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Abstract

Understanding the locations of occupants in a commercial built environment is criti-
cal for realizing energy savings by delivering lighting, heating, and cooling only where
it is needed. In this paper, we present an indoor occupancy counting system using a
sparse array of inexpensive, low-resolution, and privacy-preserving time-of-flight sen-
sors. We develop and validate an algorithm for zonal occupancy counting that can
deal with multiple people walking underneath the sensors in arbitrary directions, and
evaluate the system both in realistic simulations of office spaces and in a real-world
installation. We found that our system has an error rate of around 0.4%, resulting in
highly accurate person localization and zone counting using only a few sensors per
space.
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1. Introduction

Building energy consumption has become the main source of urban energy usage
[1]. The major contributors to energy consumption in commercial buildings are
lighting and Heating, Ventilating and Air-Conditioning (HVAC). Finding methods
to minimize these costs will not only create significant energy savings for businesses,
but also reduce emissions attributed to power generation. However, thermal comfort
and air quality should not be neglected. Many studies [2, 3] show that understanding
where and when spaces are occupied is the key to balancing thermal comfort and
energy savings.
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Some studies [4] used fixed occupancy schedules to control building operations.
However, as more office occupants adopt flexible working hours, demand-driven con-
trol strategies that enable lighting/HVAC systems to adapt to dynamic changes of
occupancy become more efficient [5, 6]. Hence, accurate real-time zone-level occu-
pancy counting information plays an important role in smart rooms and energy-
efficient building management systems (BMS).

Deploying sensor networks to monitor occupancy information in buildings is a
common approach. Designers must make cost and practicality tradeoffs when choos-
ing the sensor modalities for an occupancy counting system. Low-cost sensors that
can easily cover a whole room such as CO2 sensors, acoustic sensors, and RF sensors
have limited resolution and counting accuracy. High counting accuracy sensors like
standard cameras and depth sensors have limited fields of view (FoV) and may be
more expensive to install and maintain. Fisheye cameras are widely applied in public
surveillance due to their wide FoV and high resolution, though they are generally
more expensive. However, privacy considerations limit the use of any type of cameras
in non-public areas of commercial office spaces.

In this paper, we propose a zone level counting system using a sparse deploy-
ment of low-resolution, low-cost time-of-flight sensors. These are installed at zone
boundaries and count the entries and exits for each zone, allowing accurate occupant
counting in a large office space using very few sensors. Since the sensors are small,
low-cost, and self-contained, the installation and maintenance costs are low. Since
each sensor only returns the distance to a small number of locations, the system nat-
urally protects occupant privacy. Therefore, our system is suitable for environments
with low crowd density and high privacy requirements, such as commercial office
or healthcare spaces. Unlike other doorway counting systems that can only detect
people moving in one of two directions, our counting system works well in complex
environments where people can walk under the sensor in any direction. We report
the results from both a real deployment and simulated environments using the same
underlying algorithms, demonstrating that our system is fast and accurate.

2. Related Work

Generally, zone-level occupancy counting systems are either sparse (i.e., detecting
motion in a narrow cone angle below a small number of sensors) or dense (i.e., trying
to sense an entire environment with either a large number of sensors or wide field-
of-view sensors). Liu et al. [7] categorized occupancy counting methods by sensor
type into 5 categories: motion sensors, environmental sensors, radio frequency (RF)
sensors, contextual sensors, and cameras.
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Passive infrared (PIR) sensors are the most common motion sensor. Raykov et
al. [8] used a single PIR sensor to detect occupants in a meeting room, but it requires
a long time (20 min) to train. Wahl et al. [9] used pairs of PIR sensors installed in
doorways to count entries and exits in an indoor environment, but did not discuss
multi-person scenarios. PIR sensors can only detect the motion of heat sources, which
limits their recognition of stationary humans. Andrews et al. [10] mounted a PIR
sensor on a moving platform to artificially induce the motion that is necessary for
stationary occupant counting, but did not study dynamic scenarios, which are very
common in commercial spaces. Even though moving the PIR sensor is a solution, it
will increase the sensors’ energy cost and have limited counting accuracy in crowded
or rapidly changing scenarios due to the one-dimensional output and low sampling
rate of PIR sensors.

Environmental sensors infer the occupancy count from sound, light, temperature,
or CO2 measurements of an indoor environment. Wolf et al. [11] used stochastic
differential equations to infer occupancy counts from CO2 data. Szczurek et al. [12]
fused CO2, humidity, and temperature data to infer occupancy counts based on k-
nearest neighbor (KNN) and linear discriminant (LDA) models. Li et al. [13] used
indoor environmental sensor data (e.g., air temperature, air humidity ratio, air CO2

concentration, and so on) to infer occupant count based on inverse physics based
models. Valle [14] used Gaussian Mixtures and Hidden Markov Models to estimate
room occupancy from audio measurements. Like PIR sensors, environmental sensors
generally have low counting accuracy, because the occupant count is not directly
related to these environmental factors, and they usually respond slowly.

Radio frequency sensors include WiFi, Bluetooth, ultra-wideband (UWB), and
ZigBee. Many RF methods require the occupants to carry their mobile devices to
be detected, which limits their application and has privacy implications, but some
recent studies try to avoid this problem. Depatla et al. [15] used only signal strength
indicator (RSSI) measurements to estimate occupancy numbers in a given zone. Zou
et al. [16] proposed a device-free occupancy counting method based on the channel
state information (CSI) transmission between two WiFi routers. Yang et al. [17]
demonstrated a door counting method using COTS WiFi devices. They use one
transmitter and multiple receivers to monitor the number and motion of people
walking through a door. They recover time-frequency information from the WiFi
signal and train a convolutional neural network for counting. Many RF methods are
sensitive to non-human background movement like a door opening that would affect
their performance in a complex environment.

Contextual sensors monitor chairs, computers, and even floors. Labeodan et
al. [18] installed strain and vibration sensors on chairs to infer occupancy in a room.
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Kaddoura et al. [19] placed pressure sensors on the floor to track occupancy in an
indoor environment. Razavi et al. [20] collected 5000 households’ electricity meter
data for more than 18 months and used this data to predict the present and future
occupancy information.

Compared to all other sensors, camera-based methods using computer vision
provide the most accurate and fine-grained occupancy information. These can not
only obtain occupant count [21, 22], but also occupant identity [23], location [24]
and even behavior [25]. However interference between similar-looking objects and
occlusions from items like furniture cause measurement errors, and issues of privacy
are always a serious concern.

Some studies [26, 27] installed cameras looking down at the room entrance. The
overhead installation reduces occlusions from other objects and partially mitigates
the privacy issue, since the camera can only detect occupants’ heads and shoulders
and recognition is more difficult. To further address the privacy issue, some re-
searchers [28, 29, 30] used depth cameras (especially time-of-flight (ToF) cameras)
to detect occupancy information. The depth image contains only distances, not
colors, so it can protect occupants’ privacy and reduce computational complexity.
However, depth cameras are usually more expensive than surveillance cameras.

To balance installation cost, privacy issues and measurement accuracy, many
researchers have proposed to use low resolution sensors to detect occupancy infor-
mation. Bhattacharya et al. [31] proposed a method for real-time person tracking
and coarse pose estimation using arrays of single-pixel ToF sensors. Compared to
this work, our ToF sensors are more sparsely installed, hence reducing the number
of necessary sensors and requiring a more complicated algorithm. Mikkilineni et
al. [32] used an 8×8 thermal camera above a doorway to count the number of people
entering or leaving the room. They used a per-pixel adaptive threshold and region
growing to extract human profiles and used logical boundaries to obtain the motion
vectors of occupants, but did not provide numerical counting results. Cokbas et
al. [33] proposed a low-resolution overhead thermal tripwire for door counting. Their
work follows a similar process flow to ours: background subtraction, event detection,
and event classification.

Compared to these approaches, our work has three main contributions.

1. We use low-resolution ToF sensors (in 8×8 and 4×4 modes) to detect occupant
profiles, which are less noisy and susceptible to environmental heat sources than
thermal sensors.

2. Instead of simply using a region growing method, we propose an agglomerative
clustering method to distinguish different people more precisely, which is robust
to multiple people moving under the sensor simultaneously.
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3. While many algorithms are limited to bi-directional motion detection, our algo-
rithm considers multiple arbitrary directions of motion, which is more suitable
for open-plan offices.

3. Methods

3.1. Testbed Environments
We validate our algorithms both in a real-world physical commercial office suite

and in detailed simulated environments created using the Unity game engine1. Unity
and other 3D game engines (e.g., Epic’s Unreal engine2) are widely used in design-
ing algorithms for occupancy counting [30, 34, 35, 36, 37, 38]. The advantage of
the simulation environment is that many hours of realistic, controllable human and
sensor behavior can be recorded and compared to algorithmic results. On the other
hand, running long-term experiments in real-world environments is challenging due
to the difficulty of collecting independent ground truth and, in light of the pandemic,
maintaining social distancing.

We carry out our experiments in two environments. The first is a physical office
space that is 3.0m × 10.7m, denoted Office 1, and illustrated in Figure 1(a). We
report results from both physical sensors installed in this office space and an accurate
“digital twin” we built in Unity. We also created a second, more complex environment,
denoted Office 2 and illustrated in Figure 2(a), that only exists in Unity simulation.
This space is roughly 14.6m × 18.6m and has an open layout and many potential
human paths.

We divide each space into HVAC/lighting control zones indicated by the walls
and red lines in Figures 1(b) and 2(b). There are 3 zones in Office 1 and 10 zones in
Office 2. The goal of this paper is to accurately count the occupants in each of these
zones at all times, using a sparse array of sensors.

3.2. Time of Flight Sensors
Time-of-flight (ToF) sensors determine distances by measuring the elapsed time

t between the emission of a light pulse, its reflection off of an object, and its return
to the ToF sensor, as illustrated in Figure 3. Since the speed of light c is constant,
the distance to an object d can be determined as d = ct/2.

The sensor we consider in this paper is the recently announced VL53L5 time-of-
flight sensor from ST Microelectronics, shown in Figure 4(a). We designed a custom

1https://unity.com
2https://www.unrealengine.com
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(a) Office 1 floor plan

(b) Office 1 zone division

(c) Office 1 sensor setup

(d) Office 1 worker routes

Figure 1: Simulation configuration for Office 1.
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(a) Office 2 floor plan (b) Office 2 zone division

(c) Office 2 sensor setup (d) Office 2 worker routes

Figure 2: Simulation configuration for Office 2.
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Figure 3: The time-of-flight principle. In practice the emitter and receiver are so closely spaced
that the light paths can be treated as parallel.

sensor pod with a Raspberry Pi Zero microcomputer and a VL53L5 ToF sensor,
shown in Figure 4(b). The Raspberry Pi Zero is used to control the VL53L5 sensor
and to collect and transmit range data. Our sensor pods are AC powered, requiring
a 5.1V supply with a microUSB power connector.

We mounted each sensor pod on the ceiling pointed directly downwards, as illus-
trated in Figures 4(c) and 4(d). The sensor has a detection range of approximately
5cm to 400cm and a diagonal angle of 60 degrees, as illustrated in Figure 5, where h
is the ceiling height (2.7m in our environments). The sensor can return an 8×8 array
of distance measurements (shown as black dashed lines in Figure 5) at 15 frames per
second, or a 4 × 4 array of distance measurements (shown as red dashed lines in
Figure 5) at 60 frames per second. Based on our tests, in an artificially lit environ-
ment (no infrared interference), the sensor measurements have zero-mean noise with
standard deviation 2.5 cm.

We accurately model the sensor so that the simulated sensor characteristics are
as close as possible to the real sensor, made possible by comparing the real and
simulated measurements in Office 1. For example, Figure 6 illustrates the simulated
sensor reading for a person under it, using the correct cone angle/resolution from
the physical sensor and the real-world noise level.

3.3. Sensor Networking
We use WiFi signals and the Message Queuing Telemetry Transport (MQTT)

communication protocol to build a sensor network that collects data from the sensors,
transmits data to a processor, and downloads the processed data to a computer or
outputs it to a BMS controller. MQTT is a common messaging protocol for the
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(a) STM VL53L5 sensor (b) Custom-designed sensor pod

(c) Office 1 environment (d) Sensor pod mounted on ceiling

Figure 4: The ToF sensor, our custom pod, and its physical installation.

(a) 3D view (b) Side view (c) Top view

Figure 5: The VL53L5 sensors’ field of view.
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(a) Overhead view (b) Depth image

(c) Noiseless sensor output (d) Noisy sensor output

Figure 6: VL53L5 sensor simulation procedure in Unity.
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Figure 7: The MQTT publish-subscribe configuration for our sensor network.

Internet of Things, known for its light weight and efficiency. It consists of two parts:
brokers and clients. Clients can publish messages to, or subscribe to messages from,
brokers, but are not directly connected to each other.

In our implementation, we use a central controller (either a PC or Raspberry
Pi 4) as the broker. All pods publish their distance measurements to the central
controller, which subscribes to the measurements and performs the zone counting
algorithm described in Section 4. The zone counting results can then be sent to
an HVAC or lighting controller, or downloaded to a computer for further analysis.
Figure 7 illustrates the MQTT configuration for our sensor network.

We want to use as few sensors as possible to reduce installation and maintenance
costs. In the examples described in this paper, we manually determined the place-
ment of sensors based on the desired zone divisions (shown in Figures 1(b) and 2(b))
and the workers’ routes (shown in Figures 1(d) and 2(d)). We placed the sensors at
the boundaries of each zone to make sure that every person that walks through a
boundary will be detected by a sensor. In our experiments (both real and simulated),
we required only 4 strategically placed sensors in each space. Figures 1(c) and 2(c)
illustrate the fields of view of the sensors in each environment projected onto the
ground plane. We can see that much of each space is not sensed directly, only the
critical regions near zone boundaries.

3.4. Occupant Simulation
The final component is the realistic simulation of occupant behavior in the spaces.

Animated human workers can walk, sit, and open doors in the space based on ran-
domized paths in the context of a general 9-hour work schedule. Workers travel
between their assigned desk, the communal kitchen, and the space outside the office.
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The time each worker spends in each location is modeled as an independent expo-
nential distribution, with expected value 2h, 15min, and 15min, respectively. There
are 5 simulated workers in Office 1 and 8 simulated workers in Office 2. Addition-
ally, visitors randomly arrive in each office following a Poisson distribution, head to
a random location, and stay there for a random amount of time before leaving the
office. Figures 1(d) and 2(d) illustrate examples of the random routes the simulated
characters take in each office.

4. Algorithm Summary

In this section we discuss how we determine the occupancy counts in each zone
from the raw data collected by our time-of-flight sensors. The procedure has the
following steps:

1. 3D reconstruction
2. Background subtraction and filtering
3. Point clustering and person localization
4. Zone counting

We now discuss each step in detail.

4.1. 3D Reconstruction
Recovering the 3D position corresponding to the sensor reading at pixel (i, j)

involves straightforward trigonometry. The pixel (i, j) defines an angled ray from
the center of the sensor, and the distance d = S(i, j) specifies a distance to travel
along this ray, resulting in a 3D point (x, y, z) for each reading (i, j, d). The 3D point
(x, y, z) is used in a clustering process in a later step.

4.2. Background Subtraction
Since the indoor environment is relatively stable, we can assume the background

is fixed. We store a background image B(i, j) when the room isn’t occupied, and use
a simple differencing method for background subtraction: pixel (i, j) is foreground
at time t if

B(i, j)− S(i, j, t) > τ (1)

and background otherwise. Here we set the threshold τ proportional to the standard
deviation of the measured noise of the sensor (i.e., τ = 2σ = 0.05m). We note
that this computation only makes sense in the (i, j) space since the floor-plane (x, y)
position varies with the measured distance d. The z values of background points are
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set to 0, and the z values of foreground points are subtracted from the ceiling height
to obtain a distance from the floor.

We further define a cut-off height to disregard foreground points lower than the
possible height of persons/objects of interest, and also set these z values to 0. How-
ever, since the time-of-flight rays at the edges of the sensor’s field of view may
intersect a person low on the body, we must be careful to not set the cut-off height
too low to avoid missed detections in situations where the sensors are widely spaced.
We chose cut-off heights of 60cm for Office 1 (where the gaps are narrower) and 20cm
for Office 2 (where the floor plan is more open).

4.3. Point clustering and person localization
At each point in time, the reading at each sensor is an array of heights (i, j, d) as

illustrated in Figure 8c. The next step is to decide the number of people under the
sensor. This can be more difficult than it seems since the area covered by each “pixel”
is nontrivial (e.g., a 37 cm × 37 cm square on the ground for Office 1). Readings from
multiple people (e.g., 2 people passing each other in a doorway) can be combined
into a single pixel or merge into a connected ”blob”.

Our approach is an agglomerative clustering scheme aided by the accurate sim-
ulation discussed in Section 3. Beforehand, we generate a large database of sensor
readings by positioning a synthetic human at each of 30×30 positions under the
sensor, at 36 possible orientations, using 10 possible human models with different
heights (1.6m to 1.9m) and widths (0.5m to 1m), resulting in 324000 samples. For
each sample, we save the shape (not the actual depth values) of the resulting blob,
i.e., the footprint of non-zero sensor readings after background subtraction. In the
8×8 sensor mode, we found there to be 1110 unique blob shapes that can be gener-
ated by a single person, each of which can fit into a 5×5 square of (i, j) pixels.

Then our clustering scheme is:

1. Start from the pixel with the highest z value under the sensor (i.e., a potential
head location).

2. Add the nearest non-clustered point into the current cluster.
3. If the cluster points form one of the 1110 shapes found in the library, define

this to be a person, remove them from the sensor array, and go to Step 1.
Otherwise, go to Step 2.

The process terminates when all points have been clustered (the final cluster may
not match one of the 1110 shapes). Figure 8d illustrates an example result of the
process for a sensor reading corresponding to two nearby people.

To accurately determine the location of each person under the sensor, we take the
reading corresponding to the persons after clustering (which fit in a 5×5 window)
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(a) Original scene. (b) Sensor reading before background subtrac-
tion.

(c) Sensor reading after background subtrac-
tion.

(d) Clustering result

Figure 8: Point clustering process.
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and feed this 5×5 array of z values into a random forest regressor trained on the
simulated dataset. The output of the regressor is a continuous (i.e., non-quantized)
(i, j) location of the person.

We next estimate the motion vector (equivalently, the velocity) of each detected
person, based on the data from the previous 5 frames. This requires associating the
Nc person blobs in the current frame with the Np person blobs in the previous frame.
There are three possibilities:

• Nc = Np 6= 0. In this case, we match blobs in the current frame to the previous
frame using the Hungarian algorithm [31] (i.e., minimizing the sum of distances
between matched pairs).

• Nc > Np. New blobs have appeared. Np of the blobs in the current frame are
associated with the blobs in the previous frame using the Hungarian algorithm,
and the new Nc −Np blobs are given new labels.

• Np > Nc. Old blobs have disappeared. Nc of the blobs in the current frame are
associated with the blobs in the previous frame using the Hungarian algorithm,
and the old Np −Nc blobs are removed from the list.

In each case, the motion vectors of all associated blobs are computed as the
difference in their positions between the current and previous frames.

As illustrated in Figure 9, the main source of error in our algorithm is the situation
where two people walking closely together enter or exit the sensor field of view
and are detected as one person at some point. These split and merge events could
cause over/undercounts and accumulated errors could make an unoccupied space
appear to be occupied or vice versa. We use a simple heuristic that persons cannot
spontaneously appear or disappear in the middle of the sensor field of view (illustrated
by the central red square in Figure 9, which in practice we set to be 50cm from the
edge of the sensor field of view). If a split occurs in this region, then we know the
incoming single blob actually contained two people. If a merge occurs in this region,
we know the outgoing blob actually contains two people. In either case, we can
update the zone count accordingly as discussed in the next section.

4.4. Zone Counting
As described in Section 3, we assume that the sensors are placed along walking

paths to capture all possible transitions between zones. The motion vectors of the
person blobs in the previous section provide the evidence for making decisions about
zone transitions. As illustrated in Figure 10(a), a zone count change from Zone A
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Figure 9: Split and merge cases (ground plane units are in meters).

to Zone B is triggered when a new blob appears at the A side and disappears at the
B side. In general, our method handles more complex transitions as illustrated in
Figure 10(b).

5. Experimental Results

In this section we discuss the performance of each part of our algorithm and
analyze the overall zone counting accuracy in the two office spaces we considered.

5.1. Localization Accuracy
Figure 11 illustrates the cumulative distribution function (CDF) of localization

error. As we discussed in Section 4.3, we generate 324000 samples with known
positions. We use 80% of the samples to train the localization model and use the
remaining 20% of the samples to test the localization results. The indicated point
shows that the probability of localization error less than 20cm is about 99%. The
average localization error is 2.9cm. This error ensures that we can easily distinguish
two paths that are more than 20cm apart and recognize the correct zones in complex
environments.

5.2. Clustering Accuracy
By design of the clustering algorithm, the simulated training examples discussed

in Section 4.3 are all correctly detected as single-person clusters. To test the cluster-
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(a) bi-direction (b) multi-direction

Figure 10: Zone transitions (ground plane units are in meters). Blue dots show position estimates
and blue arrows show estimated motion vectors.

Figure 11: CDF of localization error for 8×8 sensing mode.
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ing accuracy in the multiple person case, we generated 89000 samples of two office
workers under the field of view of the sensor who have random heights, locations, and
orientations. We then plot in Figure 12 the probability that two clusters are detected
as a function of inter-person separation. From this experiment we found that two
people standing more than 2m apart are correctly distinguished more than 90% of
the time. Here, the distance between two people is defined as the Euclidean distance
between their heads, not the outer contours of their bodies (e.g., if two people stand
shoulder to shoulder, their distance is around 1m).

Figure 12: Correct clustering probability vs. inter-person distance (8×8 mode).

Since persons are viewed at 15 frames per second as they move under the sensor,
many frames are available to make the clustering decision, mitigating the possibil-
ity of under/overcounting. For example, if two people are separated by only 1m,
the probability of distinguishing them from one frame of data is 40%. However, if
we observe 10 consecutive frames, the probability that at least one frame correctly
distinguishes them is 99.98%, which is all we need to apply the split/merge logic
discussed in Section 4.3.

5.3. Zone Counting Performance (Simulated Environment)
We now report zone counting performance results in the simulated Office 1 and

Office 2 environments. Of these, Office 1 is easier in that there are only two directions
of possible motion under each sensor, which are mounted over doorways and narrow
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gaps. Office 2 is more challenging since there are several entrance/exit zones observed
by each sensor, and the possible walking paths are not bidirectional.

Tables 1 and 2 report zone counting results for Office 1 and Office 2, respectively,
corresponding to 5 simulated 9-hour days in each space, as described in Section 3.
In addition to total error rate, we break out the sensor activations based on the
number of people under the sensor in each interaction. As expected, most of the
activations (82% in Office 1 and 93% in Office 2) only involve one person, and errors
in this case are very rare. The vast majority of the remaining activations involve two
people under the sensor, with a handful of situations involving three people under
the sensor. The results indicate that the algorithm makes very few mistakes.

Table 1: Counting performance in Office 1

Errors/total activations
Days total error rate 1 person 2 persons 3 persons
Day 1 1/392 0/327 1/63 0/2
Day 2 1/434 0/350 1/82 0/2
Day 3 3/410 0/317 2/89 1/4
Day 4 0/352 0/316 0/36 0/0
Day 5 3/438 0/359 3/75 0/4
Total 8/2026 0/1669 7/345 1/12

Percentage 0.40% 0% 1.73% 8.3%

Table 2: Counting performance in Office 2

Errors/total activations
Days total error rate 1 person 2 persons 3 persons
Day 1 1/497 0/479 1/18 0/0
Day 2 2/585 2/539 0/44 0/2
Day 3 0/426 0/409 0/17 0/2
Day 4 5/563 3/512 2/51 0/0
Day 5 4/602 1/557 3/41 0/4
Total 12/2673 6/2496 6/171 0/8

Percentage 0.45% 0.24% 3.50% 0
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We identified two situations that caused errors in our experiment. The first,
which we call localization error, is due to a bad location estimate resulting in an
inaccurate motion vector and an incorrect zone transition. This case is illustrated in
Figure 13, in which the person actually walks from Zone D to Zone A, but because
of the incorrect estimate of their last location, we estimate that this person walks
from Zone D to Zone B.

Figure 13: Counting error due to localization error. The blue line and points are the ground truth.
The orange line and orange points are the estimated results. The result is that the algorithm
registers a D → B transition instead of the correct D → A transition.

The other error-causing scenario is due to two or more people who walk un-
derneath the sensor close together and are not detected by our split/merge logic,
resulting in zone under- or over-counts. We call this crowding error. Table 3 shows
the types of errors in the Office 1 and Office 2 experiments. We can see that in
the small and simple environment, crowding accounts for most of the errors, while
localization error is more likely in the large and complex environment.

5.4. Zone Counting Performance (Real Environment)
We also report results from a short experiment in the real-world version of Office 1

using the physical sensor in 4×4 mode and the same algorithms described in Section
3. Due to the pandemic, it was not possible to conduct long-term experiments with a
fully staffed office of normally moving workers. In our first experiment, we collected
1.5 hours of data involving one- and two-person interactions under the sensor. During
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Table 3: Breakdown of Error Types in Simulated Experiments

localization error crowding error total
Office 1 1 7 8
Office 2 6 6 12
total 7 13 20

this experiment, the distance between two people was always more than 1m. Table
4 reports the results. We observed no errors in this experiment, which shows that
our algorithm works well for typical behavior.

Table 4: Typical Performance in Real-World Office 1

activity Errors/total activations
1 person 0/106

2 persons same direction 0/18
2 persons crossing 0/15

Total 0/139

Figure 14 shows time series of real sensor readings for the cases of a single person,
two persons walking in the same direction, and two persons crossing under the sensor
walking in different directions, respectively.

To test the counting performance in more crowded situations, we conducted a
second experiment involving situations when two people walk closely (shoulder to
shoulder) under the sensor, or three people are visible in the sensor FoV at the same
time (with no distance requirement). In real scenarios, we do not expect more than
three people to simultaneously appear under a single sensor.

Table 5: Crowded Performance in Real-World Office 1

activity Errors/total activations (%)
2 persons (less than 1m) 9/44 (20.5%)

3 persons 3/39 (7.7%)

While three-person performance is fairly good, as expected, two-person perfor-
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(a) 1 person walking under the sensor

(b) 2 people walking in the same direction

(c) 2 people crossing under the sensor

Figure 14: Data from a real sensor mounted in the real Office 1. Algorithmic clustering results are
shown as red and blue outlines around raw sensor readings.

mance suffers when the pair walks very closely under the sensor. All of the errors
are under/overcounts resulting from inaccurate separation of people, which is a lim-
itation of the sensor’s extremely low resolution. Hence, we judge our sensors to be
suitable for commercial office spaces with low crowding levels (e.g., a typical office
space vs. a subway turnstile).

5.5. HVAC energy usage simulation
We estimated the potential energy savings of occupancy-based HVAC control

using the simulated Office 2 space. These savings are based on a ventilation control
scheme that uses the occupancy count compared with a baseline scheme that uses
constant air volume control. This analysis considers the entire space in aggregate,
without considering potential minor improvements from individual zone control. The
cooling case is considered, where the supply air temperature is 13◦ C. The control
principle is that CO2 levels must be managed by ventilating fresh air into the space,
and the outside fresh air and the re-circulated zone return air that is mixed and
supplied to the zones must be cooled to offset the internal heat generation. If a daily
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Figure 15: Cumulative thermal energy shown with/without occupant counting for the simulated
Office 2.

occupancy schedule is known, then the total energy savings over a 24-hour period can
be calculated. Here, in the occupancy-based control case, the instantaneous power
savings as a function of occupancy in each hour is integrated over the hour to get the
hourly energy savings. Figure 15 shows the result, from which we estimate an energy
savings of 45% over a 24-hour simulation. This is in line with previous research
reporting that energy savings of about 30% could be achieved in HVAC cooling by
using an occupancy-controlled thermostat that switches the temperature set point
to a higher threshold for the unoccupied zones [39], among other studies [40, 41, 42].

5.6. Longer-Term Issues
Even though our probability of making an error for a single activation is low, these

errors can accrue in the longer-time-scale problem of zone counting. For example, an
off-by-one miscount at the beginning of the work day could propagate for the whole
day, possibly making an occupied zone appear to be unoccupied or vice versa. Table
6 reports the instantaneous probability that the zone counts are in an incorrect state
(for the simulated environments discussed initially). We can see that approximately
76% of the time (Office 1) and 86% of the time (Office 2), the zone count is exactly
correct, and the vast majority of the remaining time the zone count is at most off by
one person.

If we wanted the occupant counts to be exactly correct more than 95% of the
time, we would need the algorithm error rate to be less than 0.02% (our current error
rate is 0.40–0.45% according to Tables 1 and 2). Clearly this puts very stringent
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Table 6: The instantaneous probability of different miscounts in each simulated environment. The
miscount is defined as the absolute difference between the true and estimated numbers of occupants.

miscount probability
Office 1 Office 2

0 75.5% 85.5%
1 24.5% 11.8%
2 0 0
3 0 2.6%
4 0 0

requirements on any occupancy counting technology. One possibility is to “reset”
the system at periodic intervals to avoid error propagation. Table 7 shows that the
required error rate varies with the “reset” time interval.

Table 7: Algorithmic error rate that would be required to obtain correct counting rate more than
95%, as a function of reset interval.

reset interval (h) required miscounting rate
0.5 0.43%
1 0.21%
2 0.11%
4 0.05%
9 0.02%

The latency of our system is only 0.33s (5 frames), which is quite small compared
to environmental sensors like CO2 sensors. While HVAC systems take some time to
bring spaces to temperature, this low latency can enable lighting systems to deliver
both energy efficiency and a better occupant experience (i.e., delivering light only
where and when it is needed).

6. Conclusions

We introduced a zone-counting system to accurately monitor an occupied envi-
ronment using low-cost, privacy preserving sensors, and analyzed the results of our
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system in both real and simulated environments. We believe that time-of-flight sen-
sors present an attractive modality for real-world occupancy counting in commercial
office spaces since they could be inexpensively and unobtrusively designed into ceiling
tiles and door frames.

Compared to other sensors, the strengths of our ToF sensors include their cost,
low energy consumption and data storage/processing requirements, and privacy pre-
serving nature. On the other hand, their low resolution makes it difficult to discrim-
inate people moving in crowds. Performance would improve if a similarly low-cost
ToF sensor with about twice the resolution were available in the same form factor.
Such sensors would be able to discriminate occupants’ heads from their bodies while
preserving their privacy.

To achieve true net energy savings using this or any occupant counting system, the
costs of installing, operating, and maintaining the system must be taken into account.
For example, a wireless, battery-powered sensor array is likely cheaper and easier to
maintain than a sensor array that must be wired into a building management system
by a trained electrician. Furthermore, the sensors themselves need not be operated
at full power all the time, but should be designed to “wake up” when an occupant is in
their vicinity. Finally, as we investigate the use of these sensor arrays at a larger scale
(e.g., whole floors of open-plan offices), it would be useful to have an algorithm that
can automatically use the floor plan of the built environment and the known lighting
and HVAC zones to automatically determine the necessary number and position of
occupancy sensors. We plan to adapt methods for automatic placement from the
sensor networking literature, e.g., [43].
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