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1. INTRODUCTION

This paper addresses several estimation problems involving
correspondence in digital video. We present three cases, in
order of increasing complexity: affine transformations, pro-
jective transformations, and general correspondence. We re-
view some recent research in the first two cases, and present
a new framework for discussing the third case.

Many image and video processing problems hinge on
possessing a dense (subpixel-level) estimate of correspon-
dence between a set of still images. Generally the cameras
which produced the images are uncalibrated, i.e., their lo-
cations and orientations are unknown. The classical cor-
respondence problem is a fundamental and difficult prob-
lem in computer vision, as evidenced by more than 30 years
of research. Notable approaches include feature-based pa-
rameter estimation [18, 23], interpolation of feature cor-
respondences [4, 11, 20], optical flow [1, 3], layered mo-
tion [2, 9, 22], and correspondence along conjugate epipolar
lines [5, 6, 10, 12, 21].

While in some applications, an unstructured optical flow
field may be an adequate representation of correspondence
between an image pair, there are many practical situations
in which a parameterized or structured correspondence is
induced by the geometry of the cameras. In addition to cou-
pling the correspondence to a physical modeling assump-
tion, parameterized correspondence is generally more con-
sistent, easier to manipulate, and gives more information
about the relationships between images.

Domains where parametric global motion models arise
include orthographically projected images (6 affine param-
eters) or images taken by a rotating camera (8 projective pa-
rameters). In the first case, we compute the variance in esti-
mation of affine parameters from noisy feature correspon-
dences. We further discuss how multiple pairwise trans-
lation estimates can reduce the variance of the joint esti-
mation of translation over an image sequence. In the sec-
ond case, we demonstrate how the least-squares estimation
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of 8 projective parameters can be reduced analytically to a
2-parameter minimization that is computationally efficient
and exposes new structure between the transformation pa-
rameters.

In general, the correspondence between an image pair
has no simple global parameterization. In the difficult case
of cameras separated by a non-negligible translation, tradi-
tional methods from stereo or optical flow are not applica-
ble due to the large perspective difference between images.
However, the set of correspondences which are physically
realizable is not entirely unconstrained and has a structure
described bycorrespondence graphs. We discuss how to
use the formalism of correspondence graphs to ensure that
any estimated correspondence is physically valid.

2. ESTIMATION OF AFFINE PARAMETERS

Affine transformations arise in the case of orthographically
projected images or as approximations to nonlinear global
transformations. The form of an affine transformation ap-
plied to a pointw = (x, y) ∈ R2 is:

gA,b (w) = Aw + b

whereA ∈ R
2×2, b ∈ R

2. Affine transformations can
be estimated from a noisy set of feature correspondences
{wj 7→ w′j ∈ R2, j = 1, . . . , N} by minimizing the least-
squares functional

Q(A, b) = 1
2

∑N
j=1

(
w′j −Awj + b

)T (
w′j −Awj + b

)
(1)

The solution to this linear least squares problem is well
known and is given by:

b̂ = w̄
′

(2)

Â = Σww′ (Σww)−1 (3)

provided that we move the center of coordinates so that∑N
j=1 wj = 0. Herew̄

′
= 1

N

∑N
j=1 w

′

j , Σww′ =
∑N
j=1(w

′

j−
w̄
′
)wTj andΣww =

∑N
j=1 wjw

T
j .



To evaluate the quality of the estimates we need to com-
pute their mean and variance. If the errors in measurement
of the feature correspondences,ej = w

′

j − Awj − b, are
zero-mean i.i.d. random variables with covariance matrix
σ2I, we can determine the statistics of the estimates(Â, b̂)
by writing (2) and (3) as

b̂ = b+ 1
N

∑N
j=1 ej (4)

Â = A+ (
∑N
j=1 ejw

T
j )(Σww)−1 (5)

It is clear that the estimates(Â, b̂) are both unbiased.
Straightforward computation gives the covariance matrix of
b̂ as Σb̂ = σ2

N I. Setting â = (Â11, Â12, Â21, Â22), the
covariance matrix of̂a can be written as:

Σâ = σ2

N
1

δ2
xδ

2
y−δ2

xy


δ2
y −δ2

xy 0 0
−δ2

xy δ2
x 0 0

0 0 δ2
y −δ2

xy

0 0 −δ2
xy δ2

x


whereδ2

x = 1
N

∑N
j=1 x

2
j , δ

2
y = 1

N

∑N
j=1 y

2
j and δ2

xy =
1
N

∑N
j=1 xjyj . Lengthy but straightforward computation

also shows that̂A andb̂ are uncorrelated.
If the feature points are distributed uniformly over the

image, the elements of̂A are uncorrelated andvar(Â11) =
var(Â21) = σ2

Nδ2
x

, var(Â12) = var(Â22) = σ2

Nδ2
y
.

Hence, the variance of the estimates of the affine pa-
rameters depends on the number and location of the feature
points, as well as the precision of the feature matching algo-
rithm which produced the correspondences. This informa-
tion could be helpful in constructing an image registration
algorithm.

This estimation problem can be extended to the joint
registration of a sequence of images [7, 17]. Simply su-
perimposing pairwise estimates is suboptimal for the joint
estimation problem and leads to unstable error growth. Pro-
vided that the images are related by translation only and that
every image can be registered to itsM nearest neighbors,
we can estimate the translation between all pairs of images
and collect the measurements into a set of linear equations:

pij = Xj −Xi + eij , 0 ≤ i, j ≤ N − 1

whereXi is the unknown position of thei-th image,pij
is the measurement of translation between thei-th andj-th
images, andeij is the error in the estimation of translation.
Rewriting this equation in the matrix formp = AX + e
and assuminge ∼ N(0, I) allows us to define the optimal
maximum likelihood estimate ofX as a linear function of
the available measurements:

X̂ = (ATA)−1AT p (6)

The statistics of̂X were studied in [24], which proposed
three different approaches to the analytical evaluation of the
variance of (6) as a function of the sequence lengthN and
the number of neighboring imagesM . It was shown that the
three approaches give similar results (see Figure 1) and that
compared to simple superposition (which gives a variance
growth proportional toN ), the worst variance in estimation
for the optimal maximum likelihood solution is reduced by
a factor ofM3.
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Fig. 1. The worst variance in estimation

Specifically, for linear and circular sequences of images:

max
i
varlin(X̂i) ≈ 3N

M3
+

1
M

max
i
varcir(X̂i) ≈ 3N

4M3
+

1
M

The optimal combination of additional measurements sub-
stantially reduces the worst variance in estimation, although
for fixed M , the worst variance will be unbounded if we
allow the length of the sequence to go to infinity. In this
case, by allowing the maximum distance of measurements
to grow as 3

√
3N (linear case) or3

√
3N/4 (circular case) we

can ensure that the worst variance will not exceed the vari-
ance of an individual measurement; that is, the error growth
can be stabilized.

3. ESTIMATION OF PROJECTIVE PARAMETERS

Projective transformations relate the coordinates of image
pairs which are either (1) taken by a rotating camera with-
out translation, or (2) images of a planar surface taken by
a rotating and translating camera. The form of a projective
transformationM = (A, b, c) applied to a pointw ∈ R2 is:

gM (w) =
Aw + b

cTw + 1
(7)

whereA ∈ R2×2, b ∈ R2, c ∈ R2. As above, we seek to
minimize a least-squares functional of noisy feature corre-



spondences{wj 7→ w′j ∈ R2, j = 1, . . . , N}:

Q(M) = 1
2

∑N
j=1

(
w′j −

Awj+b
cTwj+1

)T (
w′j −

Awj+b
cTwj+1

)
(8)

As written, this is a nonlinear minimization over an 8-
dimensional Euclidean space. However, it was shown in
[13] that the optimal values ofA andb are actually the solu-
tions to a linear system involving the optimal value ofc and
the data, namely:

[ A b ]W (c) = V (c) (9)

whereqj(c) = cTwj + 1 and

W (c) =

 ∑N
j=1

wjw
T
j

q2
j (c)

∑N
j=1

wj
q2
j (c)∑N

j=1

wTj
q2
j (c)

∑N
j=1

1
q2
j (c)

 (10)

V (c) =
[ ∑N

j=1

w′jw
T
j

qj(c)

∑N
j=1

w′j
qj(c)

]
(11)
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Fig. 2. The cost functionJ(c).

We see that the problem of estimating the eight parame-
ters of a projective transformation can be divided into a lin-
ear problem involving the six “affine” parameters(A, b) and
a nonlinear problem involving the two “projective” param-
etersc. Therefore, we can reduce the projective transforma-
tion estimation to the 2-dimensional nonlinear minimization
of

J(c) = 1
2

∑N
j=1

(
w′j −

A(c)wj+b(c)
cTwj+1

)T (
w′j −

A(c)wj+b(c)
cTwj+1

)
(12)

whereA(c) andb(c) are defined through (9). This function
can be efficiently minimized using an approximate Newton-
Raphson scheme described in [13]. This result also gives us
a way to visualize the shape of the cost function, as illus-
trated in Figure 2. In addition to providing a computational
and visual advantage, casting the estimation problem in the
two-dimensional setting allows us to more easily explore
properties of the cost function such as continuity, convexity,
and conditions for the existence of multiple local minima.

4. GENERAL CORRESPONDENCE

For an arbitrary image pair of the same scene, the onlya pri-
ori constraint on correspondence is the well-known epipolar
constraint [8]. The family of conjugate epipolar line pairs
for an image pair may be generated by intersecting the set
of all planes which contain the baseline with the two im-
age planes. It follows that the correspondence of any point
on an epipolar line in one image, if it exists, must lie on
the conjugate epipolar line in the other image. In theory,
this reduces the correspondence problem to a series of 1-D
matching problems, each of which can be viewed as finding
a path through a graph, as pictured in Figure 3.1
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Fig. 3. Epipolar matching graph.

The monotonicity assumption that scene points are pro-
jected onto conjugate epipolar lines in the same order is a
standard assumption of many correspondence algorithms,
which typically use dynamic programming to efficiently ob-
tain a solution. However, the monotonicity assumption is
generally invalid for cameras whose centers of projection
are widely separated with respect to their distance to points
in the scene.
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Fig. 4. Violations of monotonicity.

Figure 4 illustrates regions of two images of the same
scene, rectified so that epipolar lines are horizontal. The
numbered objects appear in different orders along conju-
gate epipolar lines due to the large perspective difference
between the images. Each inconsistency in ordering gener-
ates a local violation of the monotonicity assumption in the
affected conjugate epipolar lines. A monotonic path through
a matching graph such as the one illustrated in Figure 3 can-
not represent the correct matching.

1A projective transformation induces a linear path through such a
matching graph.



Unfortunately, relaxing the monotonicity assumption to
allow arbitrary matching of points between conjugate epipo-
lar lines results in a problem of high combinatorial complex-
ity, insoluble by a dynamic programming algorithm [15].
However, the set of correspondences which are physically
realizable is not entirely unconstrained, and has a specific
structure which we derive below.

4.1. The Correspondence Graph

In the following, we fix a pair of cameras(C0, C1) whose
centers of projection areO0 andO1, respectively. These
cameras have associated image planesP0 andP1, which lie
between the cameras’ respective centers of projection and
the sceneS, a collection of points inR3. Select a plane
Φ containing the baseline, and view the intersection ofΦ
with the camera centers, the image planes, and the scene
points as an imaging system with a 2-D sceneS = S ∩ Φ
and 1-D image planes (the pair of conjugate epipolar lines
(e0, e1)). We fix a coordinate system(x, y) on Φ by letting
O0 = (0, 0) and placingO1 at (1, 0).2 The epipolar linese0

ande1 inherit natural one-dimensional coordinate systems
(denotedi andj respectively), oriented so that increasingi
andj correspond to increasingx. A correspondenceis the
realization of a point(x, y) in the scene as a pair(i, j) ∈
e0×e1. We will denote asS′ the representation of the scene
S in (i, j)-space.

We define two new coordinate systems,(r0, θ0), (r1, θ1)
defined in terms of the coordinates(x, y) of a pointp by:

(x, y) = (r0 cos θ0, r0 sin θ0) (13)

(x, y) = (r1 cos θ1 + 1, r1 sin θ1) (14)

These are just the “polar coordinates” of(x, y) with respect
to O0 andO1, respectively. It is clear that the mappings
between the four sets of coordinates are bijective, and hence
the coordinate transforms(i, j) = J0(r0, θ0) and(i, j) =
J1(r1, θ1) are well-defined. An important property of these
mappings is:

Proposition 1 For any fixedθ0, θ1 ∈ (0, π),

∂i
∂r0

= 0 ∂j
∂r0

> 0 (15)
∂i
∂r1

< 0 ∂j
∂r1

= 0 (16)

The proof is straightforward and can be seen from the
diagram in Figure 5. The intuition is that any ray fromO0

maps to a line segment with fixedi in (i, j)-space, and pro-
vided that the ray is on the “right side” of the baseline, the
segment is traversed in the direction of increasingj as we
move away fromO0. Similarly, any ray fromO1 maps to a
line segment with fixedj in (i, j)-space, which is traversed
in the direction of decreasingi.

2Scene points are assumed to have positivey coordinates.
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Fig. 5. Mapping from(x, y)-space into(i, j)-space.

Definition. Thecorrespondence graphC ⊂ e0 × e1 of a
sceneS with respect to the camera pair(C0, C1) is the set of
all points inS which are visible (i.e. unoccluded) in bothe0

ande1, transformed into(i, j)-space.

Definition. A setA of points in(i, j)-space is aSoutheast
setif the subsets{(a, b) ∈ A | a = i} and{(a, b) ∈ A | b =
j} have at most one element for alli, j.

Definition. TheSoutheastingoperation produces a South-
east setA′ from a setA as follows:

(i, j) ∈ A′ ⇔ (i, j) ∈ A and {(a, j) ∈ A | a < i} and
{(i, b) ∈ A | b > j} are empty

Proposition 2 The correspondence graphC for a sceneS
with respect to(C0, C1) can be generated by Southeasting
the transformed sceneS′.

Proof. We know that the correspondence graphC is a
subset of the transformed sceneS′. It remains to determine
which points inS′ actually appear in both images. Fixi and
consider the set of pointsS′i = {(a, b) ∈ S′ | a = i}. From
Proposition 1, these points lie on the same ray fromC0 in
(x, y)-space. The pointp′ with the smallestj coordinate is
closest toC0 and is hence the only point along the ray which
is imaged byC0. Therefore, the points inS′i with largerj
coordinates thanp′ are not retained in the correspondence
graph. Similarly, for fixedj, consider the setS′j = {(a, b) ∈
S′ | b = j}. These points lie on the same ray fromC1
in (x, y)-space, and the only point which is retained in the
correspondence graph is that pointq′ which has the largest
i coordinate.

The operation described above is simply the Southeast-
ing of the setS′. By construction, the remaining elements
in the Southeasted set are precisely those points which ap-
pear in both cameras and hence this Southeasted set is by
definition the correspondence graph ofS′. 2

The converse of the above theorem (i.e. any Southeast



set is the correspondence graph for some physical scene) is
also true, but we omit the proof here.
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Fig. 6. Example correspondence graph.

A schematic example of a correspondence graph is shown
in Figure 6. Note that segments 3 and 6 appear in differ-
ent orders in the projections ontoe0 ande1, a violation of
monotonicity sometimes known as thedouble-nail illusion.
While dismissed as relatively uncommon in stereo, this phe-
nomenon is typical in widely-separated image pairs.

4.2. Estimation

Using a correspondence graph estimate, we can decide which
regions appear in both images, which in only one image,
and which in neither image. By ensuring that an estimated
correspondence produces a valid (i.e. Southeast) correspon-
dence graph, we are prevented from attempting to match
pixels from regions that do not appear in both images. The
“holes” in the correspondence graph can also be used to
estimate the correct locations of regions not seen in both
images. Our algorithm for estimating the correspondence
between a general image pair proceeds as follows:

1. Segment and match the objects which violate mono-
tonicity. Linearly interpolate between matched edges
to obtain an initial correspondence within the seg-
mented regions.

2. Estimate a global correspondence for the background
regions. In the example from [14], this correspon-
dence was initialized by estimating a projective trans-
formation which related a dominant plane in the im-
age pair, using the algorithm discussed in Section 3
above and in [13]. In a video sequence, this corre-
spondence could be a propagated estimate from a pre-
vious frame pair.

3. Estimate the epipolar geometry [25].

4. For each pair of conjugate epipolar lines, generate
the correspondence graph by Southeasting the set of
background and foreground correspondences.

5. Refine the monotonic pieces of each correspondence
graph using an interval matching algorithm (e.g. [12]).

Since by construction, each piece of the correspondence
graph is monotonic, a correspondence algorithm which as-
sumes monotonicity can be applied to each piece of the
graph independently. If the estimate for the global back-
ground correspondence is sufficiently accurate, the refine-
ment step may be constrained to select a matching path
which lies in a nearby neighborhood of the initial matching
path.

Fig. 7. Three images of a goal.

Operating on correspondence graphs allows us to ob-
tain physically realistic transitions between object locations.
Figure 7 illustrates a soccer goal seen from three perspec-
tives: two real images (left and right) and a synthesized vir-
tual image (center). The upright part of the goal and the
goalie were segmented and used as input to the correspon-
dence graph estimation algorithm. The floor of the goal is
initially estimated to lie on the plane of the soccer field. The
virtual image shows a perspective not seen in either of the
real images: instead of being entirely within or outside of
the goal mouth, the goalie passes in front of the upright.

4.3. Propagation

Though in some applications, tracking a small set of fea-
tures through a video sequence [19] is sufficient, several
modern computer graphics techniques require the accurate
estimation of pixel-dense correspondence between frames
of multicamera video.



Previously published work [14] addressed the creation
of virtual video from a pair of synchronized video clips
taken by widely separated, rotating cameras. The virtual
camera can rotate and move along the baseline connecting
the two camera centers, and the virtual video evolves at the
same rate as the input video. The algorithm is based on view
morphing [16], a computer graphics technique for creating
a virtual image from a pair of stills given dense correspon-
dence between them. Estimating and efficiently propagating
this dense correspondence between image pairs was there-
fore the key problem to be solved. Furthermore, video in the
database exhibited frequent monotonicity violations, which
were dealt with using the formalism of the correspondence
graph discussed above.

Space precludes its inclusion here, but Radke et al. [14]
proposed a framework for the recursive propagation of cor-
respondence graphs, exploiting the temporal regularity of
video. The propagation consists of a time update step and
a measurement update step. The time update depends only
on the dynamics of the rotating source cameras, while the
measurement update can be tailored to any member of a
general class of image correspondence algorithms. Using
these results, the correspondence graphs can be propagated
and updated in a fraction of the time required to estimate
them anew at every frame.

5. CONCLUSIONS

We addressed several aspects of estimating correspondence
in digital video, moving from the assumption that global
correspondence can be well-modeled by an affine or pro-
jective transformation to the general case when correspon-
dence is nearly unconstrained. We have obtained reliable
correspondence estimates in our research by applying a simple-
to-complex approach. That is, a coarse-to-fine affine trans-
formation estimation is used to obtain an initial registration
of an image pair. From this registration, features are ex-
tracted and a projective transformation estimated. Finally,
the projective transformation can be used as the initial back-
ground for estimating a set of correspondence graphs.
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