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ABSTRACT

We present a system for automatically identifying dominant
motions in a crowded scene. Accurately tracking individual
objects in such scenes is difficult due to inter- and intra-object
occlusions that cannot be easily resolved. Our approach be-
gins by independently tracking low-level features using opti-
cal flow. While many of the feature point tracks are unreli-
able, we show that they can be clustered into dominant mo-
tions using a distance measure for feature trajectories based
on longest common subsequences. Results on real video se-
quences demonstrate that the approach can successfully iden-
tify both dominant and anomalous motions in crowded scenes.
These fully-automatic algorithms could be easily incorporated
into distributed camera networks for autonomous scene analy-
sis.

Index Terms— Crowd Motion Trajectories, Longest Com-
mon Subsequence, Clustering

1. INTRODUCTION

Recent advances in visual sensor technology, digital commu-
nications, and networking have enabled the deployment of a
growing number of camera networks for varied surveillance
applications. One current research focus involves integrating
intelligent vision systems with these visual sensors to develop
smart camera networks that can automate processes such as
surveillance and event recognition. While earlier vision sys-
tems (e.g., [1, 2]) were focused on developing efficient track-
ing techniques for relatively isolated objects, our goal here is
to automatically identify patterns of motion in highly crowded
scenes, where it may be very difficult to accurately track in-
dividual objects.

In many visual tracking applications, object motion is rep-
resented by trajectories of feature points, segmented object
contours [3] or object model centroids [4]. It is often impor-
tant to group similar trajectories into clusters for modeling
trajectory distributions or for understanding motion patterns.
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Fig. 1. An example frame from a video of a crowded scene.
Dominant motions are indicated by the three arrowed lines.

In this paper, our objective is to cluster motion trajectories
in scenes having high crowd density. Fig. 1 shows an exam-
ple frame from a video of a high density crowd. The center
of the image is crowded by tens of people getting on and off
a train platform. High crowd density situations pose several
challenges to automated tracking. For example, inter- and
intra-object occlusions are highly common, and result in poor
feature extraction and tracking. Hence, it is difficult to obtain
a long, reliable track of a single feature point. Feature point
tracks that represent motion of the same physical object are
likely to disappear or diverge over the course of the video se-
quence. Clustering such motion trajectories is difficult, but
is essential for several applications including event detection
and content-based video retrieval.

Our approach begins by independently tracking low-level
object features using an optical flow algorithm. Since our ob-
jective is to identify dominant, not individual, motions, we
need not link, fix, or otherwise precondition these point tracks,
unlike related work on counting individuals in a crowd (e.g.,[5,
6]). Instead, our clustering is based on the similarity of point
track segments measured using an algorithm based on longest
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common subsequences (LCSS). While many of the individ-
ual feature point tracks are unreliable, we show that we can
automatically cluster them using an appropriate ordering and
metric, and identify dominant motions in a crowded scene.

The rest of the paper is organized as follows. In Section 2
we review some recent work on trajectory clustering. In Sec-
tion 3 we outline our clustering framework. Results obtained
from real video sequences are shown in Section 4. Section 5
concludes the paper with ideas for future work.

2. RELATED WORK

Formally, we define a trajectory as a set of points{(xt, yt), t =
Tinit, . . . , Tfinal} representing discrete spatial locations tra-
versed by a single feature point over time. Generally, we ex-
pect feature points identified on the same physical object to
have similar trajectories, as well as feature trajectories gener-
ated by other objects traversing the same spatial path.

Recently, Khalid and Naftel [7] showed that time-series
modeling can be applied to object trajectory classification and
pattern discovery. In their work, high-dimensional trajectory
data is projected to a suitable lower-dimensional coefficient
space. Classification and pattern discovery analysis is per-
formed in the lower-dimensional space. They concluded that
motion trajectories were well represented by frequency-domain
coefficients. The coefficient vectors were used as input to
a neural network algorithm that learned similarities between
object trajectories in an unsupervised manner.

In their work related to counting pedestrians in a video
sequence, Antonini and Thiran [8] showed that motion tra-
jectories projected onto the independent component analysis
(ICA) space yielded a better representation for clustering than
the original time-series data. Recent work by Junejo et al. [9]
showed that graph cuts can be used for clustering trajecto-
ries. Nodes of the graph represent trajectories; each node
is connected to every other node, and the edge weights are
the Hausdorff distances between the trajectories. Graph cuts
are used to recursively partition the graph into binary clus-
ters consisting of similar trajectories. Alon et al. [10] pro-
posed a system for clustering similar object motions, based
on a hidden Markov model (HMM). They assumed that mo-
tion trajectories are generated from a mixture of HMM mod-
els and estimated the mixing coefficients using a expectation-
maximization framework.

Piciarelli and Foresti [11] proposed an online clustering
method where clusters are dynamic and built in real time as
trajectory data is collected. Here, the object paths are de-
fined using a tree representation, and path segments represent
the branches. Their algorithm assigns probabilistic values for
each branch of the tree based on the trajectory data collected.
Dynamic time warping (DTW) is yet another tool used in
time-series analysis. Yi et al. [12] used a DTW method to ef-
ficiently group and retrieve similar time series data. Brostow
and Cipolla [5] proposed a probabilistic Bayesian framework

for clustering feature point trajectories. Their objective was to
detect independent motions in crowds for applications such as
counting individuals in crowded scenes.

Our proposed clustering scheme is most closely related to
previous work reported by Buzan et al. [13] on clustering tra-
jectories and Vlachos et al. [14] on time-series analysis. In
the work proposed by Buzan et al. [13], moving foreground
objects represented by blobs are segmented using a statisti-
cal background model. Segmented blobs are matched from
one frame to the next and an extended Kalman filtering tech-
nique is used to improve the reliability of the extracted tra-
jectories. Clustering is performed by measuring similarity
between pairs of trajectories using a longest common subse-
quence (LCSS) algorithm. We expect that this trajectory ex-
traction method might not yield good results for high density
crowd video due to the difficulty of extracting reliable object-
level trajectories. Vlachos et al. [14] proposed a novel frame-
work for discovering similarity in multi-dimensional time-
series data, which resulted in a significant increase in the ex-
ecution speed of the LCSS algorithm. Our clustering scheme
takes advantage of this efficient method.

3. CLUSTERING FRAMEWORK

The input to our system is a set of feature point tracks repre-
sented as

{{(xi
t, y

i
t), t = T i

init, . . . , T
i
final}, i = 1, . . . , Z}. (1)

Here, Z represents the total number of point tracks. The
lengths of the tracks vary depending on the durations for which
corresponding feature points are successfully tracked. Our
goal is to cluster these point tracks into dominant patterns of
motion- i.e., long trajectories through the scene along which a
substantial number of feature point tracks exist. As mentioned
above, this process is complicated by the fact that individual
feature tracks in a crowd video are often short and unreliable.
However, we make no attempt to link broken tracks or “fix”
inaccurate ones, since these goals may involve scene-specific
understanding. We overcome the problems by designing a
distance metric that properly captures our intuition for when
two trajectories are similar, and processing the trajectories in
an order that encourages “good” clusters.

3.1. Extracting Feature Point Tracks

We first identify low-level features in the initial frame using
the usual Tomasi-Kanade detector [15] as well as the Rosten-
Drummond detector [16], a fast algorithm for finding corners.
The low-level features are tracked over time using a hierarchi-
cal implementation [17] of the Kanade-Lucas-Tomasi optical
flow algorithm [18]. To reduce computational load, new fea-
tures are detected in every fifth frame. New features that are
spatially too close to existing point tracks are discarded. The
remaining new features are tracked along with the existing



Fig. 2. Feature points identified for frame 300 of the platform
sequence.

point tracks to form a larger trajectory set. Fig. 2 shows the
low-level feature points identified for an example frame.

High crowd density situations pose several challenges to
feature point tracking. As a crowd gets denser, its move-
ment gets slower, and due to inter- and intra-object occlu-
sions, tracking feature points becomes difficult. Fig. 3 shows
several of the longest feature point tracks extracted from a
crowd sequence. The tracks are overlaid on one of the frames
for spatial reference. We can observe from the figure that
many of the feature point tracks cover only a small part of
each object’s motion. Feature point tracks exhibit large varia-
tions in their spatial extent and temporal duration, and it is not
uncommon for tracks to be broken, or for one track to be “left
off” by one object and “picked up” by a new object. One way
to overcome these difficulties is to perform some type of spa-
tial and temporal pre-conditioning of the trajectories. Such
pre-conditioning is likely to succeed only if there are rela-
tively few fragmented trajectories along with relatively many
complete trajectories. In the work reported by Rabaud and
Belongie [6] for counting moving objects in a crowd, trajec-
tory conditioning is achieved by propagating a spatial window
along the temporal direction of each trajectory. New spatial
coordinates for fragmented trajectories are obtained by aver-
aging other trajectory coordinates inside this spatial window.
Since the objective is to count moving objects in a crowd,
their interest is in extracting a set of equally sized point tracks
representing a single object’s motion even though the tempo-
ral duration of the tracks are small. In contrast, our goal is to
identify dominant motions in crowd and hence our interest is
in collecting reliable feature point tracks that represent an ob-
ject’s movement completely. Trajectory conditioning strate-
gies applied over a longer temporal duration along the frag-
mented tracks might yield unreliable information. Instead,

Fig. 3. Some of the longest point tracks extracted from a
crowd scene video. The point tracks are overlaid on one of
the frames from the video sequence.

we use a clustering scheme based on longest common subse-
quences described below that requires no spatial or temporal
pre-conditioning.

3.2. Longest Common Subsequences

Our goal is to cluster feature point tracks that are spatially
close to each other and have a similar direction of motion.
We therefore require a distance metric for comparing point
tracks, which we base on the longest common subsequence
for this pair.

LetA andB denote feature point tracks obtained by track-
ing two feature points. Similar to our earlier definition (1), we
defineA andB as follows:

A = {(xt, yt), t = Tinit, . . . , Tfinal} (2)

B = {(x′
t, y

′
t), t = T ′

init, . . . , T
′
final}. (3)

Let N andM represent the lengths (i.e.,Tfinal − Tinit) of
tracksA andB respectively. The algorithm for identifying
the longest common subsequence is implemented using a dy-
namic programming framework. To explain our implemen-
tation, we define the sequencesHead(A) andHead(B) as
follows:

Head(A) = {(xi, yi), i = 1, 2, . . . , N − 1} (4)

Head(B) = {(x′
i, y

′
i), i = 1, 2, . . . ,M − 1}. (5)

The longest common subsequenceLCSS(A,B) is de-
fined recursively by Equation (6).

Here, the constantδ controls the flexibility of matching
sequences in time and the constantε controls the spatial match-
ing threshold.



LCSSδ,ε(A,B) =

 0 if A or B is empty
1 + LCSSδ,ε(Head(A),Head(B)) if ‖AN −BM‖2 < ε and|N −M | < δ

max(LCSSδ,ε(Head(A), B), LCSSδ,ε(A,Head(B))) otherwise
(6)

A weighted version of the LCSS that is more suitable for
computing trajectory similarity is given by:

Sδ,ε(A,B) =
LCSSδ,ε(A,B)

min(N,M)
(7)

Let I denote the index array associating the longest com-
mon subsequence of matching points between each tracks.
Fig. 4 shows the longest common subsequence of matching
points identified for an example pair of feature point tracks
with δ set to the length of longest track andε set to 20. The
index arrayI is defined as follows:

I = (IA
i , IB

i ), i = 1, . . . , L (8)

HereIA andIB represent the indices for tracksA andB re-
spectively, andL denotes the total number of matching points.
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Fig. 4. The longest common subsequence extracted from two
point tracks. Track A is longer than Track B. The dots on each
track indicate matching points.

We define thematching ratioR for each track in a pair as
the number of matching pointsL divided by the original size
of the track. For example, the matching ratio for trackA is
computed asR = L/N .

We compute two further measures between the feature
point tracks using the index setsI. First, thespatial similarity
between feature point tracksA andB is defined as:

Dspt(A,B) = max{‖A(IA
i )−B(IB

i )‖2, i = 1, . . . , L)}.
(9)

Second, thedirectional similaritybetween tracksA and
B is defined as:

Dang(A,B) = avg{abs(θA
i − θB

i ), i = 1, 2, . . . , L}. (10)

Here,θA
i is the angle of the vectorA(IA

i+1)−A(IA
i ), mea-

sured in[−π/2, π/2] (similarly for θB
i ).

3.3. Clustering Trajectories

At this point we are ready to define our clustering algorithm
as follows:

1. Point tracks are first sorted in descending order of the
size of the tracks. LetS = {A1, A2, . . . , AZ} repre-
sent this sorted list, with lengths{N1, N2, . . . , NZ},
respectively. Tracks withN below a threshold (usually
1) are discarded. LetC represent the set containing the
cluster centers. Initiallyn = 1 andC = {A1}; that is,
the longest track is used as the initial cluster center.

2. Using the normalized longest common subsequence mea-
sureSδ,ε, matching pointsI are found between each
cluster centerCi and the next largest trackAn+1.

3. Using the matching points found for each cluster center
and the next largest track, the spatial similarityDi

spt,
directional similarityDi

ang, and matching ratioRi are
computed.

4. From the setC, find the cluster centeri∗ that minimizes
the combinationDi

spt+αDi
ang, whereα is a weighting

factor. Typically, we useα = 0.5, because the direc-
tional similarity measure can be susceptible to noise.
The directional similarity measureDang can also be re-
placed with suitably scaled matching ratio valueR.

5. If Di∗

spt < τspt, Ri∗ < τR, andNn+1 > τN for thresh-
oldsτspt, τR, τN , then the trackAn+1 is assigned as a
new cluster center. That is, the next longest track is suf-
ficiently long and sufficiently dissimilar from any exist-
ing cluster center.

6. Otherwise, trackAn+1 is assigned to the cluster with
centerCi∗ .

7. Setn = n + 1 and iterate Steps 2-6 until all the tracks
are processed.

The thresholdτspt controls the spatial separation needed
for the tracks to be part of separate clusters. The threshold



τR represents the percentage of matching points that needs to
identified on a track for it to be part of a cluster. The thresh-
old τN indicates the minimum track length required to be as-
signed as a cluster center. After all the tracks have been clus-
tered, clusters having very few members (e.g. around 10) are
discarded since they do not represent dominant motions.

We note that to obtain good performance, it is especially
important to cluster the tracks by decreasing length. While a
complete track for each dominant motion is not required, it is
essential to have at least one single track that contain a major
part of the dominant motion. Since the tracks are sorted based
on their size, tracks that cover a major part of each dominant
motion are automatically picked up by the clustering algo-
rithm as cluster centers. The shorter tracks are later assigned
to each cluster based on similarity. From our experiments,
we observed that the clustering algorithm is able to identify
clusters associated with the dominant motions after analyz-
ing the first 30 to 50 point tracks. As a future extension of
this work, we intend to modify our algorithm to iteratively
improve the cluster center representation as the cluster size
grows. This will allow the algorithm to offer similar cluster-
ing performance in case there are no longer tracks available
to be used as cluster centers.

4. EXPERIMENTAL RESULTS

We tested the algorithm on two different video sequences hav-
ing different crowd densities. The first video sequence, termed
theplatform sequence, shows tens of people entering and ex-
iting a train platform. Fig. 5 shows a few example frames
from this video sequence. One group of people heads towards
the exit directly from the train, and another group of people
heads towards the same exit from other parts of the platform.
The scene quickly becomes congested near the exit. There
are also a few people entering the platform in the opposite
direction through an entry gate near the exit. Dominant mo-
tions identified manually for this video sequence were shown
in Fig. 1 as yellow arrowed lines.

Features were tracked over 300 frames, which resulted in
a total of around 1500 point tracks. The extracted feature
points were fed into our clustering algorithm, which auto-
matically identified three dominant motions, as illustrated in
Fig. 6. We can see that the clusters semantically correspond
to the same dominant motions manually identified in Fig. 1.

The second video sequence, termed thecampus sequence,
shows a busy campus walkway, as illustrated in Fig. 7. Around
1000 feature points were tracked and the sequence had around
700 frames. In this case, the algorithm correctly identified the
two dominant upward and downward motions. However, the
algorithm also identified a third non-trivial cluster indicating
a substantial anomalous motion. This anomaly corresponds to
a single person who begins by walking up the campus lane but
suddenly takes a U-turn to join a group walking downward.

                      (1)                                                     (2)                     

                      (3)                                                     (4)                     

                      (5)                                                     (6)                     

                      (7)                                                     (8)                     

Fig. 5. Example frames from theplatformsequence.

5. CONCLUSIONS

We presented a system for automatically identifying domi-
nant motions in crowd by clustering low level feature point
tracks. The feature point trajectories extracted from dense
crowd scenes are often fragmented. However, results on real
video sequences demonstrate that the proposed clustering al-
gorithm can identify both dominant and anomalous motions
in crowded scenes by clustering these partial feature trajecto-
ries. The proposed algorithm relies on longer tracks for rep-
resenting cluster centers. To overcome this limitation, in the
future we plan to iteratively update each cluster center based
on a medial-axis-like line through the cluster members.

Future improvements will include better techniques for



                                (a)                                                                             (b)  

                                (c)                                                                             (d)  

Fig. 6. (a) Some of the point tracks extracted from theplatformvideo sequence. (b), (c) and (d) show three different clusters
identified by the algorithm. The arrows overlaid on each dominant motion cluster show its direction.

feature point track extraction to reduce point track noise. Re-
cently proposed feature point tracking techniques based on
piecewise smoothness models [19] and on combining local
and global motion models [20] may be suitable for point track
noise reduction. We will also address a distributed camera im-
plementation of the proposed algorithm.
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