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ABSTRACT:
Emotion is a central component of verbal communication between humans. Due to advances in machine learning

and the development of affective computing, automatic emotion recognition is increasingly possible and sought

after. To examine the connection between emotional speech and significant group dynamics perceptions, such as

leadership and contribution, a new dataset (14 group meetings, 45 participants) is collected for analyzing

collaborative group work based on the lunar survival task. To establish a training database, each participant’s audio

is manually annotated both categorically and along a three-dimensional scale with axes of activation, dominance,

and valence and then converted to spectrograms. The performance of several neural network architectures for pre-

dicting speech emotion are compared for two tasks: categorical emotion classification and 3D emotion regression

using multitask learning. Pretraining each neural network architecture on the well-known IEMOCAP (Interactive

Emotional Dyadic Motion Capture) corpus improves the performance on this new group dynamics dataset. For both

tasks, the two-dimensional convolutional long short-term memory network achieves the highest overall performance.

By regressing the annotated emotions against post-task questionnaire variables for each participant, it is shown that

the emotional speech content of a meeting can predict 71% of perceived group leaders and 86% of major contributors.
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I. INTRODUCTION

Collaborative group meetings are a ubiquitous aspect of

modern working life, and a large body of research involves

the automatic analysis of such meetings to understand the

dynamics of productivity, leadership, and rapport. For

example, emergent leaders have a significant impact on

group efficacy by helping set concrete, achievable goals and

encouraging group members to focus on specific tasks.1,2

However, emergent leadership cannot be measured directly

without relying on time-consuming manual annotation from

outside observers or unreliable self-reporting statistics,

therefore, emergent leadership and other group meeting met-

rics are instead frequently predicted from derived features

such as facial behaviors (e.g., face, eye gaze direction) and

auditory nonverbal cues (e.g., energy, pitch).3–8

This paper focuses on deep-learning-facilitated classifi-

cation of speech emotion with the purpose of using the result

as a group meeting metric with more direct meaning than

the aforementioned low-level metrics that are commonly

extracted in the group dynamics literature. Specifically,

while metrics, such as eye gaze direction, may have some

degree of correlation with the perceived group leader (e.g.,

the perceived group leader is more likely to look in a certain

direction), it is not immediately clear that this behavior is

causing them to be perceived as the group leader. Our hope

is that with a more intuitive metric, such as the fraction of

happy/sad/excited utterances for each participant, the causal

link to important group meeting signifiers, in this case, the

identity of the emergent group leader/contributor, may be

clearer. However, attempting to use a metric such as speech

emotion comes at a cost; it is difficult to extract without sig-

nificant manual annotation efforts. For this reason, we work

toward predicting this information automatically and reli-

ably using deep learning techniques (see Fig. 1).

Two paradigms for characterizing “emotion space”

include a discrete/categorical emotion model and a dimen-

sional emotion model. Discrete emotion theory was first

developed by Ekman and Oster in 1979 and is based on the

premise that there are six culturally universal emotions:

anger, disgust, fear, happiness, sorrow, and surprise.9

However, this categorization approach can be ill-equipped to

handle the nuanced emotional shifts common during many

communication events. A dimensional emotional model, by

contrast, typically characterizes emotions on a set of continu-

ous (though often discretized for convenience) axes, typically

activation, dominance, and valence.10 Activation is defined
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as the energy or arousal level of an emotion, ranging from

apathy to excitement. Dominance refers to the level of emo-

tional control and ranges from weak to strong. Valence

describes the positivity of the emotion and ranges from

unpleasant to pleasant.

Research in this area relies on annotated speech emo-

tion databases that consist of some combination of acted/

simulated speech segments, elicited/induced speech seg-

ments, and natural/spontaneous speech segments.11 Acted

speech databases are usually recorded by professional actors

under ideal acoustic conditions and include the Emo-DB

(Berlin Database of Emotional Speech)12 and parts of the

IEMOCAP (Interactive Emotional Dyadic Motion Capture)

database.13 While convenient to assemble, such an approach

can lead to exaggerated expressions lacking realistic nuance.

Elicited speech databases offer greater authenticity because

they are comprised of simulated emotional situations where

actors are free to improvise their reactions. Parts of the

IEMOCAP database contain elicited speech. Both elicited

and acted databases often involve a very small number of

participants speaking in isolation, which can limit the gener-

alizability needed for robust machine learning classification.

To capture more realistic behavior, natural speech data-

bases, such as the VAM (Vera-am-Mittag) dataset14 and the

SAFE (Situation Analysis in a Fictional and Emotional) cor-

pus,15 source speech segments from television and talk

shows, films, radio programs, and call-center recordings. To

avoid the legal and ethical considerations associated with

assembling databases that are almost exclusively drawn

from the entertainment sphere, the RECOLA (Remote

Collaborative and Affective Interactions) database consists

of the online interactions between 46 participants as they

perform a collaborative task.16 However, to the authors’

knowledge, only the first 5 minutes of data from 23 speakers

have been annotated and made public.

To construct these databases, time-consuming and cum-

bersome manual annotations are required, motivating the

use of signal processing and machine learning techniques to

predict the correct annotations automatically. Deep learning

methods are increasingly preferred over traditional machine

learning methods because manual feature selection,

resulting in accurate network classification performance, is

laborious and rarely straightforward.17 By contrast, deep

learning offers an end-to-end approach whereby high-level

feature selection and network training occur in tandem through

an automatic, iterative process. Trigeorgis et al. first proposed

using such an approach for speech emotion classification using

a one-dimensional (1D) convolutional neural network–long

short-term memory (CNN-LSTM) network to perform regres-

sion tasks on the RECOLA database in 2016.18

Etienne et al. and Zhao et al. have also achieved four-

and six-class classification success on the IEMOCAP

database with two-dimensional (2D) CNN-LSTM networks

classifying spectrogram images.19 2D convolutional neural

networks (CNNs) have also been successfully used for such

tasks20,21 as have recurrent 1D LSTM networks (classifying

audio waveforms).22,23 Combining these two approaches,

Yang and Hirschberg had success classifying emotion in the

sustained emotionally colored machine-human interaction

using nonverbal expression (SEMAINE) and RECOLA data-

bases by creating a “fusion” network in which the audio

waveforms were processed using a 1D CNN, the spectrogram

representations were processed using a 2D CNN, and then

both networks were joined with multiple LSTM layers.24

In this paper, a version of each of these four related neu-

ral network approaches—(i) 2D CNN, (ii) 1D LSTM, (iii)

2D CNN-LSTM, and (iv) 1D/2D fusion networks—were

implemented to compare their performances on a new group

dynamics dataset. For each network, both the categorical

and three-dimensional (3D) emotional speech content of

participant utterances were predicted. For the latter task, all

three affective dimensions (activation, dominance, and

valence) were jointly regressed using a multitask learning

framework.18,24–27 For both tasks, transfer learning was con-

ducted on the IEMOCAP corpus to increase the generaliz-

ability of the model, significantly increasing the final

performance and lending further evidence to the utility of

cross-corpus training between exaggerated and natural

speech emotion corpora.28,29

To create the group dynamics dataset, the widely

adopted lunar survival task was conducted to study the natu-

rally unfolding dynamics of small, collaborative group

meetings. Pre- and post-task questionnaires were adminis-

tered to assess the perceived group leadership and contribu-

tions of the participants among other attributes. After deep

learning techniques, because each participant was linked to

FIG. 1. (Color online) Diagrammatic representation of the application of speech emotion to the study of group dynamics. In this paper, the ability of differ-

ent deep learning techniques to extract the emotional speech content from group meeting participants is explored. The degree of correlation between that

emotional speech content and the perception of the group leader and contributor is calculated, motivated by the fact that such leaders have a demonstrable

effect on the efficiency of group meetings (Refs. 1 and 2).
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this quantitative survey data, the degree to which the emo-

tional speech content of a meeting is correlated to and pre-

dictive of emergent group leadership and contribution was

explored. Ultimately, the proportion of emotional utterances

attributed to each participant was able to correctly predict

71% of perceived group leaders and 86% of major contribu-

tors, drawing a promising link between speech emotion and

group meeting dynamics.

II. THE LUNAR SURVIVAL TASK DATASET

The dataset introduced in this study was collected in a

university conference room (110 � 280), equipped with lapel

microphones (48 kHz), frontal-facing cameras, Microsoft

Kinect sensors (Redmond, WA), and a ceiling-suspended

spherical 16-channel microphone array (although in this

paper, only the lapel microphone data are discussed). In

the meeting room, groups of three or four participants

were asked to complete the lunar survival task both indi-

vidually and in a group. This task is widely used in group

discussion research for assessing how collaboration

impacts decision-making and consists of participants rank-

ing the utility of 15 supplies for surviving a mission on the

moon.30 After coming up with an individual ranking, par-

ticipants were then given 15 min to reach a consensus on

the items. Although participants were generally free to

move, they were seated in specific chairs. Altogether, the

instrumented meeting room was used to record 45 individ-

uals across 14 group meetings.

A. Pre-task questionnaires

Before the task began, each participant completed two

pre-task questionnaires. The first questionnaire, called

“Reading the Mind in the Eyes,” had participants choose

which of four emotions best represented the mental state of

a pictured individual. The test consists of 36 images of dif-

ferent sets of eyes and is commonly used to test emotional

intelligence (EI) or the ability of an individual to understand

their own emotions as well as the emotions of others.31 High

EI has previously been positively correlated with group pro-

ductivity, focus, and overall performance.32,33

The other pre-task questionnaire was a short version of

the Big Five Inventory-10 (BFI-10), often used to assess

team performance in emergent leadership research. The

questionnaire is designed to rank participants on the traits

agreeableness, conscientiousness, extroversion, neuroticism,

and openness to experience.34 Numerous group interaction

studies observed that a certain amount of extroversion,

agreeableness, and conscientiousness are positively corre-

lated with team success as is individual perceived

contribution.35–37

B. Post-task questionnaires

After completing the full lunar survival task, each par-

ticipant was asked to complete post-task questionnaires. In

addition to questions relating to the age, gender, and ethnic-

ity of the participants, a five-point scale was used to gather

the answers to the following four questions. On the five-

point scale, 1¼ not at all, 2¼ a little, 3¼ somewhat, 4¼ a

lot, and 5¼ a great deal. The questions are as follows:

(1) How well did you know each of your group members

before today?

(2) To what extent did the following group members con-

tribute to the discussion?38

(3) To what extent did the following group members act as

a group leader?

(4) To what extent did you develop rapport with the follow-

ing group members?

In particular, the second and third questions are used to

derive the perceived emergent leadership and contribution

metrics for each participant and are used to conduct the

analysis documented in Sec. V.

While much existing work assesses emergent leadership

using manual annotation conducted by the researchers them-

selves3,4 or personality trait-based questionnaires,34,39,40 our

work here concerns only perceptions of leadership. While

comparatively easy to quantify, this perception is subjective;

it will likely vary from individual to individual and is, thus,

left open to interpretation. Crucially, however, the percep-

tion of leadership, independent of any outside assessment,

particularly the convergence of that perception, has docu-

mented bearings on team performance.41 Therefore, our

leadership and contribution metrics are based solely on these

participant responses and are not dependent on any outside

annotations.

Discussions were conducted in English, and self-

reporting statistics indicate that 45% of the participants

were White, 35% were Asian, 10% were Hispanic/Latino,

and 10% were Black. Additionally, 39% of the participants

were female, and the ages of the participants ranged from 18

to 38 years old with an average age of 22 years old and a

median age of 20 years old.

C. Utterance segmentation

Before annotation, each participant’s speech was auto-

matically separated into discrete utterances by algorithmi-

cally segmenting the signal during periods when the signal

energy and spectral centroid dropped below a certain thresh-

old (a pause in speech). If a segment of speech was within

50 ms of the prior speech segment, it was considered to be

part of that prior utterance. If not, a new utterance was

instantiated. After this segmentation process, the average

utterance was 7.0 s long, whereas the shortest utterance was

1.3 s and the longest utterance was 30 s.

Given the nature of the discussion, there were very few

instances when more than one participant was talking. Each

participant’s audio was individually recorded with lapel

microphones of sufficient directionality, for example, to ren-

der the speech of participants 2–4 virtually inaudible to the

microphone of participant 1. Therefore, the audio of two

participants engaged in cross talk could be annotated

separately.
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D. Dataset annotation

The dataset was manually annotated by two individuals

using a graphical user interface (GUI), illustrated in Fig. 2,

in 10 min sessions. The audio of each utterance was played

in a random order and then annotated in two ways by each

annotator: first, categorically, and then on the 3D scale. For

the category-based annotations, slightly different emotion

categories were selected than those in the “basic six” pro-

posed by Ekman et al., thought to be more appropriate for

the tenor of the discussions that took place. These emotions

are anger, excitement, fear, frustration, happiness, neutral,

and sorrow (but with the option to choose “other”).

For the 3D approach, the annotators ranked each

emotion on a scale of 1–5 along axes of activation (arousal-

nonarousal), dominance (dominance-submissiveness), and

valence (pleasantness-unpleasantness). Commonly, these

three axes are represented pictorially using discrete

“manikins” for each scale (see Fig. 2), originally created to

quickly and easily track personal response to an affective

stimulus.42 The method has been shown to have a low stan-

dard deviation and high agreement between evaluators.43

The method is also useful because it avoids inevitable differ-

ences between each evaluator’s understanding of purely lin-

guistic emotion labels, making the approach intuitive and

efficient.

In the scheme in Fig. 2, each of the five illustrations per

dimension convey a progression from one end of the spec-

trum (1) to the other (5). In this work, “1” will be used to

indicate the most passive, submissive, and negative (lowest

activation, dominance, and valence) utterances while “5”

will be used to denote the utterances with the highest activa-

tion, dominance, and valence. Therefore, an utterance with

an annotation (3,5,1) indicates “neutral” activation (neither

calm nor excited), high dominance, and very low valence

(very negative).

Despite all of the precautions, these annotations are

subjective assessments by their very nature; to decrease

ambiguity, only prototypical speech segments, i.e., segments

for which both annotators agreed on the annotation, were

considered. A negligible number of utterances were classi-

fied in the “anger,” “fear,” and other categories and not

included in the study. The evaluators were university stu-

dents who were fluent English speakers. The top rows of

Tables I and II show the percentages of the total database

that each emotion category comprises for both the categori-

cal annotations and affective dimensional annotations.

III. COMPUTATIONAL METHODS

A. Data pre-processing

To prepare the database for neural network classifica-

tion, each audio segment was first downsampled to 16 kHz

and segmented into 8-s-long clips. Segments shorter than 8 s

were padded to 8 s (with clips shorter than 1 s not considered

for network training). At this stage, each audio clip can be

represented as a 128 000-sample vector. For some of the

neural network architectures, the clips were then turned into

log-mel spectrograms, representing the short-term power

spectrum of the audio. A fast Fourier transform (FFT) win-

dow length of 2048 and a hop length of 512 were chosen,

resulting in spectrograms with 128 mel frequency bins and

251 temporal frames.

B. Data augmentation

Before network classification of the lunar task dataset

could begin, the severe class imbalance and relatively small

amount of data needed to be taken into account. In addition

FIG. 2. (Color online) Pictural representation of the graphical user inter-

face (GUI). (Top) GUI for the categorical audio segment annotation.

(Bottom) GUI for the 3D activation-dominance-valence annotation using

the non-verbal pictural assessment technique, Self-Assessment Manikin

(SAM; Ref. 42).

TABLE I. Percentage (%) of 8 s categorical annotations for the lunar task

database and the IEMOCAP database.

Anger Excitement Frustration Happiness Neutral Sorrow

Lunar task 0.0 3.5 4.0 12.5 78.0 2.0

IEMOCAP 15.0 14.0 24.5 9.5 22.5 14.5
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to oversampling the underrepresented classes with a

weighted loss function, data augmentation techniques were

introduced to increase the generalizability of the model.

Specifically, slight random horizontal shifts and flips of the

spectrogram images were introduced using the Keras

ImageDataGenerator class.44 The test images were also aug-

mented using test time augmentation (TTA).44 With TTA, a

prediction is output for each of ten augmented versions of

the same image. Then, these predictions are averaged

together and taken as the final estimate. By averaging the

predictions on randomly modified images, the errors are

also averaged.

C. Deep learning architectures

1. CNN

For the first deep learning architecture, a four-layer

CNN was constructed, taking the 2D spectrogram images as

input. The first 2 layers had 64 filters, whereas the latter 2

layers had 128 filters. A kernel of three was used for all four

layers. A batch normalization layer and a max pooling layer

follow each convolutional layer. For the first convolution

step, both the kernel and stride of the max pooling layer

were two while for all other layers, a kernel and stride size

of four was used. Stochastic gradient descent (SGD) was

used as an optimizer for the categorical task, and Adam was

used for the dimensional task.

In the case of the categorical task, for all of the net-

works, a fully connected layer was added before the softmax

function was employed to output the final emotion predic-

tion. In the case of the 3D affective dimension regression

task, there are instead three nonconsecutive fully connected

layers, each with a linear activation function used to output

a predicted value for activation, dominance, and valence.

Instead of a categorical accuracy metric, the mean-squared

error and the concordance correlation coefficient (CCC)

were used to evaluate the network performance during train-

ing. In both cases, 15 training epochs occurred.

2. LSTM network

For the second network, 2 LSTM layers, consisting of

512 and 256 units, were added in sequence, followed by a

dropout layer. For temporal processing, the unprocessed

audio waveform input vector is first reshaped into an

80� 1600 matrix before being fed into the network.

Because the audio data were downsampled to 16 kHz, this

reshaping represents dividing the waveform into eighty

100 ms time steps, each containing 1600 features. For the

categorical task, SGD was used as the optimizer, whereas

for the dimensional task, Adam was used. In both cases, 15

training epochs occurred.

3. CNN-LSTM network

For the third network, the CNN front-end is identical to

that described previously. Following this, a LSTM layer

with 256 units was appended. The optimizer Adam was

used for both the classification and regression tasks. In both

cases, 15 training epochs occurred.

4. Fusion network

For the 1D segment of the fusion network, the audio

waveform input vector is passed through two 1D convolu-

tional layers, the first layer with 64 filters and the second

with 128 filters. The first layer had a kernel size of eight

while the second layer had a kernel size of four. A pooling

layer with kernels of 10 and 20 was added after each

convolution.

For the 2D segment of the fusion network, the spectro-

gram image is again passed through two 2D convolutional

layers with 64 and 128 filters each. The first had a kernel

size of eight while the second had a kernel size of four. A

max pooling layer with a kernel and stride of two was added

after each convolution step.

The resulting output vectors from both segments of the

network were then concatenated and fed into two LSTM

layers, each with 128 units. A dropout layer follows before

categorical prediction or regression, depending on the task.

For the classification task, 15 training epochs are used while

25 epochs are used for the regression task. In both cases,

Adam is used for the optimizer.

A summary of all four neural network architectures, as

well as the two different output structures for each of the

two tasks, can be found in Fig. 3.

D. Transfer learning

With transfer learning, information learned from one

classification task can be leveraged for a similar task, mak-

ing the resulting neural network less prone to overfitting.

Since the lunar task dataset is small compared to other

speech emotion datasets, we predict that pretraining these

neural networks on a larger speech emotion database may

result in higher classification accuracies. The IEMOCAP

corpus was selected for this task, given the similarity in

database construction and annotation format.

The IEMOCAP corpus was created to study how emo-

tive human communication occurs. Beyond the audio data,

the corpus also contains video footage and motion capture

markers of conversing pairs of actors (six male, six female).

As mentioned above, the emotion is both simulated and eli-

cited with actors participating in both scripted and impro-

vised emotional scenes. In all cases, a minimum of three

TABLE II. Percentage (%) of 8 s 3D annotations—activation, dominance,

valence—for the lunar task database and IEMOCAP database.

1 2 3 4 5

Activation 8.0 26.0 49.0 15.0 2.0

Lunar task Dominance 7.0 20.0 46.0 28.0 2.0

Valence 1.0 7.0 78.0 12.0 2.0

Activation 1.0 28.0 46.0 23.0 2.0

IEMOCAP Dominance 1.0 16.0 45.0 32.0 6.0

Valence 3.0 33.0 40.0 22.0 2.0
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evaluators labelled the data. The IEMOCAP corpus annota-

tions consist of the same six emotional categories, anger,

excitement, frustration, happiness, neutral, and sorrow, and

was also annotated on the same 3D scale. Whereas the lunar

task dataset consists of approximately 4500 usable utteran-

ces, the IEMOCAP dataset is almost twice that size with

roughly 8500 utterances. Comparing the distribution of cate-

gorical annotations between the two datasets in Table I, a

much more severe class imbalance exists in the former with

the majority of utterances considered to be neutral. This is

logical, considering the dataset largely consists of previ-

ously unacquainted participants having natural, cooperative

group discussions that were not specifically engineered to

elicit emotional responses. For the 3D annotation format

(see Table II), the distribution of the lunar task dataset is

similar to that of the IEMOCAP such that in both cases, the

neutral middle category captures the majority of the

utterances.

For all four neural network architectures and for the

two different emotion prediction tasks, performance is com-

pared with and without employing transfer learning. With

transfer learning, the network is first trained on the

IEMOCAP dataset for 20 epochs.

E. Hyper-parameter optimization

The python library Hyperopt was used to optimize the

network parameters for each deep learning architecture.

Hyperopt compares the results of training each network on

different combinations of parameters using an oriented ran-

dom search.45 The number of convolutional layers, filters,

adn kernels, pool and stride size, as well as the number of

LSTM units, epochs, and optimizers were all selected in this

fashion. A summary of the final values for each parameter is

shown in Table III.

IV. CLASSIFICATION RESULTS

The entire 14-meeting, 45-participant dataset was used

for analysis. All results reported are the average after five-

fold cross-validation in which 10% of the dataset is reserved

for validation and 10% is reserved for testing.

A. Task 1 results: Categorical emotion classification

Table IV shows the unweighted accuracy (UA) and

weighted-by-emotion-category (WA) classification results

for each of the neural network architectures both with and

FIG. 3. (Color online) (Top) Details of each of the four neural network architectures. (1) The CNN, (2) LSTM network, (3) CNN-LSTM network, (4) fusion

network. (Bottom) Two different output structures, one for the categorical emotion classification task and the other for the dimensional emotion regression

task.

TABLE III. List of hyper-parameter values after optimization. If a hyper-parameter value differed between the categorical and multitask regression classifi-

cation models, the latter is indicated with brackets.

Network Epochs CNN layers CNN filters CNN kernel LSTM units Optimizer

CNN 15 4 64 (�2), 128 (�2) 3 (�4) — SGD (Adam)

LSTM 15 — — — 512, 256 SGD (Adam)

CNN-LSTM 15 4 64 (�2), 128 (�2) 3 (�4) 256 Adam

Fusion 15 [25] 2 64, 128 8,4 128, 128 Adam
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without pretraining on the IEMOCAP database. Without pre-

training, the fusion network outperforms all other network

architectures but only by a slim margin. The performance of

the CNN-LSTM network, in particular, differs by less than

half of a percent for both UA and WA. The CNN, while per-

forming nearly comparably when evaluated with the UA,

severely misclassifies the sorrowful utterances (typically as

neutral utterances), resulting in WA results that are almost

10% lower. Interestingly, this issue appears similar to that

seen in the documented classification results for the

IEMOCAP dataset in which happy utterances are almost

entirely misclassified as a similar emotion, excitement.46 For

the lunar task dataset, because the discussion was more natu-

ralistic, the utterances annotated as being sorrowful are likely

fairly subtle, resulting in their appearance being similar to

neutral utterances. Finally, the LSTM, overall, performed the

worst likely because it accepts only a 1D input, and deep

learning networks tend to favor more input data not less.

After pretraining each network on the IEMOCAP data-

base for 20 epochs, the 2 neural network architectures that do

not feature 1D inputs improve significantly despite the differ-

ent nature of the emotional utterances contained in each data-

base (acted/elicited vs natural). For the CNN architecture,

performance improves by 3% and almost 9% for UA and

WA, respectively. Thus, pretraining on the IEMOCAP data-

base was able to ameliorate the inability of the CNN to clas-

sify one particular emotion, balancing out classification

performance and reducing overfitting. The CNN-LSTM accu-

racies improved by a sufficient margin, thus, making this

architecture the highest performing for the classification task.

Specifically, the network reaches accuracies roughly 2%

higher than the second highest performing architecture, the

fusion network with no pretraining. The LSTM network and

fusion network both suffer from slight accuracy decreases

after pretraining, suggesting that the 1D training data are less

generalizable from one dataset to the next.

B. Task 2 results: 3D emotion regression

For the second task, each network was trained on each

of the 3D emotion attributes: activation, dominance, and

valence. Tables V and VI show the CCCs for each of the

affective dimensions, as well as the average CCC across all

three dimensions, with and without pretraining on the

IEMOCAP dataset.

Without pretraining, the CNN-LSTM network performs

better than all of the other network architectures across all

dimensions. The average CCC is notably higher than that

resulting from the CNN, although the CNN performs far bet-

ter than the LSTM and fusion networks perform. The LSTM

network performs predictably poorly given the results from

the classification task but, interestingly, the fusion network

is almost as inaccurate. While the fusion network performed

well for the classification task, for the regression task, it per-

forms only slightly better than the LSTM network, which

relies on a 1D input alone. Overall, across all four network

architectures, valence is the most difficult dimension to clas-

sify, a result consistent with the majority of the literature

publishing similar results.18,24

With pretraining, the CNN and CNN-LSTM networks

perform nearly identically with the CNN very narrowly and,

likely, negligibly achieving a higher average CCC. This out-

come was not observed with the first classification task.

Indeed, pretraining notably decreases the result for the

CNN-LSTM network while delivering modest performance

gains to the CNN. However, the CNN-LSTM network does

perform better for the latter two dimensions, dominance and

valence. Overall, for this second task, pretraining allows this

simpler architecture to draw equal with the CNN-LSTM net-

work. Again, the LSTM network performs significantly

worse than the two 2D networks as with the categorical clas-

sification task. As expected, based on the results of the first

task, pretraining does not improve the results from the

fusion network enough to place it in competition with the

networks trained only on 2D data.

V. CORRELATION AND REGRESSION ANALYSIS

To confirm the utility of constructing an automatic

speech emotion classifier for the purposes of studying group

dynamics, the degree of correlation between the ground-

TABLE IV. Mean unweighted accuracy (UA) and weighted-by-category

(WA; %) for fivefold cross-validation for each of the four neural network

architectures on the lunar task dataset when no pretraining is implemented

and when each network is first trained on the IEMOCAP database for 20

epochs.

No pretrain Pretrain

Network UA WA UA WA

CNN 31.1 23.8 34.1 32.2

LSTM 26.5 26.0 26.6 24.5

CNN-LSTM 32.1 30.0 34.2 32.6

Fusion 32.3 30.4 31.2 29.4

TABLE V. Average CCC across fivefold cross-validation for arousal, dom-

inance, and valence for each of the four neural network architectures on the

lunar task dataset (no pretraining).

Network Arousal Dominance Valence Average

CNN 0.359 0.372 0.187 0.306

LSTM 0.305 0.252 0.0572 0.205

CNN-LSTM 0.422 0.405 0.202 0.343

Fusion 0.314 0.277 0.0481 0.213

TABLE VI. Average CCC across fivefold cross-validation for arousal,

dominance, and valence for each of the four neural network architectures

on the Lunar Task Dataset when each network is first trained on the

IEMOCAP database for 20 epochs.

Network Arousal Dominance Valence Average

CNN 0.404 0.377 0.195 0.325

LSTM 0.332 0.248 0.0562 0.218

CNN-LSTM 0.394 0.381 0.197 0.324

Fusion 0.331 0.296 0.0544 0.227
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truth speech emotion annotations and the post- and pre-task tar-

get variables of perceived leadership, contribution, and EI were

examined for the entire 14-meeting, 45-participant dataset.

The correlation of many different low-level audiovisual

metrics with various social-psychological group variables,

such as perceived and/or emergent leadership, leadership

style, dominance, and extroversion, have been extensively

explored.3,4,6–8,39,47,48 Our speech emotion metrics, both cat-

egorical and dimensional, may offer a more intuitive option

than fine-grained, low-level metrics derived from visual

focus of attention or prosodic acoustic features, for example.

To examine these correlations, two target variables, per-

ceived leadership and perceived contribution, are defined

using the post-task questionnaire described above. Because

each group member rates the leadership and contribution of

all other group members on a five-point scale, an individual’s

perceived leadership score can be computed as the average of

all leadership scores that are received from that group. The

perceived contribution score is defined similarly.

Using single variable regression, the Pearson correlation

coefficient (q) can then be computed to understand the corre-

lation between the speech emotion metrics and the post-task

questionnaire variables of leadership and contribution. Using

this framework in the categorical space, a lack of sorrowful

utterances was found to have a correlation with contribution

ðq ¼ 0:42; p ¼ 0:01Þ and leadership ðq ¼ 0:37; p ¼ 0:01Þ.
In the 3D emotion space, EI was highly correlated with

high valence ðq¼ 0:32;p¼ 0:04Þ; high activation ðq¼ 0:27;
p¼ 0:08Þ; and low dominance ðq¼ 0:39;p¼ 0:01Þ.
Additionally, the contribution was correlated with high

valence ðq¼ 0:31;p¼ 0:05Þ, although there were no signifi-

cant correlations with leadership. Finally, one of the “Big

Five” personality traits, conscientiousness, was correlated

with both low valence ðq¼ 0:34;p¼ 0:02Þ and low activa-

tion ðq¼ 0:31;p¼ 0:05Þ:
We next carried out multiple linear regressions with the

entire suite of speech emotion values for each participant

against the post-task questionnaire variables to investigate

the capability of the extracted metrics to predict the leader-

ship and contribution scores for each participant (rather than

simply investigating the correlation between the two).

To establish a ground-truth, the participant who received

the highest overall leadership/contribution scores for their

group was considered to be the perceived leader/major con-

tributor (each group could have more than one perceived

leader and major contributor). Because these ground-truth

scores are quantized (given that they were reported on a scale

from 1 to 5), we also quantized the predicted scores that are

derived from the regression coefficients to the nearest actual

bin to find the participant(s) with the highest scores.

Therefore, an actual/ground-truth perceived group leader is

the participant(s) with the highest received leadership score,

and a predicted group leader is the participant(s) with the

highest predicted quantized leadership score (derived from

the linear regression coefficients).

Using this approach, the entire set of categorical emo-

tion distributions for each participant is able to correctly

predict 71% of emergent group leaders (i.e., for 10 of the 14

meetings) and 86% of major group contributors (12 of the

14 meetings). The linear coefficients derived from the affec-

tive dimensional emotion values are able to correctly predict

only 50% of the leaders (7 of the 14 meetings) and 79% of

the major contributors (11 of 14 meetings). These results

indicate a meaningful relationship between the perception of

emergent leadership and contribution and the emotional

expressions of the participants even when the visual infor-

mation and the informational content of the meeting itself is

not taken into account.

VI. CONCLUSIONS AND FUTURE WORK

Whereas various low-level visual and acoustic metrics

have been shown to correlate with social-psychological

group metrics like emergent leadership and productivity, the

intuitive reason for these correlations is often unclear. This

paper instead proposes to use higher-level, more interpret-

able speech emotion categories estimated using various

deep learning methods to predict emergent leadership and

other group metrics.

After comparing four commonly used neural network

architectures for two different speech emotion recognition

tasks on a new group dynamics dataset, a fusion CNN-

LSTM network architecture that combined 1D waveform

and 2D spectrogram inputs performed best for a categorical

classification task but only when pretraining on a larger

speech emotion dataset was not implemented. With pretrain-

ing, a CNN-LSTM network architecture which only used

2D spectrogram inputs outperformed the fusion model accu-

racies (with and without pretraining), suggesting that

although transfer learning significantly boosts classification

accuracy in most cases, 1D waveform inputs may reduce

cross-corpus model generalizability.

For the 3D speech emotion regression task, the same

superiority of the fusion model before the implementation of

transfer learning was not observed, and the CNN-LSTM net-

work achieves the highest average CCC. However, with

transfer learning, the CNN model architecture performed

nearly equally with the CNN-LSTM network because for

the second task, cross-corpus training did not improve

CNN-LSTM network results. This emphasizes that a one-

size-fits-all approach is not appropriate for different deep

learning tasks, even when conducted on the same dataset.

Overall, despite the successful implementation of trans-

fer learning from a less natural speech emotion dataset

(IEMOCAP), to improve classification accuracies on a

smaller, unbalanced, and more natural speech emotion data-

set (lunar task), it is clear that deep learning methods are not

yet sufficiently advanced to reliably extract the emotional

content of natural speech without manual intervention. In

particular, more training data of subtle, natural, emotional

speech is needed.

However, the strong correlation between the ground-

truth emotion annotations and perceived emergent leader-

ship and contribution provide strong motivation to continue
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this line of inquiry, even though the predicted emotion anno-

tations (categorical and dimensional) were not in complete

alignment with the observed ground-truth group dynamics

trends.

In particular, sorrowful utterances were negatively cor-

related with both leadership and contribution, suggesting

that participants with a more positive outlook were thought

of as exerting more influence over the discussion, although

conversely, sorrow could be a consequence of that partici-

pant being consistently overruled. EI was also highly corre-

lated with high valence and activation, as well as with low

dominance, indicating that participants who stayed engaged

and positive and who did not dominate the conversation

achieved higher EI scores.

Additionally, the entire set of categorical and dimen-

sional speech emotion metrics were capable of correctly pre-

dicting the emergent leader and contributor for a majority of

the group meetings in the dataset. This result advances the

goal of using deep-learning-facilitated speech emotion as a

tool for estimating the suite of social-psychological metrics

that influence group meeting productivity.

To improve the algorithm performance for similar tasks,

a multimodal neural network could be constructed with two

new inputs: frames from the frontal-facing cameras and

meeting transcripts obtained through natural language proc-

essing. With the building accuracy and reliability of speech-

to-text transcription software, the informational content of

such meetings could be included during training. Adding

such transcripts, common visual focus of attention metrics

(head pose, eye gaze, etc.) extracted using vision-based

deep learning methods and the raw video frames themselves

would result in an audiovisual model that could improve

emotion classification accuracy significantly, achieving

results impossible for a network incorporating only a single

modality.
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