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Abstract

Purpose: We use reduced-order constrained optimization (ROCO) to create clinically acceptable

IMRT plans quickly and automatically for advanced lung cancer patients. Our new ROCO imple-

mentation works with the treatment planning system and full dose calculation used at Memorial

Sloan-Kettering Cancer Center, and we have implemented mean dose hard-constraints, along with

the point-dose and dose-volume constraints that we used for our previous work on the prostate.

Methods: ROCO consists of three major steps. First, we sample the space of treatment plans

by solving a series of optimization problems using penalty-based quadratic objective functions.

Next, we find an efficient basis for this space via principal component analysis (PCA); this reduces

the dimensionality of the problem. Finally, we solve a constrained optimization problem over

this basis to find a clinically acceptable IMRT plan. Dimensionality reduction makes constrained

optimization computationally efficient.

Results: We apply ROCO to 12 stage III non-small-cell lung cancer (NSCLC) cases, generating

IMRT plans that meet all clinical constraints and are clinically acceptable, and demonstrate that

they are competitive with the clinical treatment plans. We also test how many samples and PCA

modes are necessary to achieve an adequate lung plan, demonstrate the importance of long range

dose calculation for ROCO, and evaluate the performance of non-specific normal tissue (“rind”)

constraints in ROCO treatment planning for the lung. Finally, we show that ROCO can save time

for planners; we estimate that, in our clinic, planning using our approach would save a median of

105 minutes for the patients in our study.

Conclusions: New challenges arise when applying ROCO to the lung site, which include the

lack of a class solution, a larger treatment site, an increased number of parameters and beamlets,

a variable number of beams and beam arrangement, and the customary use of rinds in clinical

plans to avoid high-dose areas outside the PTV. In our previous work, use of an approximate dose

calculation in the hard constraint optimization sometimes meant that clinical constraints were not

met when evaluated with the full dose calculation. This difficulty has been removed in the current

work by using the full dose calculation in the hard constraint optimization. We have demonstrated

that ROCO offers a fast and automatic way to create IMRT plans for advanced NSCLC, which

extends our previous application of ROCO to prostate cancer IMRT planning.

Keywords: optimization, IMRT, constrained optimization, dimensionality reduction7
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I. INTRODUCTION8

Intensity-modulated radiotherapy (IMRT) has revolutionized the treatment of cancers in9

the last decade: it allows a higher dose to be delivered to a tumor while protecting nearby10

radiation-sensitive normal tissues, yielding better local control and fewer post-treatment11

complications than previous techniques1–3 However, the process of obtaining a clinically ac-12

ceptable IMRT plan for a difficult treatment site is often slow and labor-intensive, requiring13

hours of expert time in a manual trial-and-error loop in which the parameters of the opti-14

mization score function are repeatedly adjusted. Long planning times place a severe stress15

on available resources in a busy clinic, and can result in treatment delays, acceptance of16

sub-optimal plans or, in the worst case, errors due to time pressure. In this paper, we ap-17

ply a method called reduced-order constrained optimization (ROCO) to greatly reduce the18

amount of time required to obtain a clinically acceptable IMRT plan. By minimizing the19

trial-and-error effort characteristic of current IMRT planning, it allows treatment planners20

to focus on clinical tradeoffs between tumor coverage and normal organ doses. We have pre-21

viously applied ROCO to prostate cancer cases4; in this paper, we improve our application22

of ROCO and report new results on a more challenging treatment site, the lung.23

Lung cancer accounts for the most cancer-related deaths in both men and women in24

the United States. An estimated 157,300 deaths, accounting for about 28% of all cancer25

deaths, are expected to occur in 20105. Radiation therapy is the main curative treatment26

for inoperable non-small cell lung cancer (NSCLC), but it remains a technically challenging27

procedure with very low 5-year survival rates (< 10%)6. IMRT is promising for treatment of28

NSCLC compared to traditional radiotherapy or 3D-CRT since it may enable dose escalation29

to the tumor7; however, the organs at risk (OARs) are sensitive to radiation, including the30

lungs, esophagus, and spinal cord. Since the sizes and locations of lung cancers are diverse,31

unlike prostate cancer, a standard multi-field class solution for IMRT is not used. Typical32

treatment plans for locally advanced (stage III) lung cancer feature prescription doses of 1.8–33

2 Gy/fraction delivered by 3–5 coplanar treatment beams of 6 MV photons, occasionally with34

the addition of non-coplanar beams. For the locally advanced NSCLC cases we examine in35

this paper, we estimate that it takes an expert planner around 3 hours to create a clinically36

acceptable IMRT plan (not counting time spent contouring structures and selecting beam37

directions).38
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In this paper, we describe our implementation of ROCO, which we have integrated39

with the clinical treatment planning system at Memorial Sloan-Kettering Cancer Center40

(MSKCC), and our results from retrospective application of ROCO to 12 locally-advanced41

lung cancer cases. The anonymized clinical data (image sets, structure contours, and clinical42

treatment plans) for these patients were provided by MSKCC under IRB approval. ROCO43

consists of three main steps, after beam directions have been selected. First, random sets44

of score function parameters are chosen via latin hypercube sampling, and these plans are45

optimized using the clinical score-function-based optimization. Second, principal component46

analysis (PCA) isolates the important modes of variation in the intensity matrices, which47

shifts the independent variables of the problem to the few dominant PCA modes. Sampling48

and PCA modes are generated for each patient individually, not as class solutions. The third49

step is hard-constrained optimization. Dimensionality reduction by PCA makes it feasible to50

rapidly and automatically locate plans with clinically acceptable PTV coverage and normal51

tissue protection in the space spanned by the sampled plans. Using the MSKCC planning52

system, the overall process takes approximately 30 minutes per patient on a modest desktop53

workstation (an Intel Core 2 Duo, clock speed 2.33 GHz, with 3.5 GB of RAM).54

Advanced lung cancer cases present new challenges when compared to our previous work55

on the prostate. For prostate cases, because the relationship between the PTV and the rest56

of the anatomy varies relatively little from patient to patient, the same beam directions57

were used for each patient. Stage III lung tumors, on the other hand, show extremely58

variable geometries and can grow to considerable size, growing outside of the lung proper59

and into the mediastinum; additionally, single or multiple tumors can appear in a variety60

of geometries near OARs such as the heart, esophagus, spinal cord, and brachial plexus.61

Because of this, ROCO used the clinical beam directions chosen by the planner in each case.62

Our current implementation is integrated with the clinical MSKCC treatment planning63

system in order to make it flexible enough to deal with different treatment sites besides the64

prostate, whereas the software previously described used data exported from, and performed65

calculations outside of, the treatment planning system4 (which caused difficulty because of66

discrepancies in dose calculation).67

Fig. 1 shows a single CT image slice of a representative lung cancer patient in our study,68

with contours for the different OARs, together with a 3D representation of the CT images69

showing the tumor wrapping around the esophagus. The dimension of the space of possible70
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FIG. 1. The left three panels show CT image slices in the treatment plane for patient #8 in our

study; the rightmost panel shows a beam’s eye view of the same case. The PTV is shown in red,

the lungs in yellow, the spinal cord in green, the heart in pink, and the esophagus in cyan. The

solid lines in the third panel show the beam directions.

treatments is larger for these locally-advanced lung cases than for prostate cases, because the71

larger treatment fields contain a greater total number of beamlets. For prostate cases there72

are on the order of 103 beamlets, and for the lung cases that we consider, there are about73

104. Finally, IMRT for NSCLC often includes “rind” structures to prevent hot spots in non-74

specific normal tissues. Table I summarizes the major differences pertaining to treatment75

planning between the prostate cases we had considered previously and the stage III NSCLC76

cases considered in this paper.77

The standard clinical approach to inverse IMRT planning is to combine all the evaluation78

criteria specified by the physician into a scalar value using a weighted sum of several terms79

(i.e., costlets8). Each term includes a dose parameter (i.e., a minimum or maximum limit)80

or a pair of dose-volume parameters (i.e., a point on a DVH curve), and reflects a clinical81

objective. The weight of each term is the relative penalty imposed by the planner for not sat-82

isfying each objective. Such a formulation is easy to implement and can be optimized quickly83

using gradient information, e.g., by Newton’s methods9 or conjugate gradient algorithms10.84

Because the result of a penalty-based optimization is not guaranteed to satisfy the clinical85

criteria, we refer to such an optimization scheme as an “unconstrained optimization”.86

In practice, unconstrained optimizations require a great deal of heuristic trial and error87

to arrive at parameter settings such that the resulting plan is clinically acceptable11. The88

planner uses the weights (or “importance factors”) in the objective function to try to “steer”89

the optimization algorithm to more clinically desirable solutions12, but this can be difficult90

since the process of adjusting these weights is inherently imprecise and unintuitive13. The91

role of dose limits in IMRT optimization is also confusing, since it has been observed that in92
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Criterion Prostate Case Lung Case

Beams (geometry) 5 (class solution) 4–9

Beamlets ∼ 103 ∼ 104

Median PTV volume ∼ 160 cm3 ∼ 380 cm3

PTV/OAR relationships Similar Variable

Non-specific normal Beam arrangement “Rind” structures

tissue sparing

Optimization parameters ∼ 30 ∼ 50

OARs 3–5 5–10

TABLE I. Comparison of IMRT treatment planning complexity in prostate and lung treatments.

Hot spots in non-specific normal tissues around the prostate are avoided by beam arrangements

and small PTV size, so rinds are not usually required.

an unconstrained optimization, dose limits more stringent than the clinical limits are required93

to obtain convergence to an acceptable plan (see, e.g.,10,14,15). The inverse planning process of94

obtaining a clinically acceptable IMRT plan for a difficult site can take several hours, largely95

due to the manual process of adjusting the parameters in the objective function10,13,16.96

In our previous work17, we applied sensitivity analysis to identify key parameters of an97

unconstrained IMRT objective function that have a strong impact on the resultant dose98

distribution. We then applied an outer loop over the sensitive parameter set to find the99

parameters such that the minimizer of the corresponding objective function gave the best100

score of a scalar function of plan quality. While this method quickly produced plans that101

generally satisfied the clinical constraints, it still suffered from (1) using a scalar-valued102

objective function to approximate a fundamentally hard-constrained problem, and (2) re-103

quiring training data to identify the sensitive set, assuming a generalizable class solution for104

the treatment site. The ROCO algorithm has neither shortcoming.105

While hard-constrained optimization for IMRT planning has been proposed previously106

(e.g., using mixed-integer programming18), it is typically prohibitively time-consuming due107

to the huge dimensionality of the problem and the difficulty in implementing dose-volume108

constraints. Another recent focus of interest is multiobjective (MO) optimization, which109
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allows the planner to choose from a family of Pareto-optimal plans (that is, plans in which110

no criterion can be improved without worsening the others)19,20.111

The ROCO algorithm makes constrained optimization computationally tractable using112

four steps:113

1. Select the targets and OARs to be included in the score function, and choose the114

beams whose intensities are to be optimized.115

2. Randomly sample sets of score function parameters, apply the clinical optimization to116

each set, and store the resulting intensity patterns.117

3. Apply principal component analysis (PCA) to this set of intensity profiles. The result-118

ing principal components form a basis for the space of plans that contains the optimal119

plan.120

4. Compute the coefficients of the basis vectors that optimize target coverage, subject to121

clinical constraints.122

In the following section, we briefly review each of these steps, placing emphasis on the new123

features we have added; a more complete treatment is given in our previous paper4.124

II. SUBJECTS AND METHODS125

At MSKCC, stage III NSCLC IMRT plans are delivered at 2 Gy/fraction with the sliding126

window technique. Up to 7 planner-chosen 6 MV beam directions concentrated on the ipsi-127

lateral side to geometrically protect the contra-lateral lung are used (in our set of patients,128

up to 6 beam directions are used). The ROCO algorithm used these beam directions to129

retrospectively re-plan 12 NSCLC patients who had already been treated with IMRT; PTV130

volumes ranged from 194 to 820 cm3 (median 383 cm3), with some patients having two131

PTVs (the tumor and nodal metastases). These patients were selected to have challenging132

clinical scenarios, i.e., large tumors with mediastinal extent, where the treatment planner133

had required from 10-50 optimization cycles to come up with an acceptable plan.134
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Structure PTV Lungs Esophagus Spinal cord Brachial plexus

Constraint Dmax < 110% Dmean < 20 Gy Dmean < 34 Gy Dmax < 50 Gy
Dmax < 65 Gy,

D05 < 60 Gy

TABLE II. Clinical organ constraints to be implemented by ROCO for lung plans. The lung mean

dose constraint is a proxy for NTCP < 25% (see text); the esophagus constraint is not enforced

clinically by the planner if it cannot be met without compromising coverage. Not shown in the

table are nonspecific normal tissue maximum dose constraints: major hot spots (< 110%) outside

the PTV are not tolerated.

A. Treatment plan criteria135

The current MSKCC clinical evaluation protocol requires that the plan for IMRT treat-136

ment of primary lung tumors to 50–80 Gy for the PTV satisfies the conditions in Table II.137

The mean dose constraint on the paired lungs usually ensures that the Lyman-Kutcher-138

Burman lung NTCP21,22 is ≤ 25%. The hard constraint on the esophagus Dmean is only139

used clinically by the planner if it can be met without compromising target coverage. Tar-140

get Dmin is not included as a hard constraint on the clinical plans; if D95 and V95 are ∼ 95%141

or better, we deem coverage sufficient.142

The dose to non-specific normal tissue surrounding the PTV is also of concern: “hot143

spots” above 100% of prescription outside the PTV are discouraged in clinical plans, while144

those above 110% are not tolerated. If the dose distribution is insufficiently conformal more145

than ∼ 0.5 cm beyond the PTV, then the plan will be rejected by the treatment planner.146

Excessive modulation of the intensity profiles, which can lead to delivery problems and147

unnecessarily increased delivery time, is also not permitted in the clinic.148

A difficulty in creating a treatment plan is that the definition of “clinically acceptable” can149

change depending upon the specific situation under consideration. Certain dose constraints150

are inflexible (e.g., in our clinic, the spinal cord maximum dose is never permitted to go151

above 50 Gy). Other constraints, however, such as restrictions on non-specific normal tissue152

maximum dose (“hot spot” constraints), or mean dose constraint to the esophagus, may be153

relaxed if the physician is unhappy with the tradeoffs in the plan and desires to improve the154

coverage of the PTV.155
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B. Unconstrained optimization156

For every patient, we sample the solution space by varying the parameters of a quadratic157

dose-based objective function, and subjecting it to the unconstrained optimization that has158

been used for many years in clinical practice at MSKCC6,10. This optimization is referred to159

as “unconstrained” because while the objective function parameters influence the doses to160

the various structures, an intensity distribution that minimizes such an objective function161

is not guaranteed to obey any particular constraint.162

For the kth target, the corresponding objective function term is:163

F target
k =

1

Nk

(
Nk∑
i=1

(Di −DRx
k )2

+ wmin
k

∑
{i|Di<Dmin

k }

(Di −Dmin
k )2

+ wmax
k

∑
{i|Di>Dmax

k }

(Di −Dmax
k )2

 ,

(1)

where Nk is the number of points in the target, Di is the dose to the ith point in the target,164

DRx
k is the prescription dose, Dmin

k and Dmax
k are the minimum and maximum dose allowed165

without penalty, and wmin
k and wmax

k are the penalties (weights) for under- and over-dosing.166

The parameter set Pk = {DRx
k , Dmin

k , Dmax
k , wmin

k , wmax
k } completely specifies the objective167

function for target k. A similar objective function term is defined for each OAR and rind168

structure (see Sec. IIA and Table II), which also includes parameters Ddv
k , Dmean

k , wmean
k ,169

and wdv
k , that define the dose-volume-histogram (DVH) and mean dose constraints:170

FOAR
k =

1

Nk

wmax
k

Nk∑
{i|Di>Dmax

k }

(Di −Dmax
k )2

+ wdv
k

Ndv
k∑

i=1

(Di −Ddv
k )2

+ wmean
k Nk(D̄k −Dmean

k )2Θ(D̄k −Dmean
k )

 .

(2)

The sum in the second term is carried out over the lowest Ndv
k doses that are greater than171

Ddv
k , and Ndv

k is the minimum number of point dose changes required to bring the kth organ172

into compliance with the DVH constraint10. Mean dose to the kth organ is denoted by D̄k;173
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the heaviside step function Θ ensures that this term only contributes to the score function174

when D̄k > Dmean
k .175

C. Sampling176

Let Iopt be an intensity distribution that optimizes PTV coverage while obeying clinical177

constraints; further suppose that some unknown set of score function parameters Popt cause178

this plan to be generated by unconstrained optimization. Then we conjecture that if we179

randomly choose parameter sets Pq in the neighborhood of Popt, the resulting Iq from un-180

constrained optimization will define a small basis which spans a space containing such an181

Iopt
23.182

We choose this neighborhood from clinical experience to include the range of values183

that planners have used for similar cases. Once a range of parameters has been chosen,184

Latin hypercube sampling is used to choose Nsamp parameter sets at which to sample; Latin185

hypercube sampling is a particular case of stratified sampling that achieves an efficient186

coverage of the space of input parameters24.187

D. Dimensionality reduction and dose calculation188

Given Nsamp optimized intensity distributions {I1, I2, . . . , INsamp} resulting from the un-189

constrained optimization using score function parameter sets {P1, P2, . . . , PNsamp}, the di-190

mensionality of the intensity space can be reduced by linear or nonlinear feature extraction191

methods. Here, we use Principal Component Analysis (PCA)25 for the reduced-order ap-192

proximation. PCA is an orthogonal linear transformation that maps the data to a new193

coordinate system, such that the dimension with the kth greatest variance is oriented to194

lie on the kth coordinate (i.e., the kth principal component). This procedure shifts the in-195

dependent variables of the problem from the approximately 104 beamlets that specify the196

intensity profile of a treatment plan to the Nmodes PCA modes with the greatest variance.197

These modes Uk span a reduced solution space.198

During unconstrained optimization with conjugate-gradient methods, the MSKCC treat-199

ment planning system uses an approximate, short-range kernel for the purposes of calculating200

the doses to the targets and OARs, so that many evaluations of the dose calculation can be201
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FIG. 2. Importance of long-range dose calculation. The figure shows ∆D = (Dshort range −

Dfull dose)/DRx for the spinal cord Dmax (black) and mean lung dose (gray) for each patient using

the ROCO intensities. In order to get accurate results from ROCO, the dose calculation for each

PCA mode used by the constrained optimization must be performed with the full long-range dose

kernel.

executed rapidly10. Once optimization has completed, a long-range full dose calculation is202

performed, and then the plan is evaluated based on this calculation.203

We have found that, while this approach is sufficient for the sampling step, it is inaqequate204

for the subsequent steps of ROCO. After the Uk are determined, it is critical to make the205

dose calculation for the PCA modes as accurate as possible, so that during the constrained206

optimization, the solver has accurate information about OAR doses and target coverage.207

Fig. 2 shows that lung mean doses are systematically underestimated by up to 5% when208

using the short-range approximate dose calculation normally used during the clinical score-209

function-based optimization. This would result in a systematic overdosing of these tissues210

in ROCO plans, which was a limitation in our previous work4. We have addressed this211

issue here by using the long-range dose calculation to evaluate the dose distributions for212

the PCA modes, which costs some time: finding the optimal basis requires less than a213

minute to complete, but calculating the full dose distributions corresponding to the modes214

requires another 5–10 minutes. Nevertheless, this constitutes a major improvement in our215

implementation of ROCO, and makes ROCO optimization suitable for large targets.216
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E. Constrained optimization217

Given the reduced-dimension space that captures the effective degrees of freedom in the218

intensity variables, our final task is to find a clinically acceptable solution in terms of the219

reduced basis. For this step, the optimizer has Nmodes degrees of freedom: the coefficients220

of the PCA modes. The goal of the optimization is specified as221

min
∑
i∈T

(Di −DRx)2, (3)

for the voxels T in the target structures. This causes the optimizer to work toward uniform222

PTV coverage. The doses to voxel i are given by223

Di =

Nmodes∑
k=1

Vikξk + vi. (4)

In this equation, the ξk are the coefficients of the principal components, which are the224

independent variables of the optimization. Vik is the dose to voxel i from principal component225

k, and vi is the dose to this voxel from the mean of the samples. The intensities of these226

modes were determined during the dimensionality reduction step, and the Vik and vi are227

obtained by calculating the doses for each intensity mode (the Uk from Sec. IID) and for228

the mean.229

For each organ, the point dose hard constraints are specified by230

Di ≤ Dmax (5)

where i runs over the set of voxels in each organ or target. There is no Dmin constraint231

present, because while targets are specified with a Dmax, dose homogeneity is included as232

an optimization goal in Eq. (3) above instead of as an explicit Dmin constraint. Mean dose233

constraints are given by234

Nvox∑
i=1

Di ≤ NvoxD
mean, (6)

where Nvox is the number of voxels in the structure. DVH constraints are implemented using235

an iterative scheme4; briefly, on the first iteration of optimization, no DVH constraints are236

implemented. If a DVH constraint of the form DV ≤ Y for a dose Y and volume fraction237

V is then found to be violated after optimization, we apply the constraint Di ≤ Y , where i238

consists of the hottest NvoxV voxels, and repeat the optimization, applying DVH constraints239

as needed at each step.240
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There is also an additional constraint, which is that241

Nmodes∑
k=1

Ujkξk + µj ≥ 0, (7)

where Ujk is the value of beamlet j in mode k, and µj is the value of beamlet j in the mean242

of the samples. This ensures that the set of ξk in the solution results in a non-negative243

intensity distribution.244

The dimensionality reduction by PCA makes it feasible to use a quadratic programming245

solver (ILOG CPLEX) to solve this hard-constrained problem. This step took 1-10 min-246

utes when using 25 PCA modes, and we have found that the calculation time required is247

approximately linear for up to 200 degrees of freedom. Total time required was therefore248

approximately 30 minutes per patient; if it is desired to adjust the hard constraints, only the249

last step needs to be repeated. At the end of the process, the ROCO-optimized plans were250

leaf-sequenced for clinical delivery and the final clinical dose calculation was performed.251

III. RESULTS252

A. Nsamp and Nmodes253

In order to help determine the optimal value for Nsamp, in Fig. 3 we studied how coverage254

for the final ROCO plan varies with number of samples for all the patients in our study.255

These results show that 50 samples are sufficient to achieve the desired 95% PTV coverage,256

and that a larger number of samples is not likely to result in much improvement. Obtaining257

the intensity profiles of the 50 samples requires 10-15 minutes of computer time.258

We also studied the characterstics of the solutions from ROCO as we vary Nmodes in two259

ways. First, we examined how much of the variance in the samples was recovered using the260

PCA decomposition. The top panel of Fig. 4 shows the fraction of the variance recovered for261

each patient as a function of the number of modes used, using an original set of 500 samples.262

From this we determined that 25 modes was sufficient to recover 98% of the variance of263

the samples in all cases. The bottom panel shows the PTV coverage that we achieved as264

a function of the number of modes used in the plan. For Nmodes > 25 we observed only a265

few % increase in PTV coverage for these patients. While we fixed 25 modes per patient for266

this study, we note that for some patients, excellent performance was achieved by ROCO267
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FIG. 3. PTV coverage (solid lines) achieved by ROCO vs number of samples for each patient in

our study. After about 50 samples, almost no benefit is seen as the number of samples used is

increased. No renormalization of the plans (as in Fig. 6) is performed.

for several patients using a surprisngly small number of modes. For example, patient 6 only268

required 2 modes to obtain a plan that was close to acceptable.269

Next, for each patient, we took the intensity vector for the clinical plans used by the270

treatment planners Icl, and projected it into the reduced-dimension space, which allowed us271

to measure the projection residual R:272

R =
∥Icl − projUk

(Icl)∥2
∥Icl∥2

(8)

The top panel of Fig. 5 shows how R behaves as a function of Nmodes. In this plot,273

we see that there is initially a decrease in R as we increase the number of modes. Less274

improvement is seen after 10–25 modes. We chose to use 25 PCA modes for the patients in275

our study. Similarly, the bottom panel of Fig. 5 shows how R behaves as we vary Nsamp;276

around Nsamp = 50, the behavior of R is smooth, so we used Nsamp = 50 in our subsequent277

experiments.278
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FIG. 4. Top panel: Cumulative fraction of variance in intensity profiles of sampled plans recovered,

plotted against Nmodes used. 25 modes are sufficient to capture 98% of the variance of the samples

for all the patients in our study. Bottom panel: target coverage vs Nmodes used; for these patients,

Nmodes = 25 was sufficient to achieve adequate coverage.
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FIG. 5. Projection residual R (see Eq. (8)) plotted against the number of modes used (top panel;

using 500 samples) and number of samples used (bottom panel; using Nmodes = Nsamples).
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B. Clinical plan comparison279

In this section, we compare the ROCO plans to the plans that were used to treat these 12280

patients in the clinic. In order to prepare for this comparison, the ROCO plans were eval-281

uated by an experienced treatment planner at MSKCC to ensure clinical acceptability, i.e.,282

compliance with the criteria mentioned in Sec. IIA. For the purposes of this comparison, the283

ROCO plan was normalized to have the same D95 value as the plan used for treatment. All284

ROCO plans were inspected to confirm that the intensity profiles were sufficiently smooth,285

i.e., there were no large peaks in the intensity profiles, and that the plans did not require an286

excessive number of monitor units (MU) to deliver (the ROCO and clinical plan MU were287

similar).288

In all cases, ROCO achieved a plan satisfying the given input constraints, which is the289

primary goal of using hard-constrained optimization. However, after the plan was normalized290

to have the same D95 as the treatment planner’s plan, it was not unusual for the constraints291

to be violated; for example, if the D95 achieved by the ROCO plan was smaller than the292

treatment planner’s D95, then after normalization, the lung mean dose constraint might be293

violated. This is not a failure of ROCO but rather a consequence of the difficulty of directly294

comparing two plans, a difficult and well-known problem26–29. As a result, it was sometimes295

necessary to reoptimize patients using lower organ dose constraints or a lower PTV max296

dose constraint. When ROCO is used as a standalone planning tool, without the intention297

of comparing to a reference plan, this step is not necessary.298

The plots in Fig. 6 show that for each case in our study, ROCO plans are competitive with299

the treatment planner’s plans. The required clinical constraints for the spinal cord maximum300

dose and lung mean dose are satisfied in each case; the esophagus mean dose constraint was301

satisfied when it was clinically possible to do so without sacrificing coverage. In Table III,302

we summarize ROCO’s performance with a figure of merit D∗: for the PTV Dmin, D
∗ =303

(DROCO−Dplanner)/DRx, while for all other measures,D∗ = (Dplanner−DROCO)/Dconstraint. D
∗

304

is therefore a fractional measure of target coverage or sparing, normalized to the prescription305

dose or clinical constraint; positive numbers are better for ROCO. Table III shows the median306

D∗ for each structure: we tested the differences in the medians for statistical significance307

using the Wilcoxon signed-rank test30. We have found that differences in doses to the OARs308

(i.e., differences between the median values of D*) for the clinical plans and for ROCO are309
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Structure median D∗(%) p < 0.1?

PTV Dmax -0.9 no

PTV Dmin 0.2 no

Lung D̄ -0.9 no

Cord Dmax -1.5 no

Esophagus D̄ 0.0 no

TABLE III. Median differences between ROCO plans and plans produced by treatment planners.

D* is a target or organ dose normalized by the prescription dose (for PTVs) or clinical constraints

(for organs; see text). Positive values of D* indicate either improved dose homogeneity in the PTVs,

or better sparing of the OARs in ROCO plans, when compared to the treatment planner’s plans.

Significance was evaluated with the Wilcoxon signed-rank test; for ROCO, the median difference

in doses to targets and organs was not significantly different from the treatment planner’s.

not statistically significant.310

These plans were generated in a short time, requiring around 30 minutes of CPU time.311

In contrast, treatment planners using conventional IMRT optimization required around 3312

hours for the same task, which is an important amount of time in a busy clinic. ROCO313

can thus save a great deal of planner time: assuming that each readjustment-reoptimization314

cycle requires 10 minutes for a treatment planner to complete, Fig. 7 shows that ROCO315

saves a median of 1.75 hours.316

ROCO plans have spared the OARs as well as the treatment planner’s plans have, but as317

we can see from Fig. 5, the PCA modes from which the ROCO plans are constructed cannot318

be used to completely reconstruct the clinical plan: 10–20% of the intensity profile that319

the treatment planners use lies outside of the space spanned by these modes. However, the320

clinical plan should not be viewed as a “ground truth” correct answer; several authors have321

noted a high degree of degeneracy in IMRT plans, which result in similar objective function322

values but different clinical tradeoffs23. We conjecture that the degree of this degeneracy is323

greater for lung patients than for prostate patients, because our PCA modes are not able to324

represent the clinical plan as well: the value of the projection residual R (see Eq. (8) and325

Fig. 5) is much larger in the current study than it was found to be for prostate patients,326

where fewer than 25 modes sufficed to bring the projection residual to less than 1%.327
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FIG. 6. Comparison of ROCO and treatment planner plans. Black bars show doses to organs for

ROCO plans, and gray bars show the doses for the planner’s plans. ROCO plans are normalized

to have the same D95 as the planner’s plan for each patient. The black dashed lines indicate the

relevant clinical constraint. ROCO plans satisfy the same clinical constraints as the planner’s plan

in all cases.
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FIG. 7. Time saved by ROCO. ROCO requires about 30 minutes (largely unsupervised) to compute

a treatment plan. This plot shows the time saved assuming that each adjustment-reoptimization

cycle undertaken by the planner takes 10 minutes. The median time saved is 105 minutes.

C. Rind structures328

An important aspect of current techniques for lung cancer treatment planning is the329

creation of non-specific normal tissue structures (referred to here as “rinds”) that help avoid330

regions with undesirable high doses surrounding the PTV (“hot spots”). To make treatment331

planning less labor-intensive, it would be an advantage to use a standardized rind structure if332

it could be effective at avoiding hot spots, or if suitable plans could be created without such333

structures altogether. More generally, we would like to know whether adding constraints on334

new structures, such as a planner might impose after seeing an initial treatment plan, must335

be incorporated from the very beginning of the ROCO process, or if the lower-dimensional336

space generated by the sampling phase may already contain feasible solutions for the new337

constraints.338

We set aside the rinds which had been previously created for each patient by the treatment339

planners, and created a standardized rind structure for each patient by leaving a 4 mm340

margin outside of the PTV, and then selecting a 3 cm annulus of tissue outside of this margin.341

We then used ROCO to plan patients, first without the rind structures present, and then with342

the standardized rinds in place during both the sampling and constrained optimization, and343

finally leaving them out during the sampling and including them in constrained optimization344
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Patient no. 1 2 3 4 5 6 7 8 9 10 11 12

Rinds: No rinds present.

PTV D95 100.6 100.2 100.9 100.4 95.4 101.0 85.6 99.2 100.6 99.3 100.6 99.0

Rind Dmax 109.6 107.4 106.1 106.2 119.9 104.5 100.7 110.7 108.5 114.3 107.5 109.9

Rinds: Rinds present in both sampling and constrained optimization.

PTV D95 100.6 100.2 100.9 99.6 95.1 101.0 91.6 99.2 100.6 98.9 100.6 99.0

Rind Dmax 109.6 107.4 106.1 105.6 107.0 104.5 110.0 110.0 108.5 110.0 107.5 109.9

Rinds: Rinds in constrained optimization only.

PTV D95 100.1 100.1 100.7 100.4 98.1 101.0 93.2 98.9 100.5 98.0 100.5 98.7

Rind Dmax 109.0 108.4 105.7 106.2 110.0 104.5 106.8 106.2 106.6 110.0 106.1 107.0

TABLE IV. ROCO target coverage and rind maximum dose for three different cases: in the first

row, no rinds are included in the optimization; in the second row, rind constraints are included in

both the sampling and hard constraints; and in the third row, rind constraints are present in the

hard constraint optimization step only. Patients 5, 8, and 10 had unacceptable hot spots outside

the PTV when rind structures were not included in the ROCO constraints. Rind constraints

reduced these doses to acceptable levels (110% of PTV max dose), and the optimizer had sufficient

freedom to do this even without the presence of rinds during sampling.

only. Table IV summarizes the results from this experiment. Without the rind structures345

in place, hot spots were found outside of the PTV in 3 of the patients. After we ran ROCO346

with the standardized rind structures in place, we found that the hot spots in the 3 cm347

region outside of the PTV were successfully suppressed. Further, we found that it was348

not necessary to include the rind structures during the sampling stage: the optimizer had349

sufficient freedom to honor the RIND constraints even if they had not been included when350

the sampling for the PCA basis was performed.351

In 3 of the patients, hot spots persisted in regions further outside of the PTV than were352

covered by the standardized rind. For patients 9, 10, and 12, in order to get a clinically353

acceptable plan, we had to use the treatment planner’s rind, which covered a larger volume;354

we conclude that creation of a standard rind structure based only on the PTV geometry is355

not a successful strategy for these kinds of lung cases. We observed that for these 3 cases,356

the hot spot appeared near the intersection of two beam edges, which suggests a strategy357
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that might be used to generate rinds to deal with this problem.358

IV. DISCUSSION AND CONCLUSIONS359

In this paper, we extended our previous work on ROCO in several important ways. First,360

we applied ROCO to a more complicated treatment site: the lung rather than the prostate,361

and showed that the same general algorithmic strategy produced clinically acceptable plans.362

We analyzed tradeoffs in sampling and dimensionality reduction and showed that acceptable363

plans could be obtained in about 30 minutes, a major time savings over the manual trial-364

and-error process of unconstrained optimization. ROCO plans satisfy all of the clinical365

constraints that were satisfied by the planner’s plans; with the same PTV D95, there were no366

significant differences between the OAR sparing achieved by ROCO and the organ sparing367

achieved by the clinical plans. From these results, we are confident that ROCO will be368

flexible enough for general external beam radiation therapy planning, and is not confined to369

simpler treatments such as prostate cancer.370

A major improvement we made to ROCO in our current work is our incorporation of371

ROCO into MSKCC’s clinical treatment planning system. ROCO is now capable of reading372

and writing beam and dose information directly to/from the treatment planning system.373

Most importantly, ROCO uses the clinical full dose calculation to evaluate the dose dis-374

tributions corresponding to each PCA mode. Using an approximate truncated dose kernel375

resulted in an inaccurate dose calculation, which proved to be a major difficulty in our376

previous work.377

Ideally, ROCO would return a solution satisfying the specified hard constraints if any378

such feasible solution exists, and a satisfactory plan would result. In clinical practice, some379

iterative modification of parameters is inevitable: the notion of clinical acceptability —380

which varies from clinic to clinic or even planner to planner — is extremely difficult to pose381

either as an objective function or a hard constraint.In the future, we need to develop new382

constraints (e.g., rind-type structures to suppress hot spots in normal tissue) or objective383

function terms (e.g., to try and bias the solution towards more uniform PTV coverage). The384

key advantage of ROCO with respect to the trial-and-error loop typical of conventional soft-385

constrained IMRT is that such constraints can be posed and a solution found within a few386

minutes. This is true because the time-consuming parameter-sampling step to generate the387
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PCA vectors is only done once, independent of the constraints; the constrained optimization388

is performed quickly in the low-dimensional space, and the new solution, if one exists, is389

guaranteed to satisfy the constraints. This makes any trial-and-error much less tedious and390

the control over the solution much more direct.391

Improving planner time savings is one of the primary goals of our future work with392

ROCO. We plan to apply ROCO to head and neck cancer, which remains a challenging393

site for current IMRT planning techniques: because of the complexity of dose-painting and394

the large number of OARs in treatment fields, head and neck plans can require days of395

planner time, and even then the space of clinical tradeoffs between OAR sparing and target396

coverage may not have been fully explored. ROCO will be able to improve these limitations397

by reducing the time it takes to obtain a plan that satisfies clinical constraints.398

ACKNOWLEDGMENTS399

This publication was supported in part by Grant Number 1R01CA148876-02 from the400

National Cancer Institute (NCI), a grant from Varian Medical Systems, and by a private401

donor to Rensselaer Polytechnic Institute. Its contents are solely the responsibility of the402

authors and do not necessarily represent the official views of the National Cancer Institute,403

National Institutes of Health. We would like to thank Gig Mageras, Perry Zhang, Joseph404

McNamara, Howard Amols, Margie Hunt, and Chen Chui for helpful discussions.405

Conflict of Interest: Research partially supported by Varian Corporation.406

∗ stabenah@mskcc.org407

† riverl2@rpi.edu408

‡ yorkee@mskcc.org409

§ yangj@mskcc.org410

¶ renzhilu@gmail.com411

∗∗ rjradke@ecse.rpi.edu412

†† jacksona@mskcc.org413

1 Michael J. Zelefsky, Victor E. Reuter, Zvi Fuks, Peter Scardino, and Alison Shippy, “Influence414

23



of local tumor control on distant metastases and cancer related mortality after external beam415

radiotherapy for prostate cancer,” The Journal of Urology, 179, 1368 – 1373 (2008).416

2 Deborah A. Kuban, Susan L. Tucker, Lei Dong, George Starkschall, Eugene H. Huang, M. Rex417

Cheung, Andrew K. Lee, and Alan Pollack, “Long-term results of the M. D. Anderson ran-418

domized dose-escalation trial for prostate cancer,” International Journal of Radiation Oncol-419

ogy*Biology*Physics, 70, 67 – 74 (2008).420

3 Sue S. Yom, Zhongxing Liao, H. Helen Liu, Susan L. Tucker, Chao-Su Hu, Xiong Wei, Xuanming421

Wang, Shulian Wang, Radhe Mohan, James D. Cox, and Ritsuko Komaki, “Initial evaluation422

of treatment-related pneumonitis in advanced-stage non-small-cell lung cancer patients treated423

with concurrent chemotherapy and intensity-modulated radiotherapy,” International Journal of424

Radiation Oncology*Biology*Physics, 68, 94 – 102 (2007).425

4 R Lu, R Radke, L Happersett, J Yang, C Chui, E Yorke, and A Jackson, “Reduced-order426

constrained optimization in IMRT planning,” Physics in Medicine and Biology, 53, 6749–6766427

(2008).428

5 American Cancer Society, “Cancer facts & figures 2010,”429

http://www.cancer.org/acs/groups/content/@epidemiologysurveilance/documents/document/430

acspc-026238.pdf (2010).431

6 C. C. Ling et al., A Practical Guide to Intensity-Modulated Radiation Therapy (Medical Physics432

Publishing, 2004).433

7 E. Yorke, A. Jackson, L. Braban, K. Rosenzweig, and C. Ling, “Advantages of IMRT for dose434

escalation in radiation therapy for lung cancer [abstract],” Medical Physics, 28, 1291 (2001).435

8 Marc L. Kessler, Daniel L. Mcshan, Marina A. Epelman, Karen A. Vineberg, Avraham Eisbruch,436

Theodore S. Lawrence, and Benedick A. Fraass, “Costlets: A generalized approach to cost437

functions for automated optimization of IMRT treatment plans,” Optimization and Engineering,438

6, 421–448 (2005).439

9 Q. Wu, R. Mohan, A. Niemierko, and R. Schmidt-Ullrich, “Optimization of intensity-modulated440

radiotherapy plans based on the equivalent uniform dose,” Int J Radiat Oncol Biol Phys., 52,441

224–235 (2002).442

10 S.V. Spirou and C.S. Chui, “A gradient inverse planning algorithm with dose-volume con-443

straints,” Medical Physics, 25, 321–333 (1998).444

11 J.A. Purdy et al., “Intensity-modulated radiotherapy: current status and issues of interest,” Int445

24



J Radiat Oncol Biol Phys., 51, 880–914 (2001).446

12 Steve Webb, Intensity-Modulated Radiation Therapy (Taylor and Francis, 2001).447

13 James L. Bedford and Steve Webb, “Elimination of importance factors for clinically accurate448

selection of beam orientations, beam weights, and wedge angles in conformal radiation therapy,”449

Medical Physics, 30, 1788–1804 (2003).450

14 A. Samuelsson and K.A. Johansson, “Intensity modulated radiotherapy treatment planning for451

dynamic multileaf collimator delivery: influence of different parameters on dose distributions,”452

Radiother Oncol., 66, 19–28 (2003).453

15 G. Starkschall, A. Pollack, and C.W. Stevens, “Treatment planning using a dose-volume feasi-454

bility search algorithm,” Int J Radiat Oncol Biol Phys., 49, 1419–1427 (2001).455
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