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ABSTRACT
Collaborative group tasks require efficient and productive
verbal and non-verbal interactions among the participants.
Studying such interaction patterns could help groups per-
form more efficiently, but the detection and measurement of
human behavior is challenging since it is inherently multi-
modal and changes on a millisecond time frame. In this paper,
we present a method to study groups performing a collabora-
tive decision-making task using non-verbal behavioral cues.
First, we present a novel algorithm to estimate the visual fo-
cus of attention (VFOA) of participants using frontal cameras.
The algorithm can be used in various group settings, and
performs with a state-of-the-art accuracy of 90%. Secondly,
we present prosodic features for non-verbal speech analysis.
These features are commonly used in speech/music classifi-
cation tasks, but are rarely used in human group interaction
analysis. We validate our algorithms on a multimodal dataset
of 14 group meetings with 45 participants, and show that
a combination of VFOA-based visual metrics and prosodic-
feature-based metrics can predict emergent group leaders
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with 64% accuracy and dominant contributors with 86% accu-
racy. We also report our findings on the correlations between
the non-verbal behavioral metrics with gender, emotional
intelligence, and the Big 5 personality traits.
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1 INTRODUCTION
Productive group meetings can help teams achieve goals
efficiently, and consequently researchers have long studied
the factors that can affect such interactions [12, 31, 35]. For
example, research in group meeting analysis has shown that
a single dominant participant may prevent other valuable
opinions from being presented, or that a lack of engagement
from team members may cause the entire group to fail [31].
Emergent leaders can boost group efficacy by helping set
concrete, achievable goals [24, 54] and encouraging group
members to focus on specific tasks [26]. Further, a diversity

https://doi.org/10.1145/3340555.3353761
https://doi.org/10.1145/3340555.3353761


ICMI ’19, October 14–18, 2019, Suzhou, China Zhang, Morgan, et al.

of personality traits such as openness and emotional stability
can also affect the decision making during a meeting [35].

To study these social interactions, researchers have consid-
ered facial behaviors such as eye gaze direction and auditory
non-verbal cues such as tone of voice for estimating lev-
els of engagement, personality type, and leadership style,
among other communication patterns [7, 9]. For example,
results in [40] show a correlation between group perceptions
and visual cues such as the fraction of convergent gaze, mu-
tual gaze, and shared gaze. Group participation cues such
as speaking length and speaking turns are also important
factors in group performance, particularly as it relates to
group composition.
In this paper, we propose a new visual focus of attention

(VFOA) estimation algorithm that performs with state-of-
the-art accuracy on both our new dataset (90%) and the AMI
Corpus (64.5%). We also propose the use of nontraditional
prosodic acoustic features for non-verbal speech analysis. Fi-
nally, we use the automated VFOA analysis to extract visual
metrics, and combine these with the prosodic features to
analyze groups performing a collaborative decision-making
task. We used the widely-adopted Lunar Survival Task exper-
iment to study the interactions between 45 participants in
14 groups. We focus our analysis on emotional intelligence,
perceived leadership, perceived contribution, and the “Big
Five” personality traits. Our results show that using a small
number of metrics derived from the estimated VFOA and
prosodic features, we can predict group leaders and major
contributors with good accuracy. Our analysis also shows
some interesting correlations between these extracted met-
rics and emotional intelligence and the Big Five personality
traits.

2 RELATEDWORK
Research on dynamic group meeting interactions heavily de-
pends on time-consumingmanual annotation of pre-recorded
data. For example, video frames are often manually anno-
tated to record variables such as the location, head pose,
gaze direction, and speaking duration of each participant
[48]. To alleviate this difficulty, developing robust methods
to automatically derive group dynamic interaction metrics
has become a popular topic of research, bolstered by recent
novel signal processing and computer vision techniques. To
this end, many multimodal corpora of group meetings have
been created and released, including the AMI [17], ATR [16],
ELEA [59], ICSI [39], ISL [15], UGI [10], and NTT corpora
[51–53]. These efforts have included data collected using
a variety of modalities – including camera arrays, micro-
phones, Microsoft Kinects, and wearable sensors – in order
to boost automatic analysis as much as possible.
Visual focus of attention (VFOA) is one powerful non-

verbal indicator used to quantify group meeting interaction

and productivity. VFOA can be estimated from wearable
sensors [14, 52], by using head pose as a surrogate for gaze
estimation (extracted from overhead depth sensors) [11], or
using frontal-facing cameras [2, 3, 9, 40, 47]. In recent re-
search, a more accurate approach for VFOA estimation is
to combine head movements with eye gaze direction data
[50]. Other methods include dynamic Bayesian networks to
construct switching state-space models based on continuous
changes in participant location and head pose [3, 47], as well
as Support Vector Machines (SVMs) to classify VFOA based
on estimated head pose [9]. In our approach, we recorded
individual closeup videos to estimate head pose orienta-
tion (yaw, pitch, roll) and eye gaze direction (azimuth and
elevation). Frontal-facing closeup recordings and a neural
network-based algorithm enable us to substantially improve
the reported accuracy of visual focus of attention estimation.
Prosodic acoustic metrics serve as another significant

source of non-verbal interaction cues. Common metrics such
as time-domain energy and frequency-domain pitch varia-
tion have been successfully employed for emergent leader-
ship and group performance analysis [8, 60], and are also
automatically extracted in this study. However, we also in-
troduce a new suite of largely spectral features that have
been used in speech and music mood classification tasks
[23, 25, 28, 33]. Our goal in introducing these frequency-
based features is to capitalize on the demonstrated effect
that pitch has on perceived leadership.
Sanchez-Cortez et al. [60] and Beyan et al. [7] extracted

similar non-verbal visual and audio features in order to pre-
dict the emergent leader from their own group interaction
datasets. Non-verbal visual metrics included VFOA, head
and body position, and activity features, while non-verbal
audio features included speaking activity and acoustic fea-
tures such as energy and pitch variation. Sanchez-Cortez et
al. found that leaders talked and interrupted more frequently,
and that the energy and pitch of their voices varied more.
Both groups found that no single modality achieved a higher
leadership prediction score than did a combination of all
modalities used [7]. Beyan et al. took a similar approach to
distinguish non-leaders from leaders, and further, to predict
the leadership style (autocratic or democratic) of a given
emergent leader [8].
Emergent leadership research often includes the use of

personality trait questionnaires such as NEO-FFI [42] or the
General Leader Impression Scale (GLIS) [46] to assess the
effectiveness of team performance at various cooperative
tasks. The Big Five Inventory-10 (BFI-10), or simply “Big
Five”, is the personality trait-based system distributed as a
post-task questionnaire in this study; it includes the traits
agreeableness, conscientiousness, extroversion, neuroticism,
and openness to experience [55]. Numerous group interac-
tion studies observed that a certain amount of extroversion,
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agreeableness, and conscientiousness are positively corre-
lated with team success as well as individual perceived con-
tribution [6, 22, 43]. A test of emotional intelligence (EI) is
also incorporated in this study, since high EI is positively
correlated with group performance, productivity, and focus
[18, 20].

3 PARTICIPANT SENSING ENVIRONMENT
An 11′×28′ conference room,modified from the environment
in [11], was used as our testbed to record audiovisual infor-
mation during group meetings. Specifically, we used (1) four
960×720 RGB cameras for closeup recordings of each par-
ticipant’s face (20 fps), (2) two ceiling-mounted, downward-
pointed Microsoft Kinect sensors for room layout capture
(10 fps), (3) individual lapel microphones for each participant
(48 kHz), and (4) a spherical 16-channel microphone hang-
ing from the ceiling (48 kHz). We also used two reference
video cameras at the two ends of the room for ground truth
validation. In this paper, we only present our analysis using
the frontal video cameras and the lapel microphones.

In our system, the four RGB cameras are rigidly mounted
on awooden bar for individual frontal recordings as shown in
Figure 1. In contrast to the camera setups in [3, 27, 47], which
used one camera on each side of the table, our camera array
enables individual closeup recordings, improving the image
quality and the ability to capture detailed facial actions for
higher-accuracy VFOA estimation. In [17], the camera is not
front-facing for each participant, causing major occlusions of
participants’ eyes and potentially leading to larger estimation
errors. Our camera rig also has two extra cameras on each
end of the bar to help in calibrating the multi-camera system.

In order to synchronize the different modalities, eachmeet-
ing began with a hand-clap from a non-participant. The lapel
microphones, the two Kinects, and the reference video cam-
era recordings were synchronized together using the clap as
the audio-visual cue.

4 THE LUNAR SURVIVAL TASK DATASET
The instrumented meeting room was used to record 52 in-
dividuals across 16 groups performing the Lunar Survival
Task, a widely-used group discussion task that assesses how
decision-making is impacted by collaboration [34]. Groups of
3–4 participants were asked to rank the utility of 15 supplies
for surviving a mission on the moon. First, each participant
completed the task individually, and then the group was re-
quired to reach consensus on the 15 items in, at most, 15
minutes. During this discussion, the participants were seated
in specific chairs, though they were generally free to move.

Each participant was asked to complete two pre-task ques-
tionnaires before the Lunar Survival Task. The first pre-task
questionnaire had 36 images of different sets of eyes, and
the participants were asked to choose from four options the

Figure 1: Camera rig and example fields of view.

word that best represented the mental state of the pictured
individual. This task is used to test the emotional intelligence
of an individual [5], i.e., the capability to understand one’s
own emotions as well as the emotional state of others. The
second pre-task questionnaire was a short version of the Big
Five Inventory-10 (BFI-10) questionnaire [55].

After completing the group collaboration part of the Lunar
Survival task, each participant was asked to complete a post-
task questionnaire. In addition to questions relating to the
age, gender, and ethnicity of the participants, a 5-point scale
(not at all, a little, somewhat, a lot, a great deal) was used to
assess the answers to the following questions:

• How well did you know each of your group members
before today?

• To what extent did the following group members con-
tribute to the discussion?

• To what extent did the following group members act
as a group leader?

• To what extent did you develop rapport with the fol-
lowing group members?

The discussionswere conducted in English, and self-reporting
statistics indicate that 45% of participants were White, 35%
Asian, 10% Hispanic/Latino and 10% Black. Based on self-
reports, 39% of the participants were female and the ages of
the participants ranged from 18 to 38 years, with an average
age of 22 years and a median age of 20 years. We removed
two meetings (one in which the participants moved out of
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the camera fields of view, and one in which there was a mi-
crophone failure), resulting in a dataset of 45 individuals
across 14 meetings for final analysis.

5 HEAD POSE AND VFOA ESTIMATION
The visual focus of attention of a participant is the dynamic
visual target where he/she is looking, which can be estimated
from the head pose orientation and eye gaze direction.

Feature Extraction
In our scenario, we define possible VFOA targets as either
one of the other participants or “somewhere else”. Based on
our previous experiments with the same task [11], we found
that 98% of the time, “somewhere else” corresponded to the
paper in front of the participant. To automatically extract
the dynamic VFOA target for every participant, we process
every frame of each individual’s recording using a model
based on convolutional neural networks (CNNs). At each
frame, we estimate three head pose angles (yaw, roll, pitch)
and two eye gaze angles (azimuth, elevation).
Since the head pose angle and eye gaze direction corre-

sponding to looking at another participant depends on one’s
seating position, we built a different neural network model
for each seat, which can be applied to all participants seated
in the same position in different meetings. Though heights
and head shapes vary significantly, and there are wide dif-
ferences in person-to-person behavior (e.g., one person may
turn her head to look at another participant while another
may mainly move only her eyes), our goal is to design a
general model that encompasses the underlying common
behavior patterns involved in looking at each of the specific
visual attention targets.

To do this, we first applied a pre-trained deep neural net-
work model called MT-CNN [67], which is a multi-task CNN
that contains three stages of networks for progressive re-
finement in order to extract the face bounding box in each
input image. We then feed this bounding box into a fea-
ture extraction framework based on the OpenFace model
[4], which estimates the relative 3D positions of 68 facial
landmarks and 56 eye landmarks. As shown in Figure 2, the
line between the estimated eye pupil and the center of the
eyeball is taken as the eye gaze direction. OpenFace then
solves the Perspective-n-Point [37] problem using the 68 3D
facial landmarks to calculate the head pose. The first stage
of this process is shown in Figure 3.

Neural Network Model for VFOA Estimation
We then concatenate the extracted head pose and eye gaze
angles to form a 5-dimensional feature vector. The high vari-
ation in individuals’ behavior patterns made it impossible to
linearly separate the VFOA classes in the feature space, and
support-vector machines (SVMs) [21] had poor estimation

Figure 2: Extracted facial and eye landmarks, with gaze di-
rections shown as green lines.

accuracy for our task. Therefore, we built a multiple-layer
perceptron (MLP) model [58] able to accurately reflect the
non-linear classification boundaries inherent in the VFOA
classification task. Figure 4 illustrates the architecture of
the neural network model after the feature extraction step.
While a typical end-to-end CNN model contains a set of
convolutional layers followed by one to two fully connected
layers and one step of supervision at the end of the network,
our combination of a pre-trained deep CNN for intermediate
feature mapping and a separate neural network for classifi-
cation means that the model starts from a relatively optimal
point. The pre-trained CNN serves as an intermediate su-
pervision step and the latter classification neural network
serves as the final supervision step.

The classification network contains N stages of fully con-
nected layers, each of which calculates the weighted in-
puts, followed by a ReLU activation layer to increase the
non-linearity of the network. For each fully connected layer
l ∈ {1, 2, ...,N }, we determine the number of nodes nl and
the number of layers N by first determining the dimension
shape across different layers and then the actual number
of nodes in each layer. Inspired by work in [38, 45, 57], we
constructed a dual-pyramid-like neural network, by first
mapping the input feature vector into a higher-dimensional
space and then performing a dimension contraction at each
latter stage of the network to carry out the final classifica-
tion. We set nl+1 = nl/2, l = 2, . . . ,N . Since the output layer
nN = 4 should correspond to the number of VFOA classes,
the number of hidden layers, N is then determined. By vary-
ing n1 and examining the training and validation accuracy
to check the over- or underfitting of the current model, we
arrived at an optimal value of n1 = 1024,N = 7.
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Figure 3: Overall VFOA estimation framework.

The camera angles and different illumination conditions
result in different data distributions at each of the four seat-
ing positions. Therefore, during training, we tune each of the
networks separately with different hyper-parameters. With
varying numbers of epochs, batch sizes, initial learning rates
and types of optimizer, each model was able to achieve its
optimal prediction accuracy. The optimal hyper-parameter
settings for each seat are shown in Table 1.

Table 1: Hyper-parameter settings for different seats.

Seat Epochs Batch size Lr Optimizer
A 45 200 0.00008 Adam
B 15 200 0.0001 RMSProp
C 150 400 0.00004 Adam
D 170 400 0.00004 Adam

Estimation Results
The VFOA labels in our study include four possible classes:
{looking at the person straight ahead, looking at the person in
the diagonal direction, looking at the person on the left/right,
looking somewhere else}. To train and evaluate our algo-
rithms, we manually annotated the VFOA for 52960 frames
(about 7 to 10 minutes from each of 4 different meetings),
roughly equally distributed across the 4 different seating po-
sitions. The details of the label distribution of the annotated
data are shown in Table 2. We split the annotated data for

each seating position into 2 parts: 85% for training and 15%
for testing.

Table 2: VFOA label distribution in annotated data.

Seat Ahead Diagonal Left/right Other Total
A 2824 3525 1732 6319 14400
B 2136 2495 1123 4606 10360
C 2423 2767 1274 4336 10800
D 2128 5125 2302 7845 17400

According to Table 2, for each seating position, the most
common VFOA target is “somewhere else” (perhaps since
the task involves referring frequently to a piece of paper on
the table), and it was uncommon for a participant to look
directly at the participant on the same side of the table. We
computed the VFOA prediction accuracy for each seat as
well as the F score [19] to evaluate the effectiveness of our
model, where

F = 2 ∗
precision ∗ recall

precision + recall

Table 3 shows the results. Our method achieves an average
accuracy of 90%, and a higher F score than the comparable
CNN model trained on similar data recently reported in [50].
To further verify the effectiveness and generality of our

model, we also evaluated it on the widely-used AMI corpus
[17], which contains 14 meetings with VFOA annotation. In
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Figure 4: Details of the neural network architecture.

Table 3: VFOA prediction performance on self-collected dataset.

Seat A Seat B Seat C Seat D Average
Acc. F Acc. F Acc. F Acc. F Acc. F

CNNs [50] - - - - - - - - - 0.799
Ours 90% 0.86 92% 0.90 88% 0.87 88% 0.85 90% 0.87

this scenario, there are 4 participants discussing a topic and
the visual focus of attention targets could be one of the other
participants, the table, the whiteboard on a side of the room,
or somewhere else. The closeup camera positions and the
relative angles between participants and cameras are totally
different than our self-collected data. Nonetheless, Table 4
shows that in this different scenario, our VFOA estimation
algorithm trained on the AMI Corpus outperforms the state-
of-the-art results reported for DBN [3] and unsupervised
incremental learning [27].

Table 4: VFOA prediction accuracy on the AMI corpus.

Model Seat A Seat B Seat C Seat D Avg
DBN [3] 63% 56% 46% 55% 55.0%

Increm [27] - - - - 52.8%
Ours 64% 68% 58% 68% 64.5%

Visual Metrics Extracted from VFOA
We estimated the VFOA for each participant in each frame us-
ing our algorithm, and then extracted derived visual metrics
for subsequent group meeting analysis. Since the attention
received by a participant and the attention given by a partic-
ipant during the entire meeting were observed to be good
indicators of group perception [40], we extracted similar
metrics, as detailed in Table 5.

6 PROSODIC ACOUSTIC FEATURES
Since group communication occurs across multiple modali-
ties, in addition to these derived visual metrics, we extracted

Table 5: Visual metrics based on VFOA estimation.

Visual feature Metric
Attention received by a participant ATR
Attention given by a participant ATG
Attention Quotient (Ratio of ATR and ATG) ATQ
Attention Center (fraction of time a participant
is looked at by all other participants) ATC
Attention Center (2 people) ATC2
Attention Center (2 or more people) ATC2+
Fraction of mutual gaze FMG

prosodic acoustic features directly from each participant’s
lapel microphone. We consider the commonly-used energy,
fundamental frequency (or pitch), and zero-crossing rate, as
well as several non-traditional spectral metrics often used in
speech/music classification applications, described in further
detail below. All of our acoustic features are prosodic, i.e.,
they convey linguistic meaning regarding emotional state,
intonation, or rhythm, but are not attached to single phonetic
speech segments. Energy metrics have been used numerous
times in group dynamics analysis [8, 49, 60]; for example,
emergent leaders are usually louder, particularly if they are
male. However, leaders who deliver feedback with a “softer”
voice are found to be more supportive [56]. During data
collection, some signal leveling was necessary to prevent
clipping or to boost quieter signals. Therefore, we compute
energy variance rather than absolute energy metrics.

The zero-crossing rate is another metric calculated in the
time domain and can be defined as the number of times that
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a sign change occurs between two consecutive samples in
the waveform. This reflects the dominant frequency of the
signal, and has been used for speech/music discrimination
and voice activity detection in noisy conditions [29, 61].
Fundamental frequency is closely related to the percep-

tual measure known as pitch, the perceived fundamental
frequency of a sound. Since speech and music signals are
not perfectly periodic, estimation techniques using auto-
correlation, spectral, or cepstral-based methods are common
[1]. The PEFAC (Pitch Estimation Filter with Amplitude Com-
pression) algorithm was selected for this study because it
demonstrates accurate performance under noisy conditions
that may have a low signal-to-noise ratio [30, 63] and has
been successfully applied in other studies analyzing group
interactions [8, 49, 68]. Previous research has found that
emergent leaders typically have lower pitch [28, 33].

Since music and speech are both structured sounds gener-
ated by humans for a specific purpose, they have traits that
distinguish them from unstructured environmental sounds.
Specifically, they both share a harmonic structure in which
discrete acoustic units (e.g., phonemes or musical notes) are
arranged into deliberate sequences [1]. Thus, we included a
suite of features in our analysis that characterize the shape
of the spectrum of a signal, which are typically used for
tasks such as song, genre, or mood classification [65, 66].
These features include Mel frequency cepstrum coefficients
(MFCCs), chroma, Tonnetz, and spectral centroid, rolloff,
contrast, flatness, and bandwidth.

MFCCs are commonly used in speech recognition and au-
dio content classification due to their efficient representation
of speech data on a frequency scale that mirrors the human
auditory system [1, 13, 44]. For this study, we extracted 40
coefficients. Chroma features project the spectrum of a signal
into 12 bins corresponding to the 12 semitones on a musi-
cal octave. Outputting frequency relationships rather than
frequency absolutes may reveal more information about the
degree of pitch similarity not apparent in other metrics [36].
The Tonnetz feature reveals the amount of close harmonic
relationships present in a signal, using Euclidian distance as
a measure for harmonic change.

The spectral centroid is the predominant frequency of the
signal, or the center of gravity of the spectral energy for a
given frame of audio. Similarly, the spectral rolloff point is
the frequency below which 85–95% of the spectral energy
is concentrated (a 50% rolloff typically yields a frequency
band close to the spectral centroid) [62, 64]. Both features
have been successfully used for music and environmental
sound classification and recognition [1]. Spectral contrast
represents the relative spectral distribution of a signal, rather
than the more traditional average spectral envelope, and has
been known to perform better at music-type classification
tasks than MFCCs [41].

Spectral flatness is a measure of how uniformly the fre-
quency power spectrum is distributed, and in addition to the
applications above, it is often used to discriminate between
voiced and unvoiced speech [32, 60]. This metric was selected
because emergent leaders typically modulate their voices to
a greater degree [23], and increased pitch variation has been
found to be positively correlated with professional success
[25]. Spectral bandwidth is a metric that is useful for dis-
tinguishing between tone-like sounds or noise-like sounds
because it indicates the degree to which the frequency band
energies are concentrated around the spectral centroid.

Table 6 lists all of the prosodic features used in this study.
Pitch metrics were computed using the VOICEBOX toolbox
in MATLAB, and all other features were computed in Python.
Specifically, the spectral metrics were calculated using the
Librosa library, with 512 samples between successive frames.
Each frame was windowed with the Hann function, with a
window length of 2048. The metric values were averaged so
that there was only one scalar measurement per audio file
for each feature.

Table 6: Extracted prosodic non-verbal acoustic features.

Prosodic acoustic feature Abbreviation

Energy variance varE
Zero-crossing rate ZCR
Pitch minimum, maximum, minP, maxP,
mean, variation meanP, varP
Mel frequency cepstral coefficient MFCC
Chromagram Chr
Tonnetz Ton
Spectral centroid cenS
Spectral rolloff rolS
Spectral contrast conS
Spectral flatness fltS
Spectral bandwidth bndS

7 CORRELATION AND REGRESSION ANALYSIS
With these multimodal metrics calculated, encompassing
both VFOA and the prosodic information contained in nat-
ural speech, we investigated how they correlated with the
post and pre-task target variables of perceived leadership,
contribution, and emotional intelligence.

We found that emotional intelligence (EI) has positive cor-
relations with ATR (ρ = 0.25,p = 0.08), ATG (ρ = 0.26,p =
0.07), and FMG (ρ = 0.33,p = 0.02), suggesting that par-
ticipants with higher EI tend to look more at others, are
looked at more by others, and also share more mutual gaze.
Interestingly, we find that EI has a negative correlation with
ATQ (ρ = −0.39,p = 0.006), suggesting that individuals with
higher EI look at others more than they are looked at, al-
though individually both ATR and ATG positively correlate
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with EI. We also note that EI has a positive correlation with
perceived contribution (ρ = 0.33,p = 0.01), although we
do not find any significant correlations between EI and per-
ceived leadership. Participants with higher EI are also seen
to be more open (ρ = 0.34,p = 0.01). One significant finding
was that visual metrics alone could explain 30% (F = 2.88,
p = 0.02) of the variance in EI.

We also found that of the Big Five personality traits, con-
scientiousness, in particular, has significant positive cor-
relations with several acoustic metrics, MFCC, Chr, cenS,
fltS, bndS, meanP, ZCR, and varE (all 0.29 ≤ ρ ≤ 0.32,
p < 0.05), and negative correlations with some visual met-
rics, ATR, ATC2, ATC2+, and FMG (all −0.37 ≤ ρ ≤ −0.32 ,
all p < 0.05). Agreeableness has positive correlations with
MFCC (ρ = 0.29,p = 0.04), while openness has positive
correlations with Chr, maxP, varE (ρ = 0.32, 0.26, 0.26, all
p < 0.05).

Throughmultiple linear regression, one significant finding
was how well both metrics could account for gender diver-
sity, suggesting that men and women have very different
patterns of looking and speaking. Specifically, the full suite
of audiovisual metrics could explain 74% (F = 2.4, p = 0.03)
of the gender diversity, with the acoustic metrics accounting
for 51% (F = 1.7, p = 0.08) and the visual metrics accounting
for 27% (= 2.6, p = 0.03) of the variance in gender.
Based on the post-task questionnaire rankings, we aver-

age the perceived leadership and contribution scores each
participant received from the others in the group, resulting
in a quantized ground truth score. We then consider the par-
ticipant who received the maximum leadership/contribution
scores in a particular group as the perceived leader/major
contributor of that group. Each group may have more than
one perceived leader and major contributor.
We used multiple linear regression to regress individual

leadership and contribution scores for each participant with
the automatically extracted audiovisual metrics. Since the
ground truth scores are quantized, we quantized the re-
gressed scores to the nearest bin. Using this approach, we
could predict emergent group leaders with 64% accuracy,
and major contributors with 86% accuracy. This result is
promising and shows that substantial information about per-
ceptions of emergent leadership and contribution can be
explained by using combined VFOA and prosodic features.
Taken together, these results indicate that automatically com-
puted audiovisual features, which incorporate no analysis of
informational content, may closely align with perceptions
of emergent leadership and contribution in group meetings.

8 CONCLUSIONS AND FUTUREWORK
In this work, we demonstrated several aspects of group dis-
cussion analysis based on features automatically extracted

from frontal videos and non-verbal acoustic data. One pos-
sible direction to improve the analysis is to increase the
accuracy of the VFOA estimation with additional sensors.
In particular, we intend to leverage the collected overhead
rangemeasurements recorded by the ceiling-mounted Kinect
sensors to dynamically locate the precise position of each
participant’s head, providing information about the relative
position between participants, which should improve the
accuracy of VFOA estimation. We could also expand our
VFOA targets to broaden the “somewhere else” class, e.g.,
participants presenting at a projected screen.
The overhead Kinect sensors, although not used in this

work, provide color and distance maps of the room. The
participants can be tracked using these distance maps, and
we are developing automated algorithms that estimate the
seated body posture (leaning forward vs. leaning backward)
and arm pose (arms on table, crossed arms, arms touching
face, arms in conversational gestures) of each participant.
These postural cues can be combined with VFOA-based cues
for further analysis of group discussions.

In this work, we only used the non-verbal speech signals,
without considering the spoken content. We are currently
working on transcribing the speech to text using automatic
software. The spoken content would provide richer informa-
tion about the nature of the discussion and also help explain
human perceptions in groups better when combined with
the non-verbal cues. We also believe that a combination of
the addressee and speaker information, together with the
context of the meeting, can improve the existing VFOA esti-
mation algorithm.

Though the 16-channel, custom-built spherical microphone
in the conference room was not used in this analysis, we in-
tend to combine this microphone with the overhead Kinects
to both allow participants to move about the room and re-
move the need for individual lapel microphones. The spheri-
cal microphone can also precisely localize speaking partici-
pants using beamforming and source segregation techniques,
leading to improvements in the signal-to-noise ratio.

Finally, wewould like to create metrics that use both visual
and acoustic information (e.g., time spent looking at another
group member while speaking loudly, or time spent moving
about the room while speaking about a given topic). Taking
into account both body posture and the pitch and energy of
a vocal utterance, for example, might unlock richer insights
into the emotional content of the meeting.
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