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Abstract 
This paper presents a new approach for region-based 
video mosaicing, treating moving objects separately from 
the background, and with improved ghost-like noise 
elimination. The mosaic images show the moving objects 
superimposed over a stationary background. Conven-
tional technologies can reduce the ghost-like noise that 
occurs from moving objects by using temporal median 
filtering, but its efficiency depends on the ratio between 
the speeds of the camera and the moving object. Our 
technology eliminates these noises more efficiently by 
using segmented images of a spatio-temporal video se-
quence. Segmentation is performed using a novel tech-
nique that uses different configurations of quad-trees for 
the initial separation in the split-and-merge process. The 
segmented images are also used to display tracked mov-
ing objects on the panoramic image.  
 
1. Introduction 
     Video mosaicing is useful in a variety of tasks for appli-
cations envolving video, such as synthesizing, summari-
zation, and compression. In conventional video mosaicing 
technologies[3][4][5][7][8], all frames from a video se-
quence are projected on an adaptive surface, and a pano-
ramic image is created by determining pixel values from 
successive frames. In the process, pixe ls reminiscent of 
moving objects are also blended, resulting in the pre sence 
of a ghost-like noise in the panoramic image. In order to 
solve this problem, temporal median filters have been used 
and claimed to be efficient. However, they actually depend 
on the speed difference between the camera and the mo v-
ing object. Therefore, slowly moving objects can not be 
completely eliminated.  
     In our method, firstly we segment regions that consist 
of moving objects and a stationary background, tracking 
the moving objects in a spatio-temporal buffer over multi-
ple frames. Secondly, motion parameters of the camera are 
estimated from motion vectors of feature points in the 

background region. These feature points are obtained 
from correspondence between frames. Background re-
gions of the video sequence are then projected on the 
most suitable reference frame, but as the regions of mo v-
ing objects are cut out from the images, values of pixels in 
the regions occluded by moving objects can not be de-
fined at the moment. They are obtained from the pixels in 
the background regions that are disclosed after the ob-
jects move to other locations. Since the pixels of moving 
objects are not taken in account, the false pixel values that 
yield the ghost-like noise in the panoramic image are 
eliminated. Finally, our system augments visualization by 
showing not only the panoramic image with a realistic 
wide-angle view, but also the images of tracked objects 
(moving objects selected by the user) superimposed in a 
strob oscopic fashion. 
 
2. Failure Case of a Temporal Median Filter 
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Figure 1: Histgram of temporary projection on each 
pixel 
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     In the creation of a panoramic image, the stationary 
background is supposed to be obtained from pixels in the 
video sequence corresponding to a same location in the 
panoramic image, sampled over a period of time long 
enough for moving objects to pass. In this case, as shown 
in Fig. 1 (a), a temporal median filter is effective in eliminat-
ing fast moving objects. However, when an object moves 
slowly, as shown in Fig. 1 (b), the camera during few 
frames captures the region of the background occluded by 
the object. The period of capturing background is not 
much longer than one of capturing an object on a particu-
lar pixel. In this case the temporal median filter fails to 
output the correct value for the background pixel, so that 
a ghost of the moving object appears in the final pano-
ramic image. In order to eliminate this ghost, each pixel 
should be manipulated as being connected to adjacent 
pixels. It requires regio n segmentation, as explained next. 
 

3. Spatio-Temporal Region Segmentation 
     In order to solve the problem of segmenting and track-
ing an object, many conventional approaches use snakes 
and active tubes techniques of dynamic contour detection. 
They require a correct initialization, so that objects’ initial 
contours include the objects themselves.  However, it is 
not convenient to tie the initial contours to a particular 
frame of the video sequence. 
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Figure 2. Different configurations of quad-trees be-
tween successive frames 
 
     The proposed technique segments regions and tracks 
them as predefined objects in a spatio -temporal buffer, 
where multiple frames are stored without initial contours. 
     First, all images in the buffer are spatially segmented by 
the split-and-merge method, which separates and merges 
regions on the basis of colors in the structure of a quad-
tree. The shapes of the initial regions obtained by the 
split -and-merge method depend on the configurations of 
the quad-tree. Our approach uses different configurations 
of qu ad-trees for each frame, that is, splitting home posi-
tions are different in successive frames. These images 
have different approaches of region growing, so that 
initial shapes of regions overlapped between successive 
frames are different from each other, as shown in Fig. 2. 
When the camera does not move and all objects are sta-
tionary, all pixel value differences between successive 
frames are nearly equal zero. In this case, the results of 
segmentation should depend on the spatial features. As 
spatial features, we use not only colors, but also the pa-
rameters of Gaussian Markov Random Field (GMRF) 
model[2][5], which can express texture features and is 
effective for obtaining the exact boundaries of texture 
regions. We use the four neighbors model of GMRF and 
the intensity plane of the image for texture segmentation. 
Assuming Gaussian distribution of potential of image Xij, 
GMRF is expressed as follows: 
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where K is constant value for normalization and Σ is 
squared mean value of the region. The spatial correlation 
at the element (i, j) expressed as follows: 
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The parameters of GMRF are determined from the coding 
method by Besag[1] and the maximum likelihood estima-
tion (MLE). The initial regions are separated according to 
their colors and the parameters of GMRF in the entire 
region; however, it is computationally expensive to seg-
ment and track entire objects from their spatial features, 
because the parameters of the GMRF model are obtained 
from MLE. When a region is not perfectly overlapped 
between successive frames and the gradient along the 
boundary is too small, the part of the boundary that sepa-
rates regions can be reduced, and thus the regions can be 
merged at a lower computational cost than by using the 
GMRF parameters. Additionally, regions merged by only 
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spatial features are not robust with respect to exact track-
ing over successive frames, because the gradient given by 
texture features often splits initial regions in overly small 
sizes, and motion is blurred by erosion of the shapes of 
the objects. Therefore, we use motion displacement along 
the boundaries calculated from spatio-temporal intensity 
gradients. When motion displacements are the same along 
a portion of the boundary that separates regions, that 
portion of the boundary can be taken as a part of the true 
contour of an object. Otherwise- that is, when motion 
displacements consist of disparate values along a candi-
date boundary- the candidate should be considered a 
false contour and be rejected. A dominant motion of the 
camera movement is determined from corresponding fea-
tures in the whole image between successive frames, as 
described in the next section. It can be judged from differ-
entiation between successive frames shifted by a domi-
nant motion whether a candidate boundary is rejected or 
not. All boundaries should be verified in the buffer of 
multiple frames not only between successive frames, but 
also between every third and every sixth frame. Regions 
inside the true contour can then be tracked as parts of the 
same object. To take account of occlusion, motion dis-
placement of a region inside the contour is determined 
from its maximum value along the true contour.  
     In order to segment a player's region, adjacent regions 
that have close motion displacements should be merged 
into a single object, even if their colors and texture fea-
tures are different, since the region may be a part of a face, 
an arm, a shirt, a pair of shorts, or a leg. We employ typical 
color map of players' regions of both teams that are cut 
out from a frame. Hence, the proposed algorithm is effec-
tive for segmenting and tracking predefined objects. 
 

4. Recovery of Camera Motion 

     We employ a pin-hole camera model that  is generally 
used to model the camera perspective projection. The 
perspective model gives the exact representation to ac-
count for all the possible camera motions, compared with 
the other approximated models; the parallel transformation 
and the affine one (including para-perspective and weak 
perspective transformation), although its parameters are 
mathematically and computationally too hard to estimate. 
In our application, the camera is fixed on a tripod, giving 
images which have small translational displacements 
because the rotation axes does not coincide with the 
optical center of the camera (considering that the camera 
performs only rotational movements). However, the depth 
of the field of view is at least 40 meters far from the camera, 
so that the translation is much smaller than the scene 
depth. Therefore, our approach assumes a zero translation 
model between successive images of the video sequence. 

     Selecting image features in an image whose corre-
sponding locations in order images can be precisely meas-
ured is an important problem for estimating the exact 
parameters. In our approach, we employ Tan's method[9]  
that  selects block features that have rich enough intensity 
textures and consistent inter-frame motions and finds 
correspondences between images. With this method, a 
quantitativ e measure can be obtained to select good mo-
tion features from images in the sense of the maximum 
likelihood estimation for estimating motion parameters 
about the multiple motion models of the rotation and 
scaling factors. In order to the estimation stable when a 
few data points are wrong, a robust estimation is also 
needed. We employ the M-estimation for robustness, 
which is applied with the Geman-McLure function. Since 
M-estimation requires an initial estimate, firstly we use the 
initial estimate determined from the least squares method. 
Although the least squares method for estimating parame-
ters has non-linear equation, we can assume the rotational 
transformation should be small between successive 
frames, so that the initial estimate can be determined from 
linear equations. By using the initial estimate, the typical 
value of the standard residuals is defined as the median of 
the absolute residuals . The revised parameters are calcu-
lated by using the adjusted effective weight  iteratively. 
When the residual be comes smaller than the threshold, 
the estimation process is finished. 
 

5. Representation of Regions 
     In our approach, all pixels in the video sequence are 
classified as regions. We use the video of the soccer game 
as the target contents.  The camera was set on the stand at 
the distance of 80 m from the center of the field, whose 
field of the view was covered over both sidelines mostly.  
The focal length of the camera was not made change 
suddenly. Almost players moved from the right to the left 
or from the left to the right. The lawn area on the field and 
the stand were defined as the background. In the segme n-
tation process, the only object in the field was extracted 
from the background. The objects except for the back-
ground were defined as a ball and the players. The sta-
tionary lines, that is, side lines, goal lines, and penalty 
lines, and the goal post were merged in the background.  
     The region is described as the minimal bordered rec-
tangle that has a binary bitmap presented the inside re-
gion as "1'' and the outside one as "0''. All regions have 
the bitmaps. We applied the maximum region that is de-
fined as the background for generating the planar pano-
ramic image. 
 

6. Rendering Results 
     In our examinations, the dominant motions of image 



features were generated mainly from panning around the Y 
axis  in the camera coordinate systems. The secondary 
important parameter was tilting around the X axis, but it 
was much smaller than the panning. There was no rolling  
around the Z axis. 
     We defined the projection surface as planar. The most 
suitable projective plane is defined by calculating the 
span of  the camera panning movement and choosing the 
frame nearest the central position. After the projective 
transform, there are cases when a pixel does not have a 
correspondent in the original frame, thus bilinear interpo-
lation is used to set its value. A more vivid image could be 
obtained by processing the pixels as they are read from 
the original sequence of frames, so that the most recently 
inputted pixels are given priority over the ones already 
read. It is done by taking the mean value between the 
average of the pixels already read and the newly inputted 
one.  
     The interlaced video yields a large displacement be-
tween the odd and the even fields. In our approach, while 
video mosaicing of the stationary background is gener-
ated from both fields of all images, moving objects are 
drawn from newly inputted images of odd fields only, 
ignoring objects in the even fields. The image of a moving 
object copied from the odd field is drawn on the even field. 
The video has D1 quality, with 704 by 480 pixels of resolu-
tion, 30 fps. interlaced, and 4:2:2 YUV colors. Fig. 3 shows 
the background panoramic image created from eight 
frames sampled from a sequence of 31 frames. The image 
plane of the 15th field was selected as the most suitable 
projective image. In this sequence, the camera moved with 
rapid panning, so that the temporal median filter left a 
moving object partially like as ghost-like noise, as shown 
in Fig. 3 (b). The detail results of the effectiveness of the 
temporal median filter on particular pixels are shown in Fig. 
5. In Fig. 5 (b), the lower peak was yielded by a moving 
object and the value remained after temporal median filter-
ing.  
 

 
(a) A result by using segmented regions 

 

 
(b) A result by the temporal median filter 

 
Figure 3. Comparison of results by using segmented 
region and temporal median filter  

 
 
Figure 4. Mosaiced background and superimposed 
objects 
 

(a) Frequency of captured images on a pixel of the 
background region 

(b) Frequency of captured images on a pixel of the 
region including a moving object  
 
Figure 5. Examples of the effective temporal median 
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filter and occurrence of ghost-like noise 
 

 
 Figure 6. Selected objects superimposed on mo-
saiced background 



Figure 7. Mosaiced background and superimposed moving objects 
 
 

     Our approach output the result of mosaiced back-
ground by using segmented regions and superimposed 
moving objects on it, as shown in Fig. 3 (a) and Fig. 4, 
respectively.  
    Since all objects are independent, we can select the 
objects to be tracked or watch the animation of those 
selected moving objects. Fig. 6 shows the stroboscopic 
painting of the selected three players by three frames on 
the background panoramic image. 
     Fig. 7 presents the realistic efficiency of the panoramic 
image in the wide angle from a long sequence of 141 
frames. 

 

7. Conclusions  
     We developed a new technique to generate a planar 
projective panoramic image from segmented regions. The 
background of the panoramic image was created from the 
largest regions segmented by spatio-temporal constraint, 
giving a realistic visualization from a wide-angle panoramic 
view. The moving objects were drawn independently of 
other regions, using newly inputted images. The advan-
tage of our method is the elimination of false pixels that 
occur from moving objects in the planar projective pano-
ramic image, because the panoramic image is made solely 
from the stationary background. In addition, another ad-
vantage is the ability to display tracked objects of or an 
animation of those moving object selected by the user, 
because all previously segmented objects can be handled 
independently.  
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