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Abstract— Intensity modulated radiotherapy (IMRT) has be-
come an effective tool for cancer treatment with radiation.
However, even expert radiation planners still need to spend
a substantial amount of time adjusting IMRT optimization
parameters in order to get a clinically acceptable plan. We
demonstrate that the relationship between patient geometry and
radiation intensity distributions can be automatically inferred
using a variety of machine learning techniques in the case of
two-field breast IMRT. Our experiments show that given a small
number of human-expert-generated clinically acceptable plans,
the machine learning predictions produce equally acceptable
plans in a matter of seconds. The machine learning approach
has the potential for greater benefits in sites where the IMRT
planning process is more challenging or tedious.

I. INTRODUCTION

An important recent advance in cancer treatment with
radiation is the introduction of a new technology known
as intensity-modulated radiotherapy (IMRT) [23], [25]. This
computer-controlled method of delivering radiation can pre-
cisely irradiate a target with complex 3-D shape while simul-
taneously protecting normal radiation-sensitive tissues. This is
accomplished by delivering nonuniform patterns of radiation to
the tumor area along beams oriented at several different angles,
using a device called a multileaf collimator (MLC) attached
to a linear accelerator. Doctors and radiation physicists use
the shapes of sensitive tissues (e.g. obtained from computed
tomography (CT) scans) to determine a set of beam intensities
that meets the clinical objectives.

The IMRT problem is generally solved by dividing each ra-
diation beam into subcomponent pencil beams (or “beamlets”),
and applying numerical optimization algorithms to determine
the beamlet intensities I∗ such that the resultant radiation dose
distribution D(I∗) best matches the requirements specified
by the physician. The clinical objectives of planning are
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encapsulated by an objective function F , which assigns a
numerical score to each plan. Mathematically,

I∗ = arg min
I

F (D(I)). (1)

A basic difficulty is the formulation of F . IMRT plan-
ners typically have to make compromises between competing
clinical objectives, e.g., delivering as high and as uniform
a dose as possible to the planning target volume (PTV),
while sparing organs at risk (OARs) and normal tissues as
much as possible. However, the compromise desired in any
given case is not easy to specify in terms of the parameters
(e.g., weights, dose constraints) defining the objective function
F . In current implementations of IMRT, prior knowledge of
these parameters is not available, and planners can spend a
substantial amount of time adjusting parameters in order to
get a clinically acceptable plan (which is often a subjective
decision). The bottleneck is not so much the efficiency of the
numerical optimization procedures themselves as the manual
trial-and-error process of adjusting parameters in the objective
function. Circumventing or at least minimizing this procedure
would save many person-hours of effort.

This paper evaluates several machine learning algorithms for
determining a clinically acceptable set of field intensities for
two-field breast IMRT directly from the patient’s geometry and
the plan objectives, thus entirely circumventing the use of the
objective function F and dose calculation D in (1). The goal is
to “learn by example”, since the breast is a case where clinical
objectives are standard and many patients have been treated.
The basic framework of our approach is shown in Figure 1.
We treat the IMRT process as an unknown system, and build
an input-output model to simulate the same system through
machine learning. The raw input for each patient consists of
(1) CT imagery of the breast to be treated, and (2) several
parameters pertaining to radiation delivery, described below.
The output consists of the radiation profile (e.g. a 256 x 256
matrix) for each of the two beams used to treat the patient.
The learning process requires less than a minute of offline
training using a small set of previously planned patients, and
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the prediction process takes a matter of seconds. We show that
the resulting field intensities differ from an expert’s plan for
the same patient by less than 3%, and verify that the machine-
predicted plans are equally clinically acceptable.
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Fig. 1. The basic framework of the machine learning approach. The standard
IMRT planning process is shown in (a). Our goal is to develop a machine
learning algorithm (b) that can reproduce the results of the IMRT planning
process based on many training examples of input/output pairs.

This result indicates a new, potentially fruitful approach to
IMRT planning. While a breast IMRT plan might currently
take a human planner half an hour or more to complete, a
prostate or head and neck IMRT plan typically takes several
hours and many back-and-forth objective function adjustments,
even for an expert. If machine learning can reveal the underly-
ing relationships between patient geometry and field intensities
in more challenging cases (by either directly predicting a
clinically acceptable plan, or providing a better initial guess
for the optimization than the planner could), planning time
could be greatly reduced.

We note that since the machine learning algorithms are
trained on clinically acceptable plans generated by an expert
planner, we should not expect them to produce plans that
are better than the expert’s. This is not a shortcoming of
the process, but the goal of the technique. We assume that
the expert’s plans are generated according to the clinical
protocol deemed by the treatment center to be most effective
at treating a given cancer. If the underlying protocol of the
training plans changes, the machine learning prediction will
change with it. This approach also has the benefit of producing
planner- or treatment-center-specific predictions. For example,
one treatment center’s protocol may be more conservative than
another’s in planning dose to a certain region. The machine
learning system will produce correspondingly different plans
for the same input geometry depending on which center’s
training plans were used.

In related work, Hunt et al. [19] summarized the influence of
optimization parameters on the dose distribution, and specified
a procedure for changes to be made in these parameters
given specific deficits in clinical plans. However, this method
only suggested the direction of change, and was actually a
heuristic implemented by hand. Similarly, Barbiere et al. [4]
searched for the best optimization parameters via structured
grid searches, using a recipe based on observations about
which parameters are likely to affect the solution. This method
only applies to planning for prostate radiotherapy. Xing et
al. [35] suggested an iterative algorithm to determine the

optimal weights automatically; this method requires prior
knowledge such as the optimal dose-volume histogram.

Efforts have recently been made towards multiobjective
(MO) optimization, first introduced in [13], which results
in a representative set of Pareto efficient solutions for vari-
ous conflicting optimization objectives. Neither the trial-and-
error process described above nor prior knowledge about the
parameters is required, but planners still need to select the
“best” solution from the available set. Bortfeld et al. [5] found
the Pareto-efficient space of solutions for MO optimization,
and developed an interface for the planner to examine the
way the tradeoffs change when the optimization parameters
are altered. Other recent approaches are described in [27],
[36]. One drawback to the MO approach is speed, since it
is very time-consuming to search for all possible solutions.
Furthermore, given a set of solutions, the problem of choosing
the best one from a clinical and patient-specific perspective
still remains [3]. A decision-making process that incorporates
clinical reasoning was introduced in [24], but it only works
when the trade-offs between different plans are very large.

The above optimization methods all suffer from the very
large number of degrees of freedom to be determined. Alber
at al. [1] studied the eigenvalues of the second order Hessian
matrix of the IMRT cost function, which is determined by pa-
tient geometry and the objectives of the optimization problem.
They found that the number of degrees of freedom that make
a difference to the objective function (i.e. dominant modes)
is much smaller than the total number of beamlet intensities.
For fixed patient geometry and beam settings, these dominant
modes achieve sensible clinical goals such as moving intensity
edges in regions where target and sensitive normal tissues
overlap, or sharpening field gradients at the edge of the target.
That study analyzed only one patient under different beam
settings; the problem of obtaining dominant modes for a
significant population of different patients using such a method
may be difficult. Furthermore, while such an approach reveals
a qualitative relationship between the intensity profile and
patient’s geometry, it does not easily allow for quantitative
prediction.

The paper is organized as follows. In the next section, we
review the clinical practice of breast IMRT at our partner in-
stitution, Memorial Sloan-Kettering Cancer Center (MSKCC).
In Section III, we describe our approach to feature selection,
which reduces the dimensionality of the problem and makes
it computationally tractable. In Section IV, we describe how
these features are extracted from real image data. In Section
V, we introduce several global and local machine learning
algorithms that we apply to the problem. Section VI presents
results and discussion, and Section VII concludes with ideas
for future work.

II. IMRT FOR THE BREAST

Breast cancer is the most common female cancer in the
United States; according to the American Cancer Society, over
200,000 new cases of invasive breast cancer are projected
for 2005. External beam radiation therapy following breast-
conserving surgery (lumpectomy) has been demonstrated to be
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an effective treatment for early-stage breast cancer, providing
both good cosmesis and local control equivalent to mastectomy
[26]. It is estimated that breast patients account for 25-30% of
the patients at a given clinic [34]. The goal of breast radiation
therapy is to give a uniform dose to the affected breast while
protecting such adjacent normal structures as the lung, heart
and contralateral breast. While considerable normal organ
protection is provided by the geometry of the “tangential”
beam arrangement shown in Figure 2, dose uniformity in the
breast is more difficult to achieve. However, uniformity is
important, since the tumor may recur in low dose regions
(cold spots) while high dose regions (hot spots) may cause
local fibrotic complications.

Fig. 2. In breast sIMRT, the breast is treated with a pair of oppositely directed
beams from a medical linear accelerator. One beam enters from the medial
side, one from the lateral. The point labeled LWCI indicates the lung/chest
wall interface.

Intensity modulated tangential beams have been used for
whole breast treatment since 1999. IMRT has been found
to improve dose homogeneity within the breast volume, to
reduce the dose to the contralateral breast and ipsilateral
lung, and to reduce heart dose for patients treated to the
left breast [18], [20], [29]. In a 2004 national survey by
the American Association of Physicists in Medicine, 40%
of the responding clinics reported using IMRT for breast
cancer treatments [2]. At Memorial Sloan-Kettering Cancer
Center (MSKCC), an IMRT planning method referred to as
“simplified IMRT”, or sIMRT, was implemented clinically in
July 2001 [8], [11], [17]. This method requires fewer user-
drawn anatomical contours and optimization constraints than
full-blown IMRT, but provides equivalent dose homogeneity
and contralateral breast protection. It has been used at MSKCC
to treat more than 750 patients in either the supine [11] or
prone [17] position; over 269 of these were treated in 2004.
Although sIMRT greatly reduces the work of the treatment
planner, variability in the patient’s anatomy and the user’s
skill level often results in several optimization trials to obtain
the clinical plan. For the training set used in this study, the
average number of trial optimizations was between 3 and 4,
with a range from 1-9. Each run requires manual adjustment
of objective function parameters and visual evaluation of the
corresponding dose distribution. Below, we review the protocol
used at MSKCC, emphasizing that it is unknown to the
machine learning algorithms described subsequently. A good
medical physics reference that goes into more detail on some

of the terms below is [21].
The interaction of the beam and the patient is represented

in the Beam’s Eye View (BEV) coordinate system, which
allows the clinician to look down the radiation beam and
see the target from the perspective of the beam source. The
major step in sIMRT determines the intensity value for each
beamlet through a direct calculation, followed by back-and-
forth adjustments for certain parameters. The breast is treated
with a pair of oppositely directed beams from a medical linear
accelerator (linac). One beam enters from the medial side
and one from the lateral, as shown in Figure 2. The beams
encompass the entire breast and provide an additional margin
beyond the patient’s surface (called the “skin flash”) to allow
for breathing and other types of patient motion. The primary
clinical goal is to deliver a uniform dose to the entire breast.
As described in [9], in an intensity modulated field with a
given intensity distribution I(u, v), the dose to a point whose
BEV coordinates are (x, y) and whose equivalent depth1 is d
is:

D (x, y, d) = TMR(d,W ·H) ·pOCR(x, y, d) ·
(

SAD

f

)2

·
[∫ ∫ ∫

I(u, v)K(x − u, y − v, d − w) dudvdw∫ ∫ ∫
K(x − u, y − v, d − w) dudvdw

]
. (2)

Here, W and H are the radiation field width and height,
respectively. TMR is the tissue maximum ratio function, and
pOCR is the primary off-center ratio function, which are
determined from look-up tables [21]. SAD and f are the
distance from the radiation source to the isocenter2 (here fixed
to 1000 mm), and the distance from the radiation source to
the point (x, y, d), respectively. The term in brackets accounts
for the effects of beamlet scattering interactions, described by
a kernel K.3

From (2), the dose D and intensity I are clearly correlated,
but the beamlet convolution implies that the dose to any point
is influenced by the whole distribution I . In performing the op-
timization for sIMRT, several further simplifications are made.
First, for the points along each pencil beam, it is assumed that
D(x, y, d) is only influenced by the corresponding pencil beam
intensity I(x, y) (i.e. the scattering effect of neighboring pencil
beams is neglected), which simplifies the term in brackets to
I(x, y). Second, instead of solving for the intensity I(x, y) so
that every point (x, y, d) has a uniform dose Dprescribe, only
certain points located at the intersection of each pencil beam
and a 2D surface roughly bisecting the breast are considered
(see Figure 3). To determine the surface, lines are drawn
parallel to the posterior edge of the beam on each transverse
CT slice. The midpoints of the line segments that intersect

1The equivalent depth is the aggregate “distance” the pencil beam has
traveled, weighted for the approximate electron densities in the tissue it passed
through; see Section IV.

2The isocenter is the point of intersection of the axis around which the
radiation source rotates and the axis of rotation of the beam’s collimator. As
part of normal clinical procedure, the patient is positioned so that isocenter
is inside the treated breast (thus inside the PTV). In our study, the isocenter
is mapped to (0,0) in BEV coordinates.

3TMR and pOCR also depend on the beam energy and the particular linac
used for treatment (see Section VI). A patient will always have both tangent
beams treated on the same linac and almost always with the same energy.
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Fig. 3. The midpoint for each pencil beam is determined as the sample point
that evenly bisects a line segment through the point parallel to the posterior
beam edge.

the breast volume form the 2D surface. When the patient is
treated with two tangential beams from the medial and lateral
tangents, the posterior edges of the fields are coplanar, which
leads to the desirable property that both beams share the same
set of midpoints. Accordingly, each pencil beam should deliver
half of the prescribed uniform dose to the midpoint:

I(x, y) =
Dprescribe

2 · TMR (d,W × H) · pOCR (x, y, d) ·
(

SAD
f

)2

(3)
Here, d and f take their values at the midpoint corre-

sponding to the BEV coordinate (x, y). After the intensity
distribution has been calculated according to (3), a full dose
calculation is performed which includes the previously omit-
ted scattered radiation, and the resulting dose distribution
is evaluated. The final intensity output I(x, y) used for the
clinical sIMRT beams typically differs somewhat from (3) due
to subsequent back-and-forth parameter adjustment resulting
from evaluation of the full dose distribution and several clinical
rules of thumb used at MSKCC [8]. One rule requires that
the intensity in the region near the edge of the field increase
by approximately 5% to compensate for the penumbra effect
(i.e. that the edge of an irradiated volume receives less than the
full dose due to lack of scattering contributions from blocked
radiation). Another rule requires adjustment so that the dose
to the tip of the breast (the apex dose) is between 102% and
105%.

III. FEATURE SELECTION AND DIMENSIONALITY

REDUCTION

Since the input for each patient is composed of about 100
512 x 512 CT images, and the output intensity profile for
each beam is a 256 x 256 matrix, the dimensions of both
the input and output are extremely high. At the moment, the
number of clinical training samples we have access to for this
study is limited to the order of tens or hundreds. If the raw

CT voxels were directly used as a high-dimensional feature
vector, it would be very difficult to use so few training samples
to capture the major variations in the input/output data, or to
predict the output for a new input. Hence, we require special
steps to reduce the dimensionality of both the input and output.

One common technique to reduce the dimensionality of data
is principal component analysis (PCA) [15], which captures
the dominant modes of variation of a dataset. A new data
sample can be projected onto the subspace spanned by the
first several principal modes, resulting in a low-dimensional
feature vector. However, applying PCA to three-dimensional
volumes from different patients is a difficult problem, since
it generally requires finding corresponding points between
different datasets. While several solutions have been presented
in the computer vision literature (e.g. [16], [31]), this corre-
spondence problem is time-consuming to solve, and may have
no “right answer”. It is similarly difficult to directly compare
field intensity matrices from patients with different geometries
and clinical objectives.

Our approach here is to convert the 3D treatment volume
into appropriate 2D maps in the BEV coordinate system,
and reduce the dimensionality by independently considering
the input and output features for each beamlet. In this case,
even if we possess a relatively small number of patients with
which to train the algorithm, we actually have a large number
(i.e. more than 500 per patient) of beamlets- more than enough
for the purposes of machine learning. Hence, we divide the
plan for each training patient into pencil beams. All the pencil
beams from different patients are trained together to learn the
relationship between the input features and the output feature.
Prediction of the intensity profiles for an unknown patient is
accomplished by merging the predicted pencil beams into an
intensity matrix.

The key to an effective learning algorithm is an appropriate
feature space, such that the input features are representative
and sufficient to capture all the factors that affect the intensity
result. From (3), the output (i.e. intensity) for each pencil
beam is related to TMR, pOCR and the source-to-point
distance f , all defined for the corresponding midpoint in the
treatment volume. Furthermore, TMR is a function of the
depth d and the equivalent square field size L = 2W×H

W+H ,
while pOCR is a function of d and the radial distance from
center r =

√
x2 + y2 [21]. Hence, we choose d, L, r and f as

input features for each pencil beam. To allow the algorithm to
learn the clinical rules of thumb that do not obey (3), we also
include the distances to the field edge in the x and y directions
(ex, ey), which are related to the penumbra effect, and the
distance to the skin flash region s, which is related to the
apex adjustment. Since the penumbra effect/apex adjustment
only takes effect near the field edge/skin respectively, we
keep these features constant elsewhere. Specifically, we set s
to be the minimum value of the actual distance and 4mm,
and ex/y to be the minimum value of the actual distance
and 6mm. Thus, the learning problem is to estimate a one-
dimensional output (intensity) from each seven-dimensional
input (d, L, r, f, ex, ey, s). This is a substantial dimensionality
reduction over a non-pencil-beam method that would treat the
entire CT image as input and the entire intensity field as
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output. We describe how these features are extracted in the
following section.

As far as our clinical input data is concerned, there are two
additional special issues. One is that in each plan, the values at
several rows of the intensity matrix have already been averaged
for radiation delivery with a multileaf collimator, since the
pencil beams are typically calculated on a finer grid than the
leaf width. This averaging means that the general rule relating
input to output doesn’t hold for certain positions, which needs
to be taken into account in both training and prediction (see
Section VI). The other issue is that the intensity profiles have
been normalized for each beam pair, so that the maximum
intensity in the plan is 1000. This normalization factor varies
among patients. To be able to directly compare the intensities
from different plans in machine learning and prediction, we
use the known normalization factors to obtain unnormalized
absolute intensity values. The final predicted output is then
normalized at the end of the process, so that it can be compared
to other plans for the same patient. We note that the training
and testing patients in our study have a wide range of ages
and breast sizes (see Section VI) characteristic of the general
population of breast patients treated at MSKCC.

IV. FEATURE EXTRACTION

Among the seven input features, the BEV depth d and BEV
midpoint distance f are of great importance. We extract these
from each raw CT volume using the following steps.

1) Read the CT data from the file. To avoid processing ev-
ery voxel in the patient’s body contour, we determine the
treatment area based on the isocenter, field width/height,
gantry angle and couch angle (which can all be obtained
from the accompanying plan file). The treatment area for
each CT slice is bounded by the breast contour and its
intersection with the posterior edge of the beam.

2) Convert the Hounsfield Units (HU) in each image into
the corresponding relative electron density (ED). The
transform is linear in three stages, according to [30].

ED =
1.0 + 1

1000HU HU ≤ 0
1.0 + 0.0881

1000 HU 0 < HU ≤ 100
1.088 + 0.9973

1800 (HU − 100) HU > 100
(4)

3) Build 3D models of the breast and pencil beams [32].
A grid of pencil beams is created with a spacing of 2
mm by 2 mm measured at the isocenter distance. Each
pencil beam is drawn from the radiation source to one
grid point in the BEV plane within the field range (see
Figure 4).

4) Trace along each pencil beam to determine its inter-
section with the midpoint surface described above. The
midpoint is defined as the sample point that evenly
bisects a line segment through the point parallel to the
posterior beam edge (see Figure 3). The BEV depth,
or equivalent depth d, for the midpoint is obtained by
summing the incremental path length multiplied by the
relative electron density of each voxel the pencil beam
passes through within the treatment volume. For those
midpoints in the build-up region near the apex (i.e.
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Fig. 4. Illustrates the relationship between the radiation source, pencil beams,
isocenter, field edges and BEV plane.

0 < d < dmax), d is set to be dmax.4 For the pencil
beams that do not intersect the breast, we set d to zero.
The BEV depth maps for the medial beam and the lateral
beam of one patient are illustrated in Figure 5.

5) Similarly, obtain the BEV midpoint distance map, de-
fined as the distance from the source to the pencil beam
midpoint determined above. For the pencil beams that
do not intersect the breast, we set the BEV midpoint
distance to zero. The BEV distance maps for the medial
beam and the lateral beam of one patient are illustrated
in Figure 6. Most of the values are nearly, but not exactly
equal to, 1000 mm, which means that the treatment
volume is not symmetric with respect to the plane
perpendicular to the beam central axis, and that the
midpoints do not lie on a single plane.

Figure 7 shows the output intensity distributions for the
patient in Figures 5 and 6. Looking at these three figures,
the relationship between the intensity and the input features
is unclear. We can improve the situation by noting that only
a small rectangular region in the 256x256 matrix contains
intensity values greater than zero, which corresponds to the
field region. We only consider this valid area for training and
learning purposes. Furthermore, within the valid rectangular
region, in some cases corners of the field are blocked to avoid
irradiation of the arms or other regions outside the breast.
Finally, for the pencil beams that do not intersect the treatment
volume (which can be determined from the BEV midpoint
distance map), the intensity is set to be nearly constant. This
forms the “skin flash” region, which is also excluded from
training since there is no patient geometry along the pencil
beam to correlate with the intensity. Neglecting the blocking
area and skin flash region results in a zoomed-in version of
the output as shown in Figure 8.

As we can see from Figures 5, 6 and 8, the intensity distribu-
tions are visually correlated with the patient’s geometry, in the
sense that the 2D shape of the BEV distance map resembles the

4dmax is the depth that receives the maximum dose. Generally, as the
depth d increases, the effect of radiation reaches its maximum at dmax, and
then attenuates.
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(a) (b)

Fig. 5. BEV depth map for (left) medial beam and (right) lateral beam of
Patient 7.

(a) (b)

Fig. 6. BEV midpoint distance map for (left) medial beam and (right) lateral
beam of Patient 7.

(a) (b)

Fig. 7. Output intensity profiles for (left) medial beam and (right) lateral
beam of Patient 7.

(a) (b)

Fig. 8. Output intensity profiles for (left) medial beam and (right) lateral
beam of Patient 7 after zooming and cropping. These are visually correlated
with the BEV depth and distance maps in Figures 5 and 6.

2D shape of the intensity, with deviations in intensity related
to the BEV depth map. For example, in the area overlaying
the projection of the lung volume onto the BEV plane (the
left side of Figure 5a), the intensities are slightly reduced to
compensate for the small equivalent depth (since lung is less
dense than breast tissue).

In conclusion, we know that a relationship exists between
the intensity and geometry constraints that is approximated
by (3), and selected our input features accordingly. In the

next stage, we present several machine learning algorithms
to quantitatively discover this relationship.

V. MACHINE LEARNING ALGORITHMS

The methods we investigated to learn the relationship
between the input and output are all based on regression
analysis. Patterns inferred from the training data are used to
evaluate the function at previously unobserved input points.
The assumption is that both the training data and test data
arise from the same underlying statistical distribution.

There are two general types of solutions for regression [7].
The first is global estimation, in which the same estimated
model function can be applied to any point in the input
space. The parametric form of the function is specified, and
the parameters that minimize a certain global cost function
are estimated. The second type of regression is based on
local risk minimization. The value of the function at a new
point is estimated based only on the values of the output for
nearby input points from the training set. There are tradeoffs
in both types of methods. A global method is able to abstract
from data when the underlying function is smooth and the
functional form is easy to hypothesize. Prediction for new
inputs is nearly instantaneous. However, updating the model
is expensive, since new data must be incorporated into the
model by re-computing all the parameters. Local methods
are nonparametric techniques without any assumptions on
the functional form, which make them more flexible. Newly
observed data can be easily incorporated into the model
without expensive re-computation. The disadvantage is that all
of the training data must be retained to evaluate the function at
new points, and the search procedure required for prediction
is usually time-consuming. In the following, we describe two
global and two local approaches that we took to modeling the
geometry/intensity relationship in breast IMRT.

A. Global Approaches

1) Parametric Regression: Since we already know a rough
functional form for the input-output relationship, a natural
approach is nonlinear parametric regression [6]. Certain terms
in (3) can be modeled based on empirical observations; for
example, according to [28],

TMR(d, L) ≈ (Ade−Bd)(1 − e−kL) + Ee−Fd, (5)

where d, L refer to the equivalent depth and equivalent square
field size respectively, and A,B, k,E, F are unknown param-
eters. However, it is unnecessary and impractical to use this
form directly in the nonlinear model for intensity prediction,
since the number of unknown parameters is high, and the
TMR term is only one part of the model. Instead, based on
(3), we assume that all terms, (i.e., TMR, pOCR, the inverse-
square factor, penumbra compensation and apex adjustments)
appear as multiplicative factors in the model. Furthermore,
from (5), we hypothesize that the equivalent depth d and
equivalent square field size L contribute exponentially to the
model. Finally, from [8], [10], we assume that the other five
features (i.e., source-to-point distance f , radial distance from
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center r, distance from edge ex, ey and distance from skin-
flash area s) appear in the model as power terms. Applying
a logarithmic transformation, we get the following simplified
equation:

log(I) = β0 + β1d + β2L + β3log(f) + β4log(1 + r) +
β5log(1 + ex) + β6log(1 + ey) +
β7log(1 + s) (6)

The coefficients β0, . . . , β7 can be estimated using a least-
squares fit. However, we note that from the point of view
of evaluating algorithms that can generalize to other sites,
parametric regression is less desirable than an algorithm that
assumes nothing about the functional form of the input-output
relationship. We explore three such methods below.

2) Support Vector Regression: Support vector regression
(SVR) [33] is a powerful tool for nonlinear function ap-
proximation in high-dimensional input spaces. SVR requires
no prior knowledge of a parametric functional form, and is
generally more robust to noise than least-squares regression.

Given a training set of N samples (xi, yi) with a p-
dimensional input vector xi and scalar output yi, we want
to approximate the unknown nonlinear transfer function with
precision ε. The nonlinearity is achieved by mapping the input
space X into a new feature space F , and then estimating the
relationship in F by linear regression. The functional form in
SVR is:

y = f(x) = 〈Φ (x) ,β〉 + γ, (7)

where 〈·, ·〉 is an inner product on F, γ,β are regression
coefficients, and Φ(·) : X → F denotes a nonlinear mapping
represented implicitly by

〈Φ (x) ,Φ (xi)〉 = K (x,xi) , (8)

where K is a known kernel. The SVR solution only requires
us to be able to compute inner products with Φ, not the
knowledge of Φ itself. In our case, we use a Gaussian function
centered at xi of width σ:

K (x,xi) = exp
(
−‖x − xi‖2

/2σ2
)

. (9)

We want to approximately solve the linear regression prob-
lem (7); the solution is approximate in the sense that small
errors (i.e. those less than ε) are considered to be negligible
and set to 0. The number of free parameters in the function
approximation scheme is equal to the number of support
vectors, which can be obtained by defining the width of the
tolerance band ε. Hence, the number of free parameters is
directly related to the approximation accuracy and does not
depend on the dimensionality of the input space.

The tolerance bandwidth ε and the width of the Gaussian
kernel σ must be determined in advance; however, determining
the best set of parameters is not a solved problem and can
be computationally expensive. In our experiments, we used
SVMTorch [12], a tool designed for large scale regression,
and chose these parameters through cross-validation.

B. Local Approaches

Since there are thousands of pencil beams available for
training, there is enough data to make a local regression
approach feasible. That is, for a new feature vector, it is likely
that we have seen similar feature vectors in the training set,
and can predict the output based on these nearest neighbors.

1) K-nearest Neighbors: The k-nearest neighbor rule [15]
for classifying an unknown input is to assign it the output label
associated with the majority of the k nearest training samples
in the input space. Since the output is a continuous variable in
our regression problem, the predicted output is some statistic
(e.g. the mean or median value) of the outputs of the k nearest
training samples. In our results below, we used k = 5 and the
mean value.

2) Barycentric Interpolation: Instead of using a simple av-
erage of the nearest neighbors (neglecting how close the testing
point may be to one of the training samples), barycentric
interpolation uses a weighted average of the neighbors’ values
to make a more reasonable estimate. This approach assumes
that the feature points have been triangulated, e.g. using the
well-known Delaunay triangulation [14]. For the input point
where we want to estimate the function, we find the enclosing
Delaunay triangle (if the feature space is d-dimensional, then
d + 1 points form the “triangle”). The input feature vector is
then written in barycentric coordinates:

x = α1x1 + α2x2 + . . . + αd+1xd+1, (10)

where 0 ≤ αi ≤ 1 and
∑d+1

i=1 αi = 1. After finding the αi,
we apply the same linear combination to the output:

ŷ = α1y1 + α2y2 + . . . + αd+1yd+1. (11)

The barycentric method may fail for some testing points,
since an enclosing triangle for a new sample point may not
always exist. We can simply use the nearest-neighbor method
for these points.

VI. EXPERIMENTAL RESULTS

A. Experimental Design

We obtained clinical sIMRT plans (lateral and medial tan-
gential beams) for 22 breast cancer patients from MSKCC,
all planned by the same experienced expert. These samples
correspond to all breast cancer patients treated in the supine
position with sIMRT at MSKCC over a three-month period
in 2004. The patients were divided into three groups based
on machine type and beam energy. Group 1 consisted of 11
patients treated with 6MV X-rays on a Varian Clinac 2100EX
linear accelerator, Group 2 consisted of 8 patients treated
with 6MV X-rays on a Varian Clinac 600C linear accelerator,
and Group 3 consisted of 3 patients treated with 15MV X-
rays on a Varian Clinac 2100EX linear accelerator. The ages
and breast sizes (defined as the breast width at the posterior
border of the tangent field) of the patients are shown in Figure
9, and are characteristic of the general population of breast
patients treated at MSKCC. In each case, from the planning
CT volumes, beam settings and intensity profiles, both the
input and output features defined in Section III were extracted
for all the pencil beams. Before machine learning, we scaled
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each input feature of the training data to lie in [−1, 1], to
ensure that features with larger values do not unduly affect
the solution.
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Fig. 9. Scatterplot of age (in years) and breast size (posterior border
separation, in cm) of the patients in the experimental dataset. Patients in
different machine learning groups are indicated with different symbols.

We note that the machine type and beam energy affect
the output intensity via the TMR and pOCR terms [9].
One possible approach is to include the beam energy E and
machine type T as two additional input features. However, due
to the small amount of data and the fact that each additional
variable has only two discrete values in the experiments, we
found it preferable to sort the patients into 3 groups according
to the beam energy and machine type, and learn in each
group separately. Again, we emphasize that while there are a
relatively small number of patients in each group, the number
of training beamlets available for machine learning is in the
thousands and thus sufficiently large.

Since the intensity profiles we used for training were already
averaged for delivery by a multileaf collimator with a 1 cm
leaf width, we downsampled the image and field intensity data
by 5 in the X direction of Figure 8 to ensure that consistent
data was supplied to the learning procedures. Predicted field
intensities can be compared to the original plans by extending
the downsampled prediction to the neighboring 4 grid lines,
as shown in Figure 10.

(a) (b)

Fig. 10. Prediction for Patient 7. Left: Prediction for the intensities in the
downsampled grid. Right: Intensity extension to produce full plan.

We designed three sets of experiments to test the perfor-
mance of the learning algorithms:

1) An “intra-patient” experiment, in which training and
testing are limited to one patient at a time. The intensity
of each pencil beam is predicted using a model trained
by only the other pencil beams for the same patient.

The motivation is to confirm that the intensities within
one patient are indeed consistent and predictable, and to
demonstrate that the model learned for one patient can-
not be applied to another, so the subsequent experiments
are necessary.

2) An “inter-patient” experiment, in which the training
samples from different patients are gathered together.
For each testing case, the training data set is com-
posed of all the other patients in the same group. The
motivation is to confirm the main hypothesis of the
paper: that the intensities for a new patient can be
well predicted based only on other examples of the
input/output relationship.

3) Another “inter-patient” experiment using a smaller set
of training data. For Group 1 (6MV, 2100EX), we used
5 patients for training, and 6 patients for testing. For
Group 2 (6MV, 600C), we used 4 patients for training
and 4 patients for testing. For Group 3 (15MV, 2100EX),
we report the results of 3 leave-one-out tests, each
time using 2 patients for training and the remaining
1 patient for testing. The motivation is to determine
whether results similar to the previous experiment can be
obtained with a smaller representative set of training data
(which makes the local methods run much faster and
indicates that our amount of training data is sufficient).

In each experiment, the predicted result is compared to
ground truth (i.e. the expert’s sIMRT plan). We evaluated two
error measures based on the entire intensity distribution for
each patient:

MPE =
1
N

N∑
i=1

(
Ipredicted
i − Itrue

i

)
Itrue
i

× 100% (12)

MAPE =
1
N

N∑
i=1

∣∣∣Ipredicted
i − Itrue

i

∣∣∣
Itrue
i

× 100% (13)

Here, Itrue
i is the true intensity value for the ith pencil beam,

Ipredicted
i is the predicted output value for the ith pencil beam,

and N is the number of pencil beams for the patient being
evaluated. The mean percent error (MPE) can be positive or
negative and indicates whether the prediction is biased from
the ground truth. The mean absolute percent error (MAPE) is
always positive and disallows cancellation of errors. These are
standard measures for predictor performance [22]. Since, as
discussed in Section III, the skin-flash and blocking regions
were excluded from both training and prediction, errors in
these regions do not contribute to (12)-(13). Each data point
below represents the average between medial beam and lateral
beam prediction for each patient. A sample comparison of
the average times needed for feature selection, training, and
prediction in the four algorithms is shown in Table I, which
are all on the order of a few seconds.

B. Error analysis

Figure 11 illustrates the MAPE for the first (intra-patient)
experiment using the two global methods and two local
methods. The mean MAPE across all patients for parametric
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PR SV 5-NN Barycentric
Feature selection 15 15 15 15

Training 3 5 6 10
Prediction < 1 < 1 4 7

TABLE I

AVERAGE TIMES, IN SECONDS, FOR FEATURE SELECTION AND TRAINING

(USING FIVE PLANS), AND PREDICTION OF ONE PLAN, IMPLEMENTED ON

A PENTIUM 4 1.6 GHZ, 1024MB RAM PC.

regression was 1.74%, while the mean MAPE for support
vector regression was 1.46%. The mean MPE across all
patients was 0.05% for parametric regression, and 0.02%
for support vector regression, indicating virtually no bias.
Thus, both global models fit the intra-patient data very well,
which means that the intensity is quite predictable from the
patient’s geometry. Similar results were obtained from the
local methods. The mean MAPE was 1.78% for 5-nearest
neighbor regression and 1.69% for barycentric regression, and
the mean MPE was 0.06% and 0.02%, respectively. We note
that global methods are preferable in this case, since they give
almost the same prediction error while requiring much less
computation. However, the intra-patient model we learn is not
particularly useful since it cannot be applied to another patient
with different field size, machine type or beam energy. For
example, using the parametric regression model learned from
Patient 1 to predict the plan for the remaining patients in Group
1 results in an average MAPE of 8.9% and an average MPE
of 3.1%. Using the local methods would lead to even higher
error rates.
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Fig. 11. MAPE for the intra-patient experiment. The solid and dash lines are
the parametric regression and support vector regression results, respectively.
The dot and dash-dot lines represent 5-nearest neighbor and barycentric
interpolation, respectively.

Figure 12 illustrates the MAPE for the second (inter-
patient) experiment using the two global methods and two
local methods, where all the other patients in the same group
were used for training. The mean MAPE across all patients for
parametric regression was 2.15%, while the mean MAPE for
support vector regression was 2.07%. The mean MPE across

all patients was 0.23% for parametric regression, and −0.16%
for support vector regression. Table II breaks down the mean
MAPE and MPE for each group and method. The errors
are only slightly worse than in the intra-patient experiment,
showing that the models are able to generalize to different
patients and plans. We also note that Group 3 has relatively
smaller prediction error, and that the field sizes for those
3 patients were almost the same. For the other 2 groups,
those testing patients whose field size is most different than
the patients in the training set usually had the largest error.
Thus, field size seems to be a major feature that accounts
for the inter-patient difference. As for the local methods,
the mean MAPE across all patients was 2.87% for 5-nearest
neighbor regression and 2.56% for barycentric regression,
while the mean MPE was 0.52% and 0.41%, respectively.
Compared to Figure 11, the performance of the local methods
is relatively worse than that of the global methods, indicating
that the former are less capable of generalizing the inter-patient
difference. The normalization procedure described in Section
III is also an important factor in this experiment; without it,
the errors increase by roughly a factor of 2. We also note that
we did not observe any correlations between the error and the
patient’s age or breast size.
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Fig. 12. MAPE for the first inter-patient experiment, where all the other
patients with the same beam energy are used for training. The line style
corresponding to each learning method is the same as in Figure 11.

The third (inter-patient) experiment uses a smaller set of
training data. The training cases were deliberately selected
to cover the range of field sizes. Figure 13 illustrates the
MAPE for the 13 testing patients using each method, and
Table II breaks down the mean MAPE and MPE for each
group and method. The overall prediction results are slightly
worse than, but quite comparable to, those in the first inter-
patient experiment, which means that training based on fewer
samples that are representative of the expected variation is
feasible. Among the global methods, support vector regression
has the larger drop in prediction performance. We suspect that
this method is more sensitive to the number of different field
sizes in the training set. Among the local methods, barycentric
interpolation based on Delaunay triangulation is superior to
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Experiment 2
PR SV 5-NN Bary

Group 1 MAPE(%) 2.25 2.14 3.00 2.68
MPE(%) 0.24 -0.16 -0.28 -0.12

Group 2 MAPE(%) 2.22 2.07 2.92 2.68
MPE (%) 0.27 -0.14 0.38 0.27

Group 3 MAPE(%) 1.59 1.80 2.12 1.72
MPE (%) -0.25 0.29 0.24 0.13

Experiment 3
PR SV 5-NN Bary

Group 1 MAPE(%) 2.31 2.52 2.86 2.60
MPE(%) 0.11 0.86 -0.30 -0.22

Group 2 MAPE(%) 2.35 2.25 2.92 2.77
MPE (%) 0.68 -0.80 0.56 0.33

Group 3 MAPE(%) 1.59 1.80 2.12 1.72
MPE (%) -0.25 0.29 0.24 0.13

TABLE II

PREDICTION RESULTS FOR THE FOUR METHODS IN EXPERIMENTS 2 AND

3. THE LEARNING ALGORITHMS ARE: PR (PARAMETRIC REGRESSION),

SV (SUPPORT VECTOR REGRESSION), 5-NN (FIVE NEAREST NEIGHBOR

INTERPOLATION), AND BARY (BARYCENTRIC INTERPOLATION).

that based on nearest neighbors. The overall performance of
global methods outweighs that of the local methods in Group
1 and Group 2, but not in Group 3, where the field sizes for
training and testing are nearly the same. In light of the results
from Figures 11 and 12, it seems that the field sizes of the
testing data and the training data must be nearly identical for
local methods to perform as well as a global method.
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Fig. 13. MAPE for the second inter-patient experiment. In Group 1, patients 1
to 5 are used for training, and patients 6 to 11 for testing. In Group 2, patients
12 to 15 are used for training, and patients 16 to 19 for testing. In Group 3,
training and testing are the same as in the first inter-patient experiment. The
line style corresponding to each learning method is the same as in Figure 11.

C. Comparison of dose distributions

Another natural way to evaluate the algorithms is to analyze
the actual dose distribution imposed by the predicted intensity
profiles, since the goal of sIMRT is to achieve uniform dose
distributions within the breast. We did this evaluation for the
two global methods in the second experiment, to determine if
the numerical errors produced significant clinical differences.

Each plan is normalized to give 100% dose at a point on the
lung/chest-wall interface.

Table III reports the performance of parametric regression
and support vector regression in the second experiment with
respect to the generated dose distributions, giving the mini-
mum, maximum, and mean dose to the planning target volume
(PTV)5 for each plan, averaged over all patients. We also
report the mean D95 (minimum dose to hottest 95% of the
PTV), D05 (minimum dose to hottest 5% of the PTV) and
V95 (volume receiving 95% of prescribed dose) values, which
are commonly used in medical physics to evaluate the quality
of a plan [23]. The differences of the D95, D05, and V95
values between each predicted plan and the expert’s plan
were judged to be of no practical significance by the planner.
Figure 14 compares the expert, parametric regression, and
support vector regression dose distributions on the transverse,
coronal, and sagittal slices for one typical patient. MSKCC
planners agreed that the dose distributions of the machine-
learning predictions matched very well with the expert plans
and were clinically acceptable. The last column of Fig 14
also illustrates the dose-volume histograms (DVHs) for the
breast, ipsilateral lung and heart for the expert, parametric
regression, and support vector regression plans. DVHs give a
global picture of the dose distributions and are often used to
evaluate the quality of a plan. The DVHs illustrate that the
plans are quite similar. There is virtually no difference in the
heart and lung distributions, and while the machine learning
plans are somewhat “hotter” in the PTV than the expert’s plan,
this small difference is not critical for the breast site.

dose(%) clinical PR 2 SV 2 PR 3 SV 3
max 108.5±2.3 108.1±2.6 108.7±3.2 108.3±2.3 108.7±3.0
min 81.4 ±7.2 81.5 ±6.9 81.8 ±6.9 81.8 ±6.8 82.0 ±6.7

mean 101.5±1.2 101.6±1.2 101.8±2.3 101.5±2.3 101.5±2.3
D05 97.1±1.6 97.0±1.3 97.1±1.7 97.3±1.3 97.5±1.6
D95 104.6±1.9 104.9±2.0 105.3±3.0 105.2±1.8 105.2±2.7
V95 97.5±2.0 97.7±1.6 97.6±1.9 97.9±1.5 97.9±1.8

TABLE III

SUMMARY OF DOSE DISTRIBUTION RESULTS FOR ALL PATIENTS (MEAN ±
STANDARD DEVIATION). THE LEARNING ALGORITHMS ARE: PR 2

(PARAMETRIC REGRESSION, LEAVE-ONE-OUT), SV 2 (SUPPORT VECTOR

REGRESSION, LEAVE-ONE-OUT), PR 3 (PARAMETRIC REGRESSION USING

FEWER TRAINING SAMPLES), AND SV 3 (SUPPORT VECTOR REGRESSION

USING FEWER TRAINING SAMPLES).

VII. DISCUSSION AND CONCLUSIONS

The machine learning approach presents a promising direc-
tion for clinical breast IMRT planning, for which practical
application on a large scale has proven challenging [34].
While the clinical sIMRT technique requires 3 to 4 repeat
optimizations on average for each patient, our approach needs
only one initial training phase, and can predict each new plan
in a few seconds. There is no need to re-train the model
unless the treatment protocol of the institute changes. The

5See [18] for a formal definition of the PTV in this case- essentially all the
palpable breast tissue plus a 2 cm margin posterior, sup and inf.
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Fig. 14. Comparison of isodose distributions for leave-one-out experiment, patient 2, on the (a) tranverse, (b) sagittal, and (c) coronal planes. The upper
row is an expert’s sIMRT plan; the middle row is the prediction result using parametric nonlinear regression; the lower row is the prediction result using
support vector regression. Plans were normalized to be 100 at a specified point on the lung chest-wall interface (labeled NORMPT on the yellow contour).
(d) illustrates the dose-volume histograms (DVHs) for three plans, in the PTV (upper), ipsilateral lung (middle) and heart (lower), respectively.

problem of high dimensionality in the input and output was
addressed by learning the intensity relationship on a beamlet
basis. We were able to predict intensity profiles directly
from the patient’s geometry to within a few percent of an
expert’s plan in a matter of seconds. The numerical differences
from the expert’s plan had a negligible effect on the quality
of the resulting dose distributions. Thus, we can improve
the efficiency of breast planning, while preserving the dose
homogeneity and critical structure protection already achieved
by the clinical protocol. This approach also makes it possible,
given appropriate training data, to predict different plans for
the same patient according to different planners’ subjective
criteria.

In the breast, parametric regression performs well in most
cases, since the functional form is roughly pre-determined by

(3). However, due to their nonparametric nature, we suggest
that support vector regression and local regression methods are
promising for more complex learning tasks in IMRT, where
parametric functional relationships between the input and
output are far from obvious. Support vector regression seems
to be a good choice when the available training datasets are
representative and plentiful enough. If the variation in training
plans is limited (e.g. only a few field sizes or machine types),
local regression may be the better choice. It seems feasible to
group a large number of existing plans into several training
databases, each of which has the same beam energy/machine
type and similar field sizes, and apply local regression to
predict an unknown plan using the most suitable training set.

The next step in our research program is to extend the
machine learning approaches described here to prostate IMRT,



12

which is much more complicated and difficult to optimize. The
number of repeat optimizations for prostate IMRT plans is
typically between 5 and 30, and the optimizations themselves
are more time-consuming. At MSKCC, five equally-spaced
beams are frequently used for radiation, and interaction be-
tween beams must be explicitly considered in planning. The
input features we use for machine learning must change to
reflect the multiple-beam configuration and the more complex
objective function. One approach to dimensionality reduction
in this case is to predict a set of parameters defining the
IMRT objective function that will result in an acceptable set
of beam intensities when the function is optimized. While
the manual planning/validation process may not (and should
not) be entirely circumvented, the resulting parameters/plans
may serve as better initial estimates for IMRT, thus reducing
the number of trial optimizations and shortening the overall
planning time.

One shortcoming of machine learning approaches in general
is that there must be sufficient training data to enable accurate
modeling and prediction. Despite the limited number of pa-
tients in the experiment, we were able to obtain good results
due to the large number of training beamlets. As mentioned
above, different mechanisms of dimensionality reduction need
to be explored for other sites to make machine learning
feasible. Our initial experiments with the prostate site using a
similar study size are promising. We also note that machine
learning prediction will be unreliable for patients that violate
the modeling assumption, e.g. the patient size/shape is grossly
atypical, or the clinical compromise between target/normal
tissues changes. However, such patients are probably best
planned manually to begin with. Our primary concern is to
reduce the tedium of planning a “typical” patient, without
compromising the quality of the treatment.
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