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Abstract

This paper presents a method for detecting, describ-
ing, and matching keypoints in combined range-intensity
data. We extend a 2D image-based detection and descrip-
tion framework to 3D using an image back-projected onto
a range scan. A key feature of the framework is a physical
scale space for detecting keypoints, which eliminates errors
in scale during both detection and matching. We develop
smoothing, differentiation, and description techniques that
are focused on making the keypoint invariant to viewpoint,
sampling, and intensity changes. We demonstrate the power
of our algorithm with comparisons to a back-projected SIFT
algorithm, showing that it is able to find and match key-
points in a variety of challenging scan pairs.

1. Introduction

Identifying and matching 3D keypoints are integral steps
in many algorithms that address range registration and 3D
object detection. Regardless of its application, the quality
measure of a keypoint algorithm is its repeatability. This
means that a keypoint’s location and description must be as
invariant as possible to viewpoint, sampling, and intensity
differences. In this paper, we combine information from
calibrated cameras with range data to generate and match
intensity keypoints in three dimensions, increasing keypoint
repeatability and matchability. The top row of Figure 1
illustrates an example of a keypoint match pair generated
by our approach. Even though the keypoints straddle a
depth discontinuity, they are correctly matched by our al-
gorithm. On the other hand, back-projection of a SIFT key-
point [10, 14] detected in 2D can easily generate incorrect
matches due to scale mismatch and improper handling of
depth discontinuities, as illustrated in the lower row of Fig-
ure 1.

There are currently two general classes of keypoint
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Figure 1. The top row shows a correct match between two
automatically-detected physical scale keypoints from two different
scans computed near a depth discontinuity. The bottom row shows
a back-projected SIFT keypoint (green) computed at the same lo-
cation, and its (incorrect) match in purple. The physical scale key-
points are exactly the same size; however, the purple keypoint is
70% smaller than its matched keypoint (green).

algorithms that work with 3D data; some are strictly
point/geometry based [4, 7, 19] while others form descrip-
tors based on functions defined on the geometry (e.g., ge-
ometric invariants or intensities from associated images)
[1, 6, 14, 15, 16, 18, 20]. Our paper fits into the second class
of such algorithms, by using images from a calibrated cam-
era associated with the range scanner. Much of the work in
the second class of algorithms is focused on datasets that are
full-3D models (e.g., models constructed by combining data
from multiple viewpoints [18, 16]). Our focus is on single
viewpoint range data, typically acquired from large-scale
outdoor scenes, which differs from typical full-3D models
in two ways. First, the problem of depth discontinuities is
much more apparent in single viewpoint data. In outdoor
scenes both large-scale (e.g., ends of buildings) and small-
scale (e.g., doors and windows) discontinuities are preva-
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lent. Second, a range scanner is able to produce a physi-
cal distance to each point in the scan, while models recon-
structed from multiview stereo, for example, lack a defined
scale. This means that the distance between structures in
one scan can be reproduced in another scan that sees the
same structures. These two aspects of single-scan data are
important in the design of our algorithm.

The algorithm presented in this paper extends SIFT [10]
by detecting keypoints from back-projected intensities on
3D range surfaces. We compute SIFT-like descriptors for
the keypoints using scales and neighborhoods defined in the
range scanner’s physical 3D space. Our algorithm has three
main advantages:

• Keypoints are described in a viewpoint invariant man-
ner. The descriptors are invariant to projective fore-
shortening and favor contributions from neighboring
values (typically from the same surface) that are more
likely to be seen when the viewpoint changes. Our al-
gorithm uses a novel application of a bilateral filter to
accomplish this.

• Keypoints whose regions of support overlap depth
discontinuities are robustly detected, described, and
matched.

• Keypoints only match other keypoints at the same
physical scale. This is in contrast to typical 2D key-
points that achieve scale invariance by allowing match-
ing at different pixel scales.

To understand the significance of the third advantage,
consider a simpler approach that uses the standard SIFT al-
gorithm and then back-projects the keypoints and their de-
scriptors onto the range data. After the back-projection, a
pair of keypoints that should match will typically differ in
the area they cover on the physical surface due to their de-
tection using pixel scales. Because of this size difference,
gradients will be entered at different relative locations on
each descriptor; furthermore, some values may only appear
in one descriptor. While these problems are somewhat mit-
igated in the design of the original SIFT algorithm through
the use of a fine sampling in scale, and through partial vol-
ume interpolation and Gaussian weighting in the formation
of the descriptor, the use of physical scales when range
data are available offers a much stronger solution, allow-
ing use of many fewer scales and matching only at the same
scale (Section 3). We show that the physical scale space
increases the repeatability of our detection and description
techniques, yielding keypoints that are invariant to scale and
have additional robustness to discontinuities.

This paper is organized as follows. Section 2 discusses
related work. Section 3 describes the detection process, and
Section 4 discusses the descriptor computation and match-
ing. Section 5 presents experimental results on several

large-scale datasets, and Section 6 offers concluding re-
marks.

2. Related Work
Shape descriptors that collect points into a histogram

have been used extensively, most notably Johnson and
Hebert’s spin images [7]. Spin images collect points into
a 2D histogram that is spun around a center point’s nor-
mal. Mian et al. extended spin images to a tensor repre-
sentation vector and developed a method for matching them
[12]. Frome et al. [4] extended 2D shape contexts to 3D,
using an oriented basis point to construct a 3D histogram.
3D shape context descriptors have a degree of freedom in
rotation about their normal, which is addressed by creat-
ing additional descriptors at sampled rotations. Recently,
Zhong [19] developed Intrinsic Shape Signatures, which
histograms points in a spherical coordinate system around
a basis point. The coordinate frame is based on the eigen-
vectors of the scatter matrix of the neighborhood. While
geometry-only keypoints have been successful, the diffi-
culty in establishing a highly repeatable coordinate frame
leads these techniques to require more matches than com-
bined 3D-intensity keypoints to estimate surface matches.

In 2D, scale space was studied thoroughly by Lindeberg
[9] and used notably by Lowe [10] to detect scale invariant
keypoints. 2D SIFT keypoints detected in image space and
back-projected into 3D data have proven successful as well.
Of the SIFT-like 3D keypoint algorithms, our previous work
in range registration [14] used geometry to provide affine in-
variance by mapping gradients from the image onto a plane
in the range data. We also used the 3D information to form
filtering heuristics for keypoints and matches. Wu et al. [16]
extended SIFT using a framework called VIP (viewpoint-
invariant patches) by mapping the intensities onto a plane
fit onto a surface in 3D and detecting and describing the
keypoint there.

Assuming full, uniformly sampled meshes, Zaharescu et
al. [18] extended Wu’s viewpoint invariant patches to use
full 3D gradients and descriptors. They built a scale space
of intensities on a mesh using repeated convolutions of a
fixed-width 3D Gaussian. Extrema are detected at one-ring
neighborhoods of the difference-of-Gaussian meshes. Gra-
dients are computed using weighted directional derivatives
around a vertex, which are binned on the three axes of the
keypoint to form a descriptor. While our approach shares
similar concepts with this work, our focus is on single view
range data.

A strictly geometric scale space was developed by No-
vatnack and Nishino [13], in which a mesh is embedded
into 2D and smoothed in this space using geodesic Gaus-
sians. Interest points are detected based on a normal map.
Akagunduz and Ulusoy used a scale space of mean and
Gaussian curvatures to detect interest points on parameter-
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Figure 2. The red lines indicate the mesh formed by scanner 1,
and the blue by scanner 2. Since scanner 1 did not see the corner,
it believes the shortest path between p1 and p2 is over the dotted
line, which disagrees with scanner 2’s view. Because of this phe-
nomenon we do not use geodesics as a distance measure.

ized 3D surfaces [1]. Other geodesic based scale spaces
have been proposed. For example, Hua et al. [6] proposed
a conformal mapping of a mesh, detected interest points on
it using geodesic diffusion, and used 2D SIFT descriptors
to characterize them. Zou et al. [20] developed an intrin-
sic geometric scale space using Ricci flow on 3D surfaces.
Starck and Hilton proposed a geodesic intensity histogram
for manifold matching [15]. In this paper, we do not use
geodesics because they are not possible to properly define
when discontinuities are present, as illustrated in Figure 2.

Our decision to use geometry-augmented photometric
features instead of strictly geometric or strictly photometric
features is largely due to the nature of the data. For many
datasets that lack distinguishable local geometry, point-
based keypoints such as spin images [7] often have to be
quite large to be successful. This can be problematic in
datasets with low surface overlap or many discontinuities.
In these cases, intensity-based keypoints are more success-
ful for local surface matching [8].

3. Keypoint Detection
We assume that a range scanner with an associated, cal-

ibrated camera acquires the datasets, producing point mea-
surements in 3D and essentially-simultaneous intensity im-
ages. A unit normal vector for each range data point is
computed using a prioritized iteratively-reweighted least-
squares (IRLS) plane fitting algorithm. The first step in
keypoint detection is to bring the intensities from the im-
age’s pixel space to the range scanner’s physically measured
space. Since the image sampling is generally denser than
the range sampling, most image pixels do not have auto-
matic range correspondences. Using the calibration of the
camera, we map pixel locations from the image into the
range scanner’s 3D coordinate system, as illustrated in Fig-
ure 3. Consider an image pixel xim. We find the closest
(within a threshold) range point to the 3D ray r formed by
xim and the camera origin; let this point be xrg . We com-
pute the 3D location p corresponding to xim as the inter-
section of the ray r with the plane described by xrg and

Image

xim

xrg

p

Range Data

Camera

r

Figure 3. This figure demonstrates the back-projection of image
pixels into the range space. The points p form the image mesh.

its normal. The location p inherits its normal from xrg.
Connectivity between the back-projected pixels in 3D can
be simply derived from pixel neighbor relationships in the
image. However, since our range data often contains holes
from missing returns, in practice we use a 2D Delaunay tri-
angulation so we can form connections across small holes.
We refer to the connected set of back-projected pixels as
the image mesh. This image mesh can be thought of as a
piecewise 2D manifold embedded in 3D. Our detection al-
gorithm extends 2D SIFT operators to work in this space.
The first problem we address is how to develop a physical
scale space.

3.1. Physical Scale Space

Our image mesh allows us to compute a repeatable phys-
ical distance between image pixels. This physical space
gives our algorithm its intrinsic invariance to scale. There-
fore, we can a priori choose a set of physical scales, S =
{s1, . . . , sk}, at which to detect keypoints for any image
mesh.

In order to build a physical scale space, we must define
(1) a smoothing kernel to be applied to the image mesh, (2)
a discrete convolution method for applying this kernel to the
mesh, and (3) a downsampling method to create the image
meshes corresponding to the different physical scales. The
smoothing kernel that we use is similar to a mesh bilateral
filter [3]. We chose this filter because it reduces contribu-
tions from nearby surfaces that are less likely to be seen as
the viewpoint varies. Specifically, the kernel we use is

B(x,n; x0,η, σ, ν) = exp(−‖x− x0‖2 /2σ2) ·
exp(−(1− n · η)2/2ν2)

where x is the 3D location at which B is being evaluated
and n is the normal for x. x0 is the kernel’s center point
and η is its normal. The first factor of the kernel is the stan-
dard Gaussian kernel using 3D Euclidean distances and σ2

as its variance. The second factor lowers the contribution
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Figure 4. The blue lines represent the distances used for the first
(Gaussian) term in the bilateral filter. Fleishman et al. [3] used
the red distances for their second term. Using these distances,
x2, which may not exist in a different scan will make a sizable
contribution to x0. Our technique mitigates this problem using the
dot products of the normals n and η.

of points whose normal n significantly differs from η. We
used a value of 0.4 for ν throughout the paper, which gives
near-zero weight to points whose normals differ from η by
90◦ or more. This term improves the repeatability of our
scale space, especially near structural corners, as the pres-
ence of a point on the adjoining surface in the image mesh
will depend on the viewpoint at which the surface was seen.
It also increases robustness to changes in the light source’s
position, as it will mitigate contributions from a surface in
shade to an adjacent surface in direct light and vice versa.
This surface normal comparison approach differs from the
analogous ”intensity” difference term from [3], which used
a point to plane distance. Figure 4 illustrates how the pro-
posed surface normal term does a better job of reducing
contributions between nearly-perpendicular surfaces.

Convolution is performed on the intensities and the nor-
mals of the points in the image mesh. Bilateral filter weights
are computed for points within 2σ of the target point. The
resulting intensities are normalized by the total weight and
the surface normals are normalized to unit vectors. The
scale si for each layer of physical scale space is realized

by smoothing scale si−1 where σ =
√
s2i − s2i−1.

In contrast to SIFT, our physical scale space does not
use octaves. We can eliminate octave computation because
we do not need to locate extrema with respect to the scale
dimension. In order to compute subsequent layers of scale
space we downsample the points used for smoothing. We
do this by labeling a subset of the points (starting with all)
of the image mesh as control points, and using only control
points as support for convolution. After each layer has been
smoothed, we remove points from the control point subset
such that no two points within the subset are closer than
si/2 from each other. Figure 5 demonstrates four layers of
the physical scale space.

3.2. Extrema Detection

Since we treat each scale independently, we compute the
Laplacian of the image intensities on the mesh and then find
maxima and minima. We compute the Laplacian using the

Figure 5. This figure shows the effects of the bilateral filter at dif-
ferent scales, the scales used were 3cm, 6cm, 12cm, and 17cm.

Laplace-Beltrami Operator (LBO), a generalization of the
Laplacian to functions on manifolds. We use the indirect
discretization by Xu [17], which first requires a gradient
to be computed for each vertex. We use Xu’s discrete lin-
ear approximation to the gradient. This technique works by
computing the intensity gradient on each triangle adjacent
to vertex pi, and then using an area-weighted average of
the adjacent triangle gradients to approximate the gradient
at pi. Figure 6 illustrates the process. Adopting the notation
from [17], the gradient on a triangle is

∇Tj
I =

1
2Aj

[I(pi)vi + I(pj)vj + I(pj+)vj+], (1)

where Aj is the area of triangle [pi,pj ,pj+]. I(pi) is the
intensity at point pi, and vi is the inward normal of the edge
opposite pi (i.e. edge [pj ,pj+]) scaled by the length of that
edge. It is computed by

vi = [((pi − pj) · (pj − pj+))(pj+ − pi) +
((pi − pj+) · (pj+ − pj))(pj − pi)]/2Aj ,

and similarly for the other edge normals. Thus the inten-
sity gradient at a vertex with respect to the mesh is simply
approximated by

∇MI(xi) =
1

A(pi)

∑
j∈N1(i)

Aj∇TjI, (2)

where A(pi) is the sum of areas of the 1 ring of triangles
connected to pi (N1(i), see Figure 6). The LBO can now
be approximated as

∆MI(xi) =
1

2A(pi)

∑
j∈N1(i)

−vT
i [∇MI(pj) +∇MI(pj+)].

(3)
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Figure 6. Left: the terms in the gradient’s calculation. Right: a
1-ring neighborhood and the vectors used to compute the contri-
bution of triangle Tj to the Laplacian.

Extrema are detected as the maxima and minima of the
scale-normalized LBO by comparing a vertex with its 1-
ring neighbors. Extrema are filtered by thresholding the
strength of the Laplacian response to be within the top 10%
of all responses. Finally, extrema are further filtered by a
non-maximal suppression [2] with a suppression radius of
3si. This spatial filter is applied to each scale indepen-
dently, thus keypoints of differing scales cannot suppress
each other.

As mentioned earlier, range data often has holes due to
surfaces that scatter the return away from the scanner; we
only compute values for the LBO when a full ring of ver-
tices surrounds a point. We require at least 5 neighboring
vertices with Laplacians computed within distance si to de-
tect extrema. Since we do not require a point to be an ex-
tremum across scales, the number of neighbors that a vertex
is compared against is significantly fewer than regular SIFT.
This results in more candidate keypoint locations than reg-
ular SIFT before spatial filtering.

After the extrema have been detected, the gradients com-
puted above are projected into the tangent space of their
point for later use in computing the keypoint’s orientation
and descriptor. These gradients are also made more repeat-
able by computation in the physical scale space.

3.3. Keypoint Coordinate Frame

A full, repeatable 3D coordinate frame can now be com-
puted for each keypoint [14, 18, 16]. One axis is taken to
be the normal of the extremal vertex. The second axis is de-
fined to be the dominant gradient direction of the intensities
at the keypoint, computed as follows. We project the gra-
dients of nearby vertices (e.g., within 3si) into the tangent
plane of the keypoint, weight them using the same bilateral
filter as before with σ = si, and enter them into a histogram.
The maximum of this histogram is found and a parabolic fit
to the values around this maximum determines the domi-
nant gradient direction [10]. The third axis of the keypoint
is merely the cross product of the first two.

This coordinate frame is an improvement over previ-

ous work [14] because the normals in the image mesh are
smoothed as the scale increases, giving more support to
the normals for larger scale keypoints. The computation
of the dominant gradient direction is improved by the phys-
ical scale space’s invariance to strong gradients in the im-
age caused by structural discontinuities. It is also improved
by down-weighting the contribution of gradients from loca-
tions that are more sensitive to viewpoint variation. Finally,
the size of the contribution region is fixed by the physical
scale.

4. Keypoint Description

The SIFT-like descriptor that we compute lies in the tan-
gent space of the keypoint, with its x-axis aligned with the
dominant gradient direction. The support for the descriptor
consists of the image mesh points that lie within a sphere
around the keypoint with radius 8

√
2si (i.e. half the length

of the descriptor’s diagonal). The descriptor is a 4× 4 spa-
tial grid with 8 orientation bins per spatial bin, resulting in a
standard 128-dimensional descriptor. Gradients of vertices
from the support region are projected onto the descriptor’s
plane, then weighted with the bilateral filter (with σ as the
descriptor’s radius) and placed in their appropriate bins us-
ing partial volume interpolation. The descriptor is normal-
ized and thresholded as in the original SIFT [10]. Example
descriptors can be seen in the top row of Figure 1.

We choose to only histogram gradients on a single plane
to be robust to changes in viewpoint. Consider a keypoint
near a structural corner; if the keypoint were to wrap around
the corner, then the keypoint could only be matched when
both planes are seen. By only using one plane, any view
that sees that plane will create a similar descriptor at that
location. An alternate descriptor built using all three axes of
the keypoint would also suffer from this problem; it would
also have many of its bins empty for the common planar
keypoint.

Our descriptor has advantages over previous methods
(e.g., [14, 16]) in terms of structural discontinuity invari-
ance and exact scale matching. Since the support of a de-
scriptor is much larger than the scale at which the keypoint
is detected, descriptor bins frequently extend across depth
discontinuities into the scan’s free space. In our algorithm,
distant pixels from such structural discontinuities are either
not in the support region or are downweighted due to the
bilateral filter. Such bins will have nearly empty orienta-
tion histograms, which is a repeatable property for any view
of the keypoint. The other improvement is that the physi-
cal sizes of two descriptors will exactly agree for a correct
match, removing effects of differences in scale dimension
during matching.
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4.1. Matching

Keypoints are only matched against keypoints of the
same scale. A separate k-d tree is built on the descriptors
for each scale used by the image mesh being matched. As
in SIFT, we find the nearest 2 keypoints in the k-d tree to
each query keypoint at the scale being matched. Matches
are ranked by the ratio of the distance between the query
keypoint and the first and second closest keypoints. Lowe’s
0.8 threshold on this ratio is used for accepting matches.

Matching keypoints only against other keypoints of the
same scale significantly culls the search space for a match.
The reduced search space improves the power of the ra-
tio metric, by ensuring that the second best keypoint is of
the same scale and is not an implausible match. Also, it
allows a similarly-sized set of physical scale keypoints to
be matched faster than multiscale keypoints. Finally, since
keypoints at one scale can be computed and matched inde-
pendently of keypoints at another scale, increasing the num-
ber of computed scales cannot decrease the total number of
correct matches.

Candidate 3D transformations from one scan to another
can be computed easily using a single keypoint match, since
each match implies a full 3D coordinate system. Further-
more, because of the improvements in assigning the coordi-
nate system to a keypoint, these transformations are gen-
erally very accurate. As we demonstrated in [14], high-
quality 3D similarity transformations can be efficiently es-
timated using a single good 3D keypoint match as a start-
ing point using the dual-bootstrap ICP method. Alternate
RANSAC methods based on the proposed keypoints would
require a relatively small number of trials to compute an ac-
curate transformation. The RANSAC algorithm presented
by Wu [16], ignoring the scale, would work here as well.

5. Results
We demonstrate the quality of our keypoint algorithm

using pairwise range scan matching on real-world outdoor
scans. The datasets were collected using a Leica HDS-
3000 scanner. For each scan, we built the image mesh from
the image that views the greatest portion of the range data.
These images were acquired by the scanner at roughly the
same time as the scan and are 1024× 1024 in resolution.

We selected a set of scales fixed for all experiments be-
forehand as S = {3cm × (21/2)i; i = 0, . . . , 5}. For each
scan, we then determined which should be the base (small-
est) scale, computed as the scale closest to the median edge
length in the image mesh.

Our dataset, illustrated in Figure 7, consists of eight out-
door range scan pairs, which include large intensity differ-
ences, low overlap, repeated structure, large viewpoint dif-
ferences, and numerous discontinuities. Two of the scan
pairs, VCC North and Parkinglot, are considered easy, since

the difference in viewpoint between the scans is low for
both pairs. The VCC South scan pairs are more difficult, in
that the VCC South1 pair demonstrates a significant inten-
sity difference while VCC South2 has a small overlap. The
remaining four datasets are all very difficult for intensity-
based keypoints; we include them to demonstrate improved
matchability and to show the limits of our algorithm. The
DCC scan pair has numerous occluding trees, and is made
more difficult by a large viewpoint difference. The JEC,
JROWL, and Biotech pairs all have significant repeated
structure. The JROWL pair has one scan taken during the
day and the other at dusk, and is an example of a pair that
would be more suited for a global matching algorithm such
as [11]. The Biotech pair is the most difficult pair, not only
due to its repeated structure but also due to a narrow, distant
view from one scan as well as glare in the images.

We verified keypoint matches using a ground truth reg-
istration between the scan pairs. We define the fixed key-
points to be from the scan for which the k-d tree is built and
matched, and the moving keypoints to be from the scan that
is querying it for matches. Matches are considered to be
correct if the ground truth transformed moving keypoint’s
orientation vector is within 15◦ of the fixed keypoint’s and
if its location is within 4si of its matched keypoint.

The algorithm is compared to a back-projected SIFT al-
gorithm. In back-projected SIFT (bpSIFT), keypoints are
detected in the images, and back-projected into a plane fit
on the range data. Then the 2D gradients from the images
are mapped onto the plane in the range data to give the de-
scriptor affine invariance [14]. This algorithm is also similar
to VIP patches [16]. Correct matches for bpSIFT are mea-
sured in the same way, except that the scale used for the
location threshold is the larger of the two keypoints’ back-
projected scales.

Since, as mentioned above, a single high-quality key-
point can be used to seed the registration of the entire scan
pair, we consider the number of correct matches in the list
of top 50 matches sorted by the ratio criterion to be a key
measure of the quality of the matching algorithms.

Results are presented in Table 1. On the easy scan
pairs, both algorithms perform well. The VCC South1 pair
presents some difficulty for bpSIFT. Physical scale key-
points (PSK), however, are able to find almost three times
as many correct matches ranked among the top 50 than bp-
SIFT. The VCC South2 pair is matched well in both algo-
rithms. However, there are more matches for PSK at smaller
scales in the small overlap region. The improved robustness
to discontinuities helps improve results for the DCC pair.
Improvement on the Biotech scan pair is minor, since the
back wall is practically the only distinctive location in the
images.

The number of keypoints ranked in the top 50 by PSK
improved over bpSIFT for all non-trivial scan pairs, and
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a) b)

c) d)

e) f)

g) h)

Figure 7. The experimental dataset. Columns 1, 2, 4, and 5 show the individual image meshes, and columns 3 and 6 show them aligned.
The scans are: a) VCC North, b) Parkinglot, c) VCC South1, d)VCC South2, e) DCC, f) JEC, g) JROWL, and h) Biotech.

sometimes by a large margin (e.g., VCC Souths and JEC).
This measure demonstrates that PSK generates more dis-
tinctive correct matches than bpSIFT. This suggests that
for finding a rough transformation between the scans (e.g.,
to initialize ICP), an algorithm that considers the matches’
ranks would quickly find the correct transformation. Even
though the number of false positives increased for each pair
with PSK (due to the increased number of keypoints com-
puted, see Table 2), PSK’s ratio of correct matches to false
positives increased for every pair except for the Biotech
pair.

Referring back to Figure 1, we see how bpSIFT fails
to robustly compute a descriptor over a discontinuity, as it
merely maps gradients from the image onto the plane at that
keypoint, disregarding the fact that the right side of the de-
scriptor lies over a discontinuity. Figure 8 presents some
additional keypoint matches that further demonstrate PSK’s
robustness to discontinuities.

6. Conclusions
We proposed a physical scale based intensity keypoint

algorithm that is able to increase matchability for range
scans of outdoor scenes. Through fixing the scales of key-
point matches, we improve the repeatability of both the de-
tector and the descriptor, as well as the distinctiveness of
the matches. We further reduced the effect of the view-
point on the detector and descriptor by using a bilateral filter
and physical scale. We used difficult experimental datasets
to demonstrate how far we could push intensity-based key-
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VCC North 2983 352 50 1090 170 50
Parkinglot 262 153 50 40 30 32

VCC South1 275 174 46 21 54 17
VCC South2 92 154 42 12 36 13

DCC 28 304 9 3 50 3
JEC 177 490 30 3 107 1

JROWL 43 729 9 5 174 1
Biotech 9 429 2 5 157 1

Table 1. Results across 8 image pairs. PSK columns correspond to
the proposed physical scale keypoints, and bpS to back-projected
SIFT. # correct indicates the number of keypoint matches that
passed the ratio test and were verified by a ground truth as correct.
# false positives indicate mismatched keypoints that pass the ratio
test. # top 50 are the number of correct matches ranked in the top
50 when sorted by ratio.

points.
While we improved the keypoint’s robustness to discon-

tinuities, more work is required to obtain true discontinuity
invariance. Our descriptor is only invariant to discontinu-
ities in which the entire missing area lies in the free space
of the scan. Future work may include a different matching
scheme for descriptors that partially lie in the hidden space
of the scan, as well as a progressive meshes [5] type algo-
rithm to reduce the computation time at larger scales.
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We note that the quality of the initial normal computa-
tion affects the proposed algorithm in both detection and
description. In the future we plan to test our algorithm on
sparser datasets where normal estimation can be difficult.
We speculate that small keypoints may fail due to poor nor-
mals, but larger keypoints should still be usable due to the
normal smoothing.

PS
K

#
fix

ed

PS
K

#
m

ov
in

g

bp
S

#
fix

ed

bp
S

#
m

ov
in

g
VCC North 16 20 13 9
Parkinglot 21 8 6 0.6

VCC South1 18 13 7 9
VCC South2 8 9 0.9 4

DCC 14 18 6 10
JEC 28 27 5 7

JROWL 38 26 2 7
Biotech 15 26 3 7

Table 2. Numbers of keypoints computed (in thousands) in the
fixed and moving scans under both algorithms. PSK computes
many more keypoints as the filtering is mainly spatial and is not
across scales, this can be seen especially in scans whose images
project onto a much larger area.

Figure 8. Interesting keypoint matches. The left column is a wider
view of the area being matched; the keypoint is shown close up
in the right column. These examples are taken from the DCC,
Biotech, and JROWL respectively. The moving keypoint is shown
in yellow with its matched fixed keypoint in red.
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