

0 0pdy dy
A A

dt dt


 

     

Underdamped  
(α < ωo) 

     1 2cos sint
hy t e A t A t     

 from the differential equation 

2 2
o     

   10 0py A y    
   

1 2

0 0pdy dy
A A

dt dt
 

 

     

RLC series circuit        
1

2

R

L
   

1
o

LC
   RLC parallel circuit        

1 1

2 RC
   

1
o

LC
   
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Partial Fraction Expansion 

Simple Real Poles: 

  

Real, Equal Poles – Double Pole: 

n

1 n n

1 n1 n2
2

1 n n

2
n2 n

s p

n1

p t p t p t
1 n1 n2

  Real, Equal Poles Double Pole:  

A A A
Expand F(s)  .. [ ]

s p s p (s p )

A (s p ) F(s) ;  Cover-Up Rule

Usually Find A  from evaluating F(0) or F(1) 

f(t) (A e  .... A e A te )



 

   
  

   

        t 0

              Simple Poles       Repeated Poles



 

Complex Conjugate Poles 

1

*
1

1

1

p  t t
1

In General:

A A A
Expand F(s)  ....

s p s j s j

Find A  and A A /  from Cover-Up Rule

   t 0

              Simple Poles   

f(t) A e  .... 2 A e co

    Complex Pole

s )

s

( t  

   




   
    



    

 

 

  

 

 



LAPLACE TRANSFORMS 

Signal Time Domain S Domain 
Impulse 𝛿(𝑡) 1 

Step 𝑢(𝑡) 𝑠−1 

Constant 𝐴𝑢(𝑡) 𝐴𝑠−1 

Ramp 𝑡𝑢(𝑡) 𝑠−2 

Exponential 𝑒−𝛼𝑡𝑢(𝑡) (𝑠 + 𝛼)−1 

Damped ramp 𝑡𝑒−𝛼𝑡𝑢(𝑡) (𝑠 + 𝛼)−2 

Cosine cos⁡(𝛽𝑡)𝑢(𝑡) 
𝑠

𝑠2 + 𝛽2
 

Damped cosine 𝑒−𝛼𝑡cos⁡(𝛽𝑡)𝑢(𝑡) 
𝑠 + 𝛼

(𝑠 + 𝛼)2 + 𝛽2
 

Sum 𝐴𝑓1(𝑡) + 𝐵𝑓2(𝑡) 𝐴𝑓1(𝑠) + 𝐵𝑓2(𝑠) 

Integral ∫ 𝑓(𝜏)𝑑𝜏
𝑡

0

 𝑠−1𝑓(𝑠) 

Derivative 
𝑑𝑓(𝑡)

𝑑𝑡
 𝑠𝑓(𝑠) − 𝑓(0−) 

Exponential × function 𝑒−𝛼𝑡𝑓(𝑡) 𝑓(𝑠 + 𝛼) 

t × function 𝑡𝑓(𝑡) −
𝑑𝑓(𝑠)

𝑑𝑠
 

Shifted function 𝑓(𝑡 − 𝑎)𝑢(𝑡 − 𝑎) 𝑒−𝑎𝑠𝑓(𝑠) 

 

 

NOTATION: ℒ{𝑓(𝑡)}(𝑠) = 𝑓(𝑠) and ℒ−1{𝑓(𝑠)}(𝑡) = 𝑓(𝑡) 
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Complex Numbers 

 

Rectangular form:  

 𝐴 = 𝐴𝑅 + 𝑗𝐴𝐼  
Polar form:  

 |𝐴|∠𝜑𝐴  

 

Rectangular to polar 

 |𝐴| =

√(𝐴𝑅)
2 + (𝐴𝐼)

2  

 𝜑𝐴 = 𝑡𝑎𝑛−1 (
𝐴𝐼

𝐴𝑅
)  

Polar to rectangular 

 𝐴𝑅 = |𝐴| 𝑐𝑜𝑠(𝜑𝐴)  
 𝐴𝐼 = |𝐴| 𝑠𝑖𝑛(𝜑𝐴) 

Euler’s Law: 𝑒𝑗𝜃 = 𝒄𝒐𝒔(𝜃) + 𝑗 𝒔𝒊𝒏(𝜃)  
Mathematics with complex number 

Addition/Subtraction – Rectangular form 

 𝐴 + 𝐵 = (𝐴𝑅 + 𝐵𝑅) + 𝑗(𝐴𝐼 + 𝐵𝐼)  
 𝐴 − 𝐵 = (𝐴𝑅 − 𝐵𝑅) + 𝑗(𝐴𝐼 − 𝐵𝐼) 
 

Complex conjugate 

 𝐴 = 𝐴𝑅 + 𝑗𝐴𝐼  𝐴* = 𝐴𝑅 − 𝑗𝐴𝐼 

Multiplication/Dvision – Rectangular form 

 𝐴𝐵 = |𝐴||𝐵|∠(𝜑𝐴 + 𝜑𝐵)  

 
𝐴

𝐵
=

|𝐴|

|𝐵|
∠(𝜑𝐴 − 𝜑𝐵) 

Complex conjugate 

 𝐴 = |𝐴|∠𝜑𝐴  𝐴* = |𝐴|∠ − 𝜑𝐴 

AC Steady State signals 

Time domain signals 

 F(t) = A𝒐𝐜𝐨𝐬⁡(𝝎t + 𝜽) 
 Ao – amplitude 

 ω – radial frequency, 2πf 

 ϴ – phase  

Phasor signals 

  𝐹̃ = 𝐴𝑜∠𝜃 

  Ao – amplitude 

  ϴ – phase 

(Rectangular form) 𝐹(𝑡) = 𝐴𝑜 𝐜𝐨𝐬(𝜔𝑡 + 𝜃) ↔ 𝐴𝑜ℝ{𝑒𝑗(𝜔𝑡+𝜃)} ↔ 𝐴𝑜𝑒
𝑗𝜃 ↔ 𝐴𝑜∠𝜃 (Phasor form) 

Impedances – Laplace domain (zero initial conditions) 

𝑍𝑅 = 𝑅 𝑍𝐿 = 𝑠𝐿 𝑍𝐶 =
1

𝑠𝐶
 

Impedances – AC steady state 

 

𝑍𝑅 = 𝑅 

𝑍𝑅 = 𝑅∠0° 

𝑍𝐿 = 𝑗𝜔𝐿 

𝑍𝐿 = 𝜔𝐿∠90° 

𝑍𝐶 =
1

𝑗𝜔𝐶
 

𝑍𝐶 =
1

𝜔𝐶
∠ − 90° 

Impedance, Z [Ω], properties have the same characteristics as resistance 

             In series add, 𝑍𝐸𝑄 = 𝑍1 + 𝑍2  In parallel, inverse relationship, 𝑍𝐸𝑄 = (
1

𝑍1
+

1

𝑍2
)
−1

=
𝑍1𝑍2

𝑍1+𝑍2
 

Admittance, Y [mho], properties have characteristics that are the ‘inverse’ of impedance 

 In parallel,  add, 𝑌𝐸𝑄 = 𝑌1 + 𝑌2   In series, inverse relationship, 𝑌𝐸𝑄 = (
1

𝑌1
+

1

𝑌2
)
−1

=
𝑌1𝑌2

𝑌1+𝑌2
 

AC Steady State Power 

𝑆 = 𝑃 + 𝑗𝑄 

 S – Complex power 
Using Ohm’s Law relationships for impedances (Z) 
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 P – Real power, [W] 

 Q – Reactive power, [VAR] 

 

|S| –Apparent Power, [VA] 

 
 

If using VRMS
2 version of equations also divide by |Z| 

(phasor form) *cos or sin  θ OR must use complex 

conjugate of Z (rectangular form) 

Capacitive reactance is negative (Q < 0) 

 

Inductive reactance is positive (Q > 0) 

 

Power produced by the source(s) is equal to the sum of the 

power produced/stored for each impedance in the circuit 

Power factor – a metric over how efficient power 

consumption/production appears to be 

 

0 < power factor < 1 

Power factor = 
𝑃

|𝑆|
= 𝑐𝑜𝑠(𝜑𝑆) 

 

Power Triangle 

 

 

 
 

 

 

Ideal Transformers 

 
Np : number of windings on the primary 

Ns : number of windings on the secondary 

Primary: source side of the transformer 

Secondary: load side of the transformer 

The winding ratio, 𝑁 =
𝑁𝑠

𝑁𝑝
  

Voltage relationship, 𝑉𝑠 = 𝑁𝑉𝑝 

Current relationship, 𝐼𝑠 =
𝐼𝑝

𝑁
 

Np:Ns

+

Primary

-

Vs

Is

+

-

SecondaryVp

Ip



Exam 3 Crib Sheet 
Refer to secondary (voltage source): 

𝑉𝑜𝑒𝑞 = 𝑁𝑉𝑜 𝑍𝑠𝑒𝑞 = 𝑁2𝑍𝑠

Refer to secondary (current source): 

𝐼𝑜𝑒𝑞 =
𝐼𝑜

𝑁
𝑍𝑠𝑒𝑞 = 𝑁2𝑍𝑠𝑒𝑞

Refer to primary: 

𝑍𝐿𝑒𝑞 =
𝑍𝐿

𝑁2

Mutual Inductance 

The Tee model for coupled inductors 

represents an equivalent circuit. 

M is the mutual inductance, the 

coupling between the two inductors. 

𝑀 = 𝑘√𝐿1𝐿2
where k is the coupling coefficient 

0 < k < 1 

Student Requested Add-ons 

1:N
Zs

ZLVo

L2-M

M

Coupled Inductors

L2L1

L1-MM

Tee Model



 Bode Plots Crib Sheet 

Bode Plots 

Decade – a change in frequency by one order 
of magnitude, for example 
 100 rad/s → 1000 rad/s 
 104 Hz → 105 Hz 

dB – decibel 
dB = 20 log |F(jω)| 

Note the argument of the logarithm 
is a magnitude expression 

A change of 20dB corresponds to a of |F(jω)| 
by one order of magnitude 

Bode plot magnitude approximations 

  nH s s Slope +20dB/decade 

  1
n

H s
s

 Slope -20dB/decade 

 H s K ‘Flat’, dB = 20log|K| 

Sketching Bode plot magnitudes (real poles and zeros) 

Crossing an n-pole: Slope changes by  -20*n dB/decade  

Crossing an n-zero: Slope changes by  +20*n dB/decade 

‘n’ indicates the number of poles or zeros 

‘Crossing’ rules apply when going from a lower 
frequency to a higher frequency 

Sketching Bode plot phases (real poles and zeros) 

Crossing an n-pole: Phase changes by  *
2

n




Crossing an n-zero: Phase changes by  *
2

n




Phase changes are ‘spread out’ over two 
decades, one decade on either side of the pole or 
zero 

Corrections for Bode plot magnitudes (real poles and zeros) 

At an n-pole: The ‘real’ dB valule is -3n dB ‘below’ the asymtote 

At an n-zero: The ‘real’ dB valule is +3n dB ‘above’ the asymtote 

The asymptote is the straight line approximation 
of the Bode plots 

‘Far away’ from poles and zeros, the 
asymptotes are an accurate representation of the 
Bode plot 
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Second Order Circuits 

Damping ratio, 
o




 ,  a metric of the damping 

α is the attenuation constant 
ωo is the resonant frequency 

δ > 1, overdamped 

δ = 1, critically damped 

δ < 1, underdamped 

Lowpass/Highpass filters 
Overdamped and critically damped cases, the Bode plots follow the procedure on the previous page 

Underdamped cases, use the critically damped approximation, add a ‘correction’ of 
1

20log
2

 at the resonant 

frequency, ωo 

Bandpass filters 
Overdamped, the Bode plots follow the procedure on the previous page 
Critically damped and underdamped cases 

At the resonant frequency, the magnitude Bode plot is 0dB 

The vertex where the stopbands meet is 20 log 2  

Note: The above discussion is for second order circuits only. If there is a gain stage, the Bode plot moves ‘up’ or 
‘down’ and the dB value of the gain determines the reference for adding corrections/stopband vertices 

Cascaded Filters – Magnitude Bode Plots 

H(s) = H1(s)H2(s)H3(s) (three stages) →  
dB = 20log|H1(jω)H2( jω)H3( jω)| = 20log|H1(jω)| + 20log|H2(jω)| + 20log|H3(jω)| 

angle =            1 2 3 1 2 3H j H j H j H j H j H j              
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Second order filters 

Filter name pole/zero ID 

2 poles 
Low pass filter 

2 zeros at zero 
High pass filter 

2 poles 

1 zero at zero 
Bandpass filter 

2 poles 

Bandstop filter 

Schematic s( ) H s( )

o
2

s
2

2s o
2



s
2

s
2

2s o
2



2 s

s
2

2s o
2



s
2

o
2



s
2

2s o
2






