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Abstract

We propose a new method that interpolates between parallel slices from a 3D shape for

the purposes of reslicing and putting into correspondence organ shapes acquired from vol-

umetric medical imagery. By interpolating the coefficients of elliptic Fourier descriptors

for a set of parallel contours, a new set of slices can be directly generated at desired axial

locations. Neither an explicit correspondence between points on adjacent contours nor a

3D interpolating surface needs to be obtained. We apply the proposed reslicing method to

experimental datasets of both synthetic 3D shapes and real prostate contours, and demon-

strate that it performs as well as a common method based on variational implicit surfaces,

for a much lower computational cost. We also show that reslicing and putting into corre-

spondence an ensemble of axially-sampled 3D organs enables the construction of shape

models for accurate 3D segmentation.
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1 Introduction

The statistical analysis of ensembles of organ shapes is an important prerequisite for

developing deformable shape models that can be used to anticipate inter- or intra-

patient variability or to accurately segment organs from volumetric imagery [1].

For example, Figure 1 shows several examples of manually labeled points on the

surface of a patient’s prostate obtained during radiotherapy treatment planning, rep-

resented as sets of points arranged in parallel planes (or “contours”). However, ob-

taining a large number of accurate correspondences between multiple hand-labeled

organs contoured in parallel axial slices is difficult, since the number of slices in

each dataset and the number of sample points around each contour generally vary

between datasets, and the spacing of the sample points around each contour is usu-

ally nonuniform. A reasonable approach is to resample the ensemble of shapes so

that each dataset has the same number of slices with the same number of samples

at roughly homologous positions in each slice. This can naturally be posed as an

interpolation problem, and is frequently addressed using a variational implicit func-

tion approach that (1) estimates a function whose zero-level-set is a 3D surface that

interpolates the original points, and (2) evaluates the interpolating function to ob-

tain surface points at each desired axial location. This method of interpolation was

recently reintroduced into the computer graphics literature by Turk and O’Brien

[2]. While the process produces smooth, continuous interpolating surfaces, it can

be quite time-consuming, since a large linear system must be solved and numerical

evaluation of the interpolating function is required to extract each resampled slice.

In this paper, we present a technique for the fast and accuratereslicingof 3D organ

shapes specified as points on parallel axial slices, using a technique based on ellip-

and Richard J. Radke).
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Fig. 1. Axial slices of one patient’s prostate acquired on three different days of radiation
treatment, contoured from CT imagery. The number of axial slices for each dataset and
the number of sample points around each contour generally vary between datasets, and the
spacing of the sample points around each contour is usually nonuniform.

tical Fourier descriptors. The technique is advantageous in that neither an explicit

correspondence between adjacent contours nor a 3D interpolating surface needs

to be obtained. We demonstrate that computationally intensive computer graphics

algorithms are not required to reslice organ shapes typical of prostate radiother-

apy applications. We compare the elliptic Fourier descriptor method for reslicing

against the implicit function method, and show that the results have the same accu-

racy obtained at less than 15% of the computational cost. Since time is valuable in

a busy radiotherapy clinic, this speed advantage is important.

The paper is organized as follows. In the next section, we discuss related work

on 3D surface reconstruction and correspondence. In Section 3, we give a detailed

description of the variational implicit function method for interpolation, and in Sec-

tion 4, we present a new interpolation method based on elliptic Fourier descriptors.

In Section 5, we apply both reslicing methods to experimental datasets containing

both synthetic shapes and hand-labeled prostate contours, and discuss the results.

We also demonstrate how a shape model built from the resliced prostate contours

can be used to accurately segment the prostate from 3D computed tomography (CT)

images. We conclude the paper in Section 6.
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2 Related work

Point Distribution Models (or PDMs) [3], also known as Active Shape Models [4],

have been frequently and successfully used for shape modeling and segmentation

since their introduction, since they can capture shape variability with only a few

parameters, while generating a wide range of shapes consistent with an ensemble

of training data. The key requirement for building a PDM is obtaining a fairly dense

set of corresponding points (landmarks) between all shapes in the training dataset

(e.g. images of the same organ from the same patient on different days of treatment,

or images of the same organ from different patients). The model cannot express

shape variability accurately if this correspondence is not well-established. How-

ever, in medical image analysis, manually determining correspondence between or-

gan shapes is time-consuming, subjective, and very challenging in 3D cases. Thus,

it is important to automatically obtain unbiased and consistent correspondences,

so that a model built using the landmarks can capture the desired statistical char-

acteristics of shape variability. As mentioned above, the ensemble of training data

that is available for shape analysis usually comes in the form of points on an organ

arranged around parallel contours, and our goal is to consistently reslice the data

in the axial direction to obtain corresponding slices across the ensemble of train-

ing data. A common approach is to first construct a 3D surface interpolating the

contours, and then resample it into the desired set of slices, so most related work is

from the surface reconstruction literature. Bolle and Vemuri [5] gave a good general

survey of 3D surface reconstruction methods.

In the context of medical imagery, early work focused on building a 3D triangulated

model from cross-sectional polygonal contours. The key sub-problem is “tiling”:

that is, constructing an optimal (e.g. surface-area-minimizing) triangular mesh be-
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tween two contours at different levels by constructing “spans”, or edges between

vertices at adjacent levels. Good surveys of tiling techniques were given by Meyers

et al. [6] and Barequet and Sharir [7]. Such techniques are not particularly well-

suited to the contour interpolation problem, since the triangular meshes produced

by connecting original vertices are coarse instead of smooth.

Higher-quality 3D models based on surface reconstruction from unorganized points

provide a more natural framework for the contour resampling problem, since the re-

sulting surfaces are smooth, no explicit connections between original points are re-

quired to arrive at a solution, and branching structures can be handled gracefully if

they are present. Early work by Hoppe et al. [8] used a surface interpolation method

for unorganized points based on estimating samples of the signed distance function

to the fitting surface. However, the algorithm results in no convenient functional

form for the distance field. Turk and O’Brien [2] recently reintroduced the vari-

ational approach of implicit surface fitting to the computer graphics community,

though it had been known for some time previously (e.g. [9,10]). This method, de-

scribed in detail in the next section, is commonly applied for smooth interpolation

of very large datasets, and is appealing since the implicit surface is parameterized

by coefficients on basis functions centered at the original points.

An alternate approach to using an implicit surface is to fit a parametric model that

represents the surface as an embedding of a two-dimensional parameter domain

(e.g. the plane or the sphere) inR3. Finely tessellating the 2D domain into trian-

gles, quads, or other polygons (e.g. simplex meshes [11]) induces a corresponding

tessellation of the 3D surface, resulting in a finite-element model. The tessellation

may be desired to be as uniform as possible, or to concentrate more vertices in

regions of high curvature (i.e. an adaptive tesselation). There are many such tech-

niques; see Bolle and Vemuri [5] for a review. One extension is the deformable
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superquadric model proposed by Terzopoulos and Metaxas [12]. The idea is to

augment a parametric superquadric mesh with a local displacement field to bet-

ter approximate surfaces with fine details. Vemuri and Radisavljevic [13] applied

a wavelet transform to the displacement field to give more control over deforma-

tions at different resolutions. In medical image analysis, fitting such models to data

usually uses imagery as input as opposed to raw 3D contour points. These tech-

niques are generally more related to segmentation of a single image or interactive

simulation (e.g. [14]) than ensemble shape analysis, since the goal is usually not to

establish good correspondences across a large number of different shapes.

Designing methods for determining good correspondences between 3D shapes is in

itself a large area of active research interest. Many techniques have been developed

for estimating correspondences in specific application domains, such as 3D im-

ages of faces [15] or brains [16]. Davies et al. [17] approached the correspondence

problem based on compact parameterization of a shape ensemble, using the Min-

imum Description Length (MDL) principle. Since correct correspondences result

in a highly-compressible model, they hypothesized that minimizing the ensemble

description length should produce good correspondences. However, the technique

is difficult and time-consuming to implement in 3D. Styner et al. compared this

MDL approach with several other correspondence methods in [18].

A newer family of point-set alignment techniques matches ensembles of shapes

to each other without requiring any initial explicit correspondence between them.

For example, Chui et al. [19] described a joint clustering and matching technique

that used a deterministic annealing algorithm to compute a mean shape from mul-

tiple sample point sets. During the process, correspondences between regions of

the original shapes are formed. They qualitatively demonstrated their algorithm on

nine 2D corpus callosa and twenty 3D hippocampus shapes. This approach was
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extended by Wang et al. [20], who used the Jensen-Shannon divergence between

cumulative distribution functions to non-rigidly register multiple unlabeled point

sets. They qualitatively demonstrated their algorithm on seven 2D corpus callosa

and four 3D hippocampus shapes. These techniques may be useful for the reslicing

problem, although they would need to be quantitatively validated on larger datasets

and compared against other algorithms.

Finally, we note that the reslicing and correspondence problems are related to the

remeshing of 3D models, used in computer graphics applications to improve mesh

quality (e.g. vertex regularity, unsharp triangles) for the purposes of mesh editing,

animation, simplification, denoising, rendering, and compression. Alliez et al. [21]

gave a good, recent review of remeshing techniques. Of particular relevance to the

problem addressed here is remeshing for the purpose of “morphing” between two

meshes; see Alexa [22] for a good review. In particular, “compatible” or “consis-

tent” mesh parameterizations, in which two meshes are desired to have semantically

corresponding vertices and identical connectivity, are especially useful for the mor-

phing problem [23,24]. However, manually-labeled correspondence between well-

chosen mesh vertices is still required for such techniques. Also, remeshing tech-

niques generally require fine initial meshes. The input data in our application is

not connected in a mesh, and even applying a tiling technique as mentioned above

would result in a coarser mesh than remeshing algorithms generally expect.

3 Interpolation using implicit functions

We now describe how the reslicing problem can be solved based on surface in-

terpolation using an implicit function formulation. This implicit function onR3 is

defined by
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s(p) = q(p) +
N∑

i=1

λiφ(p− pi), (1)

where{pi = (xi, yi, zi), i = 1, . . . , N} are the sample points to be interpolated,

p ∈ R3 is a test point,q(p) is a polynomial of degreeK − 1, φ(p) : R3 → R

is a basis function, and theλi are unknown weights to be determined such that

s(pi) = 0, i = 1, . . . , N for the given sample points on the surface. The implicit

function must also be set to a non-zero value at additional sample points to prevent

s(p) = 0 from being a viable solution. For example, Turk and O’Brien [2] set the

implicit function to a positive value (e.g. 1) at points located slightly inward from

and normal to the surface at each surface sample point.

Smoothing splines (also known as thin-plate splines) and their variations are popu-

larly used in surface reconstruction [9]. One advantage of using smoothing splines

is that they produce a smooth surface interpolating a given set of points, which

is generally desirable for organs in medical imagery. Smoothing splines produce

fitting surfaces by minimizing a combination of bending energy (related to the

smoothness of the fitting surface) and potential energy (related to the closeness

of the fitting surface to the set of original points). That is, a smoothing surface is

the functionf that minimizes

E = α
∫
Ω

f 2
uu(u, v) + 2f 2

uv(u, v) + f 2
vv(u, v)dS +

N∑
i=1

(pi − f(ui, vi))
2 (2)

whereΩ is the domain of the fitting surface inR2, thepi’s are data points inR3,

andα is a weighting factor. In our case, we want the reconstructed surface to ex-

actly interpolate the original data points, so we only minimize the bending energy,
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namely:

E =
∫
Ω

f 2
uu(u, v) + 2f 2

uv(u, v) + f 2
vv(u, v)dS, (3)

which is an integral over the 2D surface embedded in 3D. Duchon [25] showed

that thin-plate spline interpolation in 3D was equivalent to using the basis function

φ(p) = ‖p‖2 log ‖p‖ in (1).

There are many unknown parameters in (1) to be determined: the coefficients{λi, i =

1, . . . , N} andK coefficients of the polynomialq(p), denoted as a vectora. Since

there are more equations than unknowns, additional constraints are required to

uniquely define a solution; a usual choice is to force

N∑
i=1

λiqj(pi) = 0, j = 1, . . . ,M, (4)

where theqj form a basis for the space of polynomials of degreeK in 2 dimensions

(soM = ( K+2
2 )). In this case, the unknown parameters can be found as the solution

to a linear system


A Q

QT 0




λ

a

 =


h

0

 . (5)

Here,A ∈ RN×N is a matrix with coefficientsAij = φ(pi − pj), Q ∈ RN×M is

a matrix with coefficientsPij = qj(pi), and0 is a M × M matrix of zeros. On

the right hand side,h is the vector of values of the implicit function at the sample

points (in this case, the values are always either 0 or 1).

Once the implicit functional forms(p) has been obtained, the level set of points
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s(p) = 0 must be determined to extract the interpolating surface. Typically, the im-

plicit function is evaluated on a grid and the surface is obtained using isosurfacing

techniques. Isosurfacing methods fit successively finer surface primitives (e.g. poly-

gons) to find constant-value contours in volumetric data [26]. Since our objective is

resampling on axial planes, the isosurface really only needs to be extracted on each

of the specified planes.

The overall procedure is outlined in Figure 2. Figure 2a shows original sample

points arranged in parallel slices. An interpolating surface constructed using thin-

plate splines is shown in Figure 2b. Figure 2c shows new points obtained by resam-

pling the interpolated surface at new axial planes.

(a) (b) (c)

Fig. 2. Reslicing using a variational implicit surface. (a) A dataset of points arranged in 17
parallel slices. (b) A reconstructed surface is estimated that interpolates all the points, by
extracting the isosurface of a 3D implicit function. (c) The reconstructed surface is sampled
into the target number of parallel slices (e.g. 20 slices).

The variational implicit function method has two computationally expensive steps:

the solution of the linear system (5) and the numerical evaluation of the interpo-

lating function to find the new contours. The first issue has been addressed using

fast multipole methods and far-field approximations [27,28], and there have been

efforts to speed up the isosurface extraction using efficient surface-following algo-

rithms [29]. However, both steps are still time-consuming, and it seems clear that

an entire implicit function need not be calculated if the main goal is simply re-

sampling new axial slices. In the next section, we present a simple method for the
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reslicing problem that produces almost exactly the same result as isosurfacing an

interpolated implicit function, for a fraction of the computational cost.

4 Interpolation using elliptic Fourier descriptors

A closed planar curve can be expressed in parametric form using elliptic Fourier

descriptors (abbreviated EFD in the following) [30,31]. Specifically, a closed curve

in 2D parameterized by0 ≤ t < 2π can be expressed as a weighted sum of the

Fourier basis functions:


x(t)

y(t)

 =


a0

c0

 +
∞∑

k=1


ak bk

ck dk




cos kt

sin kt

 (6)

The coefficients are given in closed form by

a0 =
1

2π

∫ 2π

0
x(t) dt c0 =

1

2π

∫ 2π

0
y(t) dt

ak =
1

π

∫ 2π

0
x(t) cos kt dt bk =

1

π

∫ 2π

0
x(t) sin kt dt (7)

ck =
1

π

∫ 2π

0
y(t) cos kt dt dk =

1

π

∫ 2π

0
y(t) sin kt dt

Thus, the closed curve{x(t), y(t)} is equivalently represented by{a0, c0, a1, b1, c1, d1, . . .}.

EFDs were used to model 2D biological shapes in [32] and 3D surfaces in [33].

EFDs are particularly suitable for representing biological objects, since such ob-

jects usually do not have sharp edges (and hence, few coefficients are required to

accurately represent them).

The main idea of this paper is to resample a set of parallel slices by interpolating

corresponding EFD coefficients. First, we obtain the EFDs for each original slice.
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We must obtain the same number of coefficients for each slice, as well as align the

phase of all slices. We do this by interpolating the points in each slice with a closed

cubic spline [34], and extendingR rays from the set’s center of gravity at uniform

angles (starting atθ = 0) to the slice boundary, as illustrated in Figure 3. This set

is used to compute the EFD coefficients, using the discretized version of (7). That

is, for a closed curve{x(tj), y(tj)} wheretj = 2πj
R

, j = 0, 1, · · · , R− 1,

a0 =
1

2π

R−1∑
j=0

x(tj) c0 =
1

2π

R−1∑
j=0

y(tj)

ak =
1

π

R−1∑
j=0

x(tj) cos ktj bk =
1

π

R−1∑
j=0

x(tj) sin ktj (8)

ck =
1

π

R−1∑
j=0

y(tj) cos ktj dk =
1

π

R−1∑
j=0

y(tj) sin ktj

(a) (b)

Fig. 3. (a) The original set of points on a slice. (b) The set of points after spline interpolation
and resampling.

At this point, each slice at heightzi is represented by a vector of EFD coefficients

[a0(zi), c0(zi), a1(zi), b1(zi), c1(zi), d1(zi), . . .]. These vectors are interpolated element-

by-element to obtaina0, c0, etc. as continuous functions ofz. For example, if there

areD slices in the dataset, we compute

a0(z) = g({a0(zi), i = 1, . . . , D}) (9)
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whereg is, in our experiment, a piecewise cubic spline interpolant. Then we can

evaluate the interpolated functions and plug them into (6) to obtain the surface

contour at any value ofz; the interpolant coincides with and smoothly interpolates

all of the original sample points. The ability of EFDs to accurately represent shape

contours depends on the number of coefficients used for approximation. The more

coefficients used, the higher spatial frequency (i.e. higher curvature) that can be

captured. In the next section, we analyze reslicing accuracy as a function of the

number of harmonic coefficients.

In terms of computational complexity, the EFD method has clear advantages over

reslicing using implicit functions. While there are several 1D spline interpolation

problems to solve, these are inexpensive compared to solving a large linear system

or isosurfacing on a fine grid. Furthermore, we show in the next section that for

shapes corresponding to organs in medical imagery, the resampling accuracy does

not suffer.

5 Experimental Results

To validate the proposed method, we conducted two experiments. First, in order to

determine the ground truth accuracy of both the implicit function and EFD meth-

ods, we generated synthetic 3D shapes with continuous surfaces described in closed

form. Each shape was sampled into two sets of slices with different (uniform) spac-

ing in thez-dimension. One set of slices was designated as the reference set, and

the other set was used as input to the two resampling methods. The resampled slices

from the two methods were compared with the reference slices to determine each

method’s accuracy. In the second experiment, we acquired sets of slices from hand-

contoured CT images of the prostate. Each set of slices was resampled using the two
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methods and the results were compared with each other. The goal is to show that the

EFD method produces results that are virtually indistinguishable from the implicit

function method at a considerable computational savings. In the experiments, we

followed the implementation of the variational implicit surface method as proposed

by Turk and O’Brien [2] and find the intersection of the fitting surface with each

parallel slice by isosurfacing. All experiments were conducted using MATLAB on

a Pentium 4-2.6GHz PC with 1GB RAM.

To determine the appropriate number of EFD harmonic coefficients for the exper-

iments, we measured reslicing accuracy for the synthetic and clinical datasets as

a function of the number of harmonics, as illustrated in Figure 4. Reslicing ac-

curacy is measured for each dataset as described in the following subsections. As

expected, the approximation using EFD becomes more accurate as more harmonics

are used. However, there is an obvious “elbow” atk = 8 harmonics, after which

the reslicing accuracy obtained by using more harmonics is negligible. Therefore,

in our experiments, we used 8 harmonics ({a0, c0, a1, b1, c1, d1, · · · , a8, b8, c8, d8})

which produced good surface approximations for both the synthetic and clinical

organ shapes of interest. However, we note that there was virtually no additional

time consumed by increasing the number of harmonics in our experiments.

5.1 Synthetic Shapes

To generate random synthetic 3D shapes whose surfaces could be described in

closed form, we used a shape parameterization based on spherical harmonics [35,36].

First, we generate a random radius for each of many altitude and azimuth angle

pairs(θ, ϕ) uniformly spaced in spherical coordinates. Each radius is modeled as

an i.i.d. random variable withr(θ, ϕ) ∼ 3+σU , whereU is the uniform distribution
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(a) (b)

Fig. 4. Approximation error as a function of the number of EFD harmonic coefficients. (a)
The mean Hausdorff distance between each set of 17 synthetic shape contours withσ=2.5
interpolated using EFDs with the given number of harmonics and the true shape. (b) The
mean Hausdorff distance between each set of prostate contours from Patient 4 interpolated
using EFDs with the given number of harmonics and the shape estimated using implicit
functions.

with support[0, 1]. Connecting these vertices into faces produces a noisy, jagged

object as illustrated in Figure 5a. The bumpiness of the shape can be controlled

by the width of the uniform distribution. Next, the shape is smoothed using a 2D

moving average filter over(θ, ϕ), as illustrated in Figure 5b. Finally, the smoothed

shape is approximated using spherical harmonics up to degreeL as in Figure 5c.

That is, we parameterize a surface pointp ∈ R3 in terms of(θ, ϕ) as:

p(θ, ϕ) =
L∑

l=0

l∑
m=−l

cm
l Y m

l (θ, ϕ) (10)

where the spherical harmonicY m
l (θ, ϕ) of degreel and orderm is given by

Y m
l (θ, ϕ) =



√
2l+1

4
(l−m)!
(l+m)!

Pm
l (cos θ)eimϕ m ≥ 0

(−1)m(Y m
l )∗(θ, ϕ) m < 0

(11)
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andPm
l (x) is the associated Legendre polynomial. The coefficients in (10) can be

computed as

cm
l =

∫ π

0

∫ 2π

0
p(θ, ϕ)Y m

l (θ, ϕ) sin θdθdϕ (12)

(a) (b) (c)

Fig. 5. Generating random shapes using spherical harmonics. (a) A random radius is added
to samples of a sphere at uniform azimuth and altitude angles. (b) The shape is smoothed
using a moving average filter. (c) The smoothed shape is approximated using spherical
harmonics up to degree 7.

By using a low number of harmonics, an additional smoothing effect is achieved.

The objective of using a weighted sum of spherical harmonics is that the resulting

shapes do not have regions of high curvature (which generally matches the charac-

teristics of biological objects) but are not as simplistic as ellipsoidal models. Since

the spherical harmonics represent the surface in closed form, we can precisely sam-

ple the shape into any set of slices, and obtain analytic expressions for the resulting

contours. See Brechbühler et al. [35] for more details about surface parameteriza-

tion using spherical harmonics.

Several random synthetic shapes generated using this procedure with different widths

for the radial distribution are shown in Figure 6. As the parameterσ increases, the

bumpiness increases as well as the overall size of the shape. In our experiment, we

generated the radial random variables from the uniform distribution over[3, 3 + σ]

with 5 differentσ values:σ ∈{0.5, 1.0, 1.5, 2.0, 2.5}. For eachσ, 20 shapes were

generated, giving a total of 100 shapes. Each shape was smoothed using a 2×2
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moving average filter and approximated by spherical harmonics up to degree 7.

Each shape can be fit in a cube with a side length of 10 (there is no corresponding

physical unit since the shapes are synthetic).

(a) (b) (c) (d) (e)

Fig. 6. Examples of synthetic shapes constructed using different widths for the radial dis-
tribution. (a)σ = 0.5. (b) σ = 1.0. (c) σ = 1.5. (d) σ = 2.0. (e)σ = 2.5. All shapes are in
the same scale.

(a) (b) (c)

Fig. 7. (a) A synthetic shape generated using spherical harmonic descriptors. (b) The shape
is sampled into 20 equally-spaced parallel slices, used as reference slices. (c) The shape is
sampled into 17 equally-spaced parallel slices, used as input to each resampling method to
produce 20 parallel slices to compare with the reference slices.

Each randomly-generated shape was then sampled into sets of 20 and 17 equally-

spaced slices as shown in Figure 7. The sets of 20 slices were set aside as reference

and the sets of 17 slices were resampled using both the implicit function and EFD

methods to yield 20 slices at the axial locations of the reference set. For each slice

in a shape, we measured the Hausdorff distance between the reference slice and the

resampled slice, defined as

DH(A, B) = max {dH(A, B), dH(B, A)} (13)
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where

dH(A, B) ≡ max {min {‖a− b‖ , b ∈ B} , a ∈ A} (14)

for two sets of points,A and B. This roughly measures the maximum distance

between the two curves. One slice from the experiment is shown in Figure 8. The

Hausdorff distances from all 20 slices in each shape were then averaged to yield an

overall measure for each shape/method combination. The results for all 100 shapes

are summarized in Table 1 as a function of the uniform distribution width. As can

be seen from the table, while the error grows for “bumpier” shapes, the overall

performance for both methods is virtually identical. The average computational

time required to resample each shape was 5.3 minutes using the EFD method and

38.4 minutes using the implicit function method, a factor of 7.2 difference.

EFD IF

Radial parameter Mean S.D. Mean S.D.

σ = 0.5 0.020 0.002 0.020 0.001

σ = 1.0 0.029 0.004 0.029 0.004

σ = 1.5 0.039 0.005 0.040 0.005

σ = 2.0 0.051 0.011 0.052 0.010

σ = 2.5 0.062 0.011 0.063 0.010
Table 1
Results for the synthetic shape experiment. The EFD columns give the mean and standard
deviation of the Hausdorff distance for resampling using elliptic Fourier descriptors, while
the IF columns give the mean and standard deviation for resampling using the implicit
function method. The results are basically identical, but the EFD required about 7.2 times
less computational time than the IF method.

5.2 Clinical Data

The data used in this experiment is composed of contours of the prostate from

serial CT images, drawn by a physician. Several examples of such contours are

shown in Figure 1. All shapes can be fit in a cube with a side length of 8cm. Unlike
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(a)

(b)

Fig. 8. An example of one synthetic slice interpolated using both the proposed method and
the implicit function method. (a) The original slice (black) and the resampled slice using
EFD (green). (Hausdorff distance = 0.11). (b) The original slice (black) and the resampled
slice using the implicit function method (green). (Hausdorff distance = 0.14).

the synthetic shape experiment described above, here there are no reference slices

to compare with the resampled slices. Hence, we compared the resampled slices

obtained using both methods against each other.

Six datasets were used for the experiment in this section; each dataset corresponds

to the same patient’s prostate on different days of radiation treatment. The num-

ber of examples in each dataset ranges from 13 to 19, giving a total of 99 sets of

contours. The number of axial slices per prostate ranges from 8 to 18. Each set of

contours was resampled into 20 slices using both the EFD and implicit function
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methods, and the Hausdorff distance between the two results was measured slice-

by-slice and averaged for each set as described above. The results are summarized

in Table 2 on a patient-by-patient basis.

Patient Datasets Slices per dataset Mean (mm) S.D. (mm)

1 14 9–14 0.70 0.16

2 17 11–13 0.56 0.12

3 17 10–12 0.81 0.19

4 19 9–18 0.64 0.16

5 19 9–15 0.66 0.21

6 13 8–9 0.48 0.08
Table 2
Results for the prostate shape experiment. The columns give the mean and standard devia-
tion of the Hausdorff distance between the resliced EFD and IF contours for each dataset.
The EFD required about 6.2 times less computational time than the IF method.

The difference between the EFD method and the implicit function method is below

1mm on the average, with a variance of 0.04mm. This error seems acceptable,

since it is less than reported intra-observer variability for contouring the prostate in

CT images (which is itself less than reported inter-observer variability) [37]. The

average computational time required to resample each shape was 3.2 minutes using

the EFD method and 19.9 minutes using the implicit function method, a factor of

6.2 difference.

The resampled contours obtained by the method can subsequently be used for 3D

shape modeling and analysis. For example, we used the resampled prostate contours

described here to build active shape models for the automatic segmentation of the

prostate in CT imagery in the context of radiotherapy planning [38]. Since axial

correspondence is established after resampling the original contours into slices at

desired locations, it is easy to establish points at consistent locations on each 2D

slice based on arc-length and angle constraints, resulting in automatic selection of
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3D landmarks. One resulting shape model is illustrated in Figure 9, which indicates

the mean shape and the first two orthogonal modes of variation for the prostate of

a single patient across 13 different radiotherapy fractions. We designed a segmen-

tation technique that evolves the parameters of the active shape model so that the

histogram of pixel intensities within the shape’s interior matches as well as possi-

ble with an appearance model learned from training data. The result of applying

the 3D segmentation technique with a 10-mode active shape model to a new vol-

umetric CT scan from the same patient is illustrated in Figure 10. In this case, the

median surface-to-surface distance between the implicit surface interpolating the

physician’s ground truth contours and the segmentation estimated by the model is

0.34 mm. Constraining the segmentation with the active shape model learned from

expertly-contoured training data is important for this problem, since the prostate

presents no distinct “edge” in the image itself. A segmentation algorithm based

purely on intensity would naturally expand to segment the entire region that has

similar intensity to the prostate, including the pelvic floor muscles and seminal

vesicles. For more details on the modeling and segmentation techniques, refer to

Freedman et al. [38].

6 Conclusions

We introduced a new algorithm using elliptic Fourier descriptors for reslicing axially-

sampled 3D shapes acquired from medical imagery. The EFD method shows per-

formance virtually indistinguishable from a method using the common approach

of fitting and resampling an implicit function, but has a much lower computational

cost. Therefore, we believe there is no compelling reason to use the generic im-

plicit function method over the simple EFD method for the axial resampling ap-
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Fig. 9. A 3D active shape model built using the resliced contours can produce a variety
of shapes that are consistent with the training data (in this case, a single patient’s prostate
observed on 13 consecutive days of radiotherapy). The horizontal axis shows the variation
along the first mode, and the vertical axis shows the variation along the second mode. The
learned mean prostate shape is in the middle of the figure.

Fig. 10. Using the appearance-histogram-based 3D segmentation method described in [38],
the 3D active shape model is used to segment the prostate from a new volumetric CT scan
from the same patient. The black contours indicate an expert’s hand-drawn estimate of the
prostate, and the yellow contours indicate the automatic segmentation result.

plication. While the EFD method does not apply to certain types of 3D shapes

(e.g. shapes with holes, non-closed shapes), we find it to be quite useful for interpo-

lating soft-tissue organs from tomographic imagery (e.g. the prostate, bladder, and
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rectum), since these objects generally have simple, blob-like cross-sections with-

out branches or regions of high curvature. Several other organs would have similar

blob-like shapes, such as the liver or kidneys. Manually determining a large num-

ber of definitive landmarks on such organs across a population of patients or even

across scans of the same patient on different days would be difficult even for an

expert. As the shapes to be matched become more complex, a point set alignment

algorithm such as [19] might be more appropriate, with a possible penalty in speed.

In such cases, it may also be easier to semi-automatically associate meaningful sur-

face landmarks across organs from different patients, compared to the prostate case.

Our goal in this paper was to show that for simple shapes, fast, accurate reslicing

solutions are possible.
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[24] E. Praun, W. Sweldens, P. Schröder, Consistent mesh parameterizations, in:

SIGGRAPH 2001, 2001, pp. 179–184.

[25] J. Duchon, Splines minimizing rotation-invariant semi-norms in Sobolev spaces, in:

W. Schempp, K. Zeller (Eds.), Constructive Theory of Functions of Several Variables,

Lecture Notes in Mathematics, Springer-Verlag, 1977, pp. 85–100.

[26] T. T. Elvins, A survey of algorithms for volume visualization, Comput. Graph. (ACM)

26 (3) (1992) 194–201.

[27] S. D. Billings, R. K. Beatson, G. N. Newsam, Interpolation of geophysical data using

continuous global surfaces, Geophysics 67 (6) (2002) 1810–1822.

[28] J. B. Cherrie, R. K. Beatson, G. N. Newsam, Fast evaluation of radial basis functions:

Methods for generalized multiquadrics inRn, SIAM Journal on Scientific Computing

23 (5) (2002) 1549–1571.

[29] J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R. Fright, B. C. McCallum,

T. R. Evans, Reconstruction and representation of 3D objects with radial basis

functions, in: Computer Graphics (Proceeedings of SIGGRAPH), 2001, pp. 67–76.

[30] F. P. Kuhl, C. R. Giardina, Elliptic Fourier features of a closed contour, Comput.

Graphics Image Process. 18 (3) (1982) 236–258.

[31] R. Tello, Fourier descriptors for computer graphics, IEEE Trans. Syst. Man. Cybern.

25 (5) (1996) 861–865.

[32] L. H. Staib, J. S. Duncan, Boundary finding with parametrically deformable models,

IEEE Trans. Pattern Anal. Mach. Intell. 14 (11) (1992) 1061–1075.

[33] M.-F. Wu, H.-T. Sheu, Representation of 3D surfaces by two-variable Fourier

descriptors, IEEE Trans. Pattern Anal. Mach. Intell. 20 (8) (1998) 858–863.

26



[34] G. Farin, Curves and surfaces for CAGD: A practical guide, 5th Edition, Morgan

Kaufmann, 2001.

[35] C. Brechb̈uhler, G. Gerig, O. K̈ubler, Parameterization of closed surfaces for 3-D shape

description, CVGIP: Image Understanding 61 (1995) 154–170.

[36] G. B. Arfken, H. J. Weber, Mathematical Methods for Physicists, 6th Edition,

Academic Press, 2005.

[37] C. Fiorino, M. Reni, A. Bolognesi, G. M. Cattaneo, R. Calandrino, Intra- and inter-

observer variability in contouring prostate and seminal vesicles: Implications for

conformal treatment planning, Radiother. Oncol. 47 (1998) 285–292.

[38] D. Freedman, R. J. Radke, T. Zhang, Y. Jeong, D. M. Lovelock, G. T. Y. Chen, Model-

based segmentation of medical imagery by matching distributions, IEEE Trans. Med.

Imaging 24 (2005) 281–292.

27


