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1. Introduction

Various shape models have been proposed in the medical imaging literature. Many

models are designed to be applicable across a wide population of patients, and many

others are customized to a specific patient’s anatomy as it varies over time. In this

paper, we propose bilinear models as a means of capturing and effectively decoupling

the expected shape variations of an organ both across the patient population and within

a specific patient during a course of radiotherapy. Our particular interest is in organ

shape variation as it applies to radiation therapy treatment planning. Better shape

models can help localize a target organ more precisely, so the outcome of treatment

can be improved. In this paper, we focus on the 3D shape modelling of the prostate,

using a family of data composed of CT scans of several patients acquired over the

course of several days of treatment, in which the prostate had been manually outlined

by physicians.

A bilinear model is similar to a linear model using principal component analysis

(PCA), but it has two vectors of control parameters: a ‘style’ vector and a ‘content’

vector. In our application, ‘style’ corresponds to the identity of the patient and ‘content’

to the relative organ volume within the patient. The resulting model is then able to

generate previously unseen organ shapes for both new styles and new contents. One

advantage of a bilinear model is its ability to adapt to a new patient, producing a

patient-specific model that also reflects expected content variation learnt from a broader

population. First, the base bilinear model is built from organ shapes acquired on several

days from each of several training patients. To adapt to a new patient, the ‘style’

parameter is estimated from a few contoured scans, and subsequently fixed to produce

a content-varying model. Closely-related work can be found in Söhn et al (2005) and

Freedman et al (2005), where the geometric variation of the prostate, bladder and

rectum was analyzed using standard PCA; our work is an extension of the method to

capture both inter- and intra-patient variation.

2. Point distribution models

There have been many shape modelling methods described for medical applications; a

good review can be found in McInerney and Terzopoulos (1996). In this paper, we focus

on point distribution models (PDMs) (Cootes et al 1995). In a PDM, the shape of

an object is expressed by a set of points distributed along its boundary, and the model

is built based on roughly homologous landmark points associated with each of several

training sets.

Our method for automatically selecting landmark points suitable for shape

modelling of the prostate is based on the work by Jeong and Radke (2007), described

briefly as follows. Each training dataset is composed of parallel CT slices. In each

slice, a physician has indicated several points around the boundary of the prostate.

The difficulty is that the numbers of slices per scan and the numbers of points per



Bilinear models for the inter- and intra-patient variation of the prostate 3

slice differ from dataset to dataset, making it difficult to establish correspondence for

a shape model. Thus, we use the fast method based on elliptic Fourier descriptors

(Jeong and Radke 2007) to obtain re-sampled points on uniformly-spaced parallel

slices of a smooth surface that interpolates the original points in each dataset. The

number of landmark points was chosen such that the set of points can accurately

capture the interpolating surface of all the training shapes with a minimal number

of points. Consistently re-sampling T datasets results in the training data {x(t)}T
t=1,

where x(t) = (x1(t), y1(t), z1(t), . . . , xN(t), yN(t), zN(t))T is a column vector representing

N points at matching locations in 3D. All the training shapes were aligned using the iso-

center (marked by a physician for each patient) prior to model-building, which removes

the need for subsequent registration. We note that any method that roughly aligns the

training shapes can be used, such as matching centers of gravity, since the subsequent

model will account for minor misalignments.

The active shape model (ASM) proposed by Cootes et al (1994) is probably the

most common PDM and has been extensively used for the modelling and segmentation

of medical imagery. To build the standard ASM, PCA is applied to the covariance

matrix of the training data:

Cx =
1

T − 1

T∑
t=1

(x(t)− x)(x(t)− x)T (1)

where x = 1
T

∑T
t=1 x(t). A set of mode vectors Φ = [φ1φ2 · · ·φL] (L ≤ T ) is chosen

that corresponds to the L largest eigenvalues. The resulting shape model can generate

shapes in terms of a weighted sum of mode vectors plus the mean shape:

x̂ = x + Φ · p (2)

where p is the vector of model control parameters. Heap and Hogg (1998) proposed

the hierarchical PDM (HPDM), which constrains a standard ASM so that shapes are

only considered to be ‘valid’ if their model parameters lie in the region covered by

training data projected into the model parameter space. The valid region of parameter

space is determined by clustering the projections of training data, and defining a hyper-

ellipsoidal subregion for each cluster. The union of these hyper-ellipsoids gives the final

valid shape region. Shapes are projected onto the model in exactly the same way as the

ASM, with the extra step that the model parameters p are projected onto the nearest

valid subregion before computing (2). In addition to the number of modes of the ASM

to retain, the user must also select a reasonable number of clusters and the acceptable

overlap between clusters. The advantage of the HPDM is that it explicitly ensures that

generated shapes resemble the training data (perhaps at the cost of generalizability).

3. Bilinear models

Because linear models have often shown good performance in many computer vision

applications, it is reasonable that in approaching a problem with two dominant types of
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variation, one can assume a linear model for one factor when the other factor is fixed.

In the literature on bilinear models, the two factors that control the model are called

style and content.

Bilinear models have been proposed for several computer vision applications. For

example, Tenenbaum and Freeman (2000) applied bilinear models to several situations

that have two natural independent variations, such as a set of faces seen in different poses

or lighting conditions and English vowels spoken by different speakers. Our description

of building bilinear models follows the approach in Tenenbaum and Freeman (2000). To

our knowledge, our work is the first application of bilinear models in a medical imaging

context.

Mathematically, a bilinear model is expressed in terms of two control vectors for

style and content and a fixed set of basis vectors. The mapping from style s and content

c, (s, c), to an observation x ∈ RK is expressed as

xk = aT
s Wkbc (3)

where xk is the k-th element of the observation, Wk ∈ RI×J denotes the set of basis

vectors for the k-th element, a ∈ RI denotes the style control vector (presumed to be

independent of content) and b ∈ RJ denotes the content control vector (presumed to be

independent of style). Sometimes we write x = aTWb, where W ∈ RIK×J collects the

basis functions for all the elements of x. The basis vectors in W describe the interaction

between style and content in the training set. The resulting model is called symmetric.

On the other hand, we can fold either the style or content vectors into the basis

functions to make a style- or content-specific model (which is simply linear in its

parameters). For example, when the style vector is fixed and pre-multiplied with the

basis vectors, the resulting model can be expressed as

x = Wsb (4)

where Ws expresses the style-dependent basis functions; this model can generate

different contents in a single style. Such a model is called asymmetric.

Our general approach is to build a symmetric model from a collection of training

data, i.e., many contoured organ shapes from each of many patients. Then, based on a

small number of organ shapes from a new patient, we will estimate the style vector for

the new patient to generate an asymmetric, style-specific model. In the next section, we

describe how to build symmetric bilinear models, and in Section 5 we discuss the style

adaptation problem.

4. Building symmetric bilinear models from training data

To build a bilinear model, we try to find the parameters of the model that best fit

the given training data. We require that each training observation be labelled with its

corresponding style and content class prior to model-building. The total squared error
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to be minimized in the symmetric model is

Error =
T∑

t=1

S∑
s=1

C∑
c=1

K∑

k=1

χsc(t)(xk(t)− aT
s Wkbc)

2 (5)

where S and C are the total number of styles and contents respectively. A training

vector x(t) ∈ RK denotes the t-th observation in the training dataset {x(1), · · · ,x(T )}.
χsc(t) is an indicator function; χsc(t) = 1 if the t-th observation x(t) is in (style, content)

bin (s, c), and 0 otherwise. The dimensions (I, J) of the control vectors (a,b) must be

less than or equal to the numbers of style and content bins (S,C) respectively. The {as},
{bc} and {Wk} that minimize (5) can be found either using an iterative singular value

decomposition (SVD) method or direct minimization, depending on how the training

data are distributed for each style and content class, as discussed below.

4.1. Equal numbers of observations for each (style, content) class

In the case where each (style, content) class has an equal number of instances, an

iterative method using the SVD can be used to solve the training problem (Tenenbaum

and Freeman 2000). While this assumption is unsatisfied for many real training

situations, the SVD-based method can be used to initialize the optimization problem in

such cases, as discussed in the next section.

The basic idea is to iteratively alternate the role of style and content in an

asymmetric formulation until convergence. We define the training matrix, X, and its

“vector transpose”, denoted as XV T , as follows:

X =




x11 · · · x1C

... · · · ...

xS1 · · · xSC


 , XV T =




x11 · · · x1S

... · · · ...

xC1 · · · xCS


 (6)

where xsc is the mean vector for the observations in bin (s, c), i.e. let Nsc =
∑T

t=1 χsc(T )

and xsc = 1
Nsc

∑T
t=1 χsc(T )x(t). Note that X ∈ RSK×C and XV T ∈ RCK×S. We arrange

the elements of the basis vectors into a matrix W as:

W =




w11 · · · w1J

... · · · ...

wI1 · · · wIJ


 , WV T =




w11 · · · wI1

... · · · ...

w1J · · · wIJ


 . (7)

Here, each wij ∈ RK , so W ∈ RIK×J and WV T ∈ RJK×I . We define style and content

matrices A and B as

A = [a1 · · · aS], B = [b1 · · · bC ]. (8)

Here, A ∈ RI×S and B ∈ RJ×C . Using the notation above, we note that the bilinear

model can be expressed in either one of the following forms:

X = (WV TA)V TB, XV T = (WB)V TA. (9)

The solution to the approximation problem

min
A,W,B

‖X− (WV TA)V TB‖2 or min
A,W,B

‖XV T − (WB)V TA‖2 (10)
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also minimizes the approximation error in (5) when each class has the same number of

observations (Tenenbaum and Freeman 2000).

It is difficult to decompose X into (WV TA)V TB directly. So, to tackle the problem,

X is expressed initially in the asymmetric form, WsB (where Ws = (WV TA)V T ) and

A and B are updated iteratively, using the following procedure:

(i) Initialization.

Initialize B using an SVD-based solution for the asymmetric model X = WsB.

That is, decompose X = UDVT and set B to be the first J rows of VT . B is

orthogonal, i.e. BBT = IJ . Then ideally, (XBT )V T = WV TA(∈ RJK×S) from (9).

(ii) Iteration: repeat the following until convergence.

(a) Update A.

Compute the SVD of (XBT )V T = WV TA = UDVT . Update the estimate of

A as the first I rows of VT . This A is orthogonal. So ideally, XV TAT = WB

(∈ RIK×C) from (9).

(b) Update B.

Compute the SVD of (XV TAT )V T = (WB)V T = UDVT (∈ RCK×I). Update

the estimate of B as the first J rows of VT .

(iii) Solution.

Upon convergence (when there is negligible change in the entries of A and B), solve

for W using either one of the equations in (9), e.g. W = [(XBT )V TAT ]V T when

using the first equation.

The convergence of the above procedure to the minimizer is guaranteed (Magnus and

Neudecker 1999). We found that the procedure is not sensitive to the initial choice of B

as long as its elements are in the typical range of the content parameter. The adequate

dimensionalities of the control parameters I and J can be determined by the precentage

of captured variation of the training dataset, which can be computed from the singular

values of each SVD (similar to deciding the appropriate number of principal modes in

PCA).

4.2. Non-equal numbers of observations for each (style, content) class

In the more general case, (5) has to be minimized using a numerical optimization

algorithm such as a quasi-Newton method, with initial guesses of A and B that could

be obtained from the method for the equal-observations case. The derivatives of the

objective function are easy to compute.

When there are undefined entries in the training matrix X, i.e. if there is no

assigned training instance in some class (s, c), several methods can be used to fill in

the missing data. One simple solution is to take the mean of the observations in the

appropriate style s across all content classes or the observations in the appropriate

content c across all style classes, which yielded a satisfactory result in Tenenbaum and

Freeman (2000). An alternate solution would be to predict the missing data using
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a model built from a complete smaller training matrix (Vlasic et al 2005). Also,

a subspace decomposition that best describes the given data can be obtained, and

this decomposition and known data act as constraints on predicting the missing data

(Vlasic et al 2005) using probabilistic PCA (PPCA) (Tipping and Bishop 1999).

4.3. Defining the content classes

To build a bilinear shape model that can decouple inter- and intra-patient variation in

our real application, we need to know beforehand the style and content class for each

shape in the training data. The style can be defined as the identity of the patient,

because we know which patient a specific dataset comes from. However, the content is

difficult to define because even physicians cannot easily label (in a quantitative, style-

independent way) the intra-patient variation for any patient scan.

Geometry changes or deformations of the prostate often occur for patients

undergoing radiotherapy. For example, Balter et al (1995) reported translation/rotation

of the prostate over time in 70% of the subjects studied. Melian et al (1997) reported

that the change in position of the prostate related to bladder and rectal volumes caused

the centre of mass to migrate from that of the planning scan. These changes might

be candidates for defining the content classes, but they are difficult to quantify in a

patient-independent way.

It has also been observed that the volumes of organs of interest change during

radiation treatment. Roeske et al (1995) observed that the volume of the prostate can

vary by approximately ±15% from its average volume. Antolak et al (1998) observed

differences of up to 80% between minimum and maximum volumes of the prostate. This

volume variation can be due to deformation by the bladder, rectum or tumor, or due to

physical change of the organ. Hence, we propose to use the volume of the prostate to

define the content classes for our bilinear model; content is usually defined as a global

property of training data and volume can be a global property of an organ.

Due to the different sizes of prostates across the patient population, the volume is

normalized for each patient so that relative volume defines the content classes. That is,

for each patient dataset, the volumes of all observed prostates are measured, {vi}, and

are normalized as ṽi = (vi−vmin)/(vmax−vmin) where vmin and vmax are the minimum and

maximum observed volume. The normalized volume range [0, 1] is uniformly divided

into the desired number of content bins.

An assignment of prostate training datasets using this strategy is shown in Figure 1.

In this case, the number of styles is set to be the number of patients (6) and the content

is partitioned into 5 bins. In Figure 1, the shape in each style and content class is the

mean shape of the training shapes assigned to the corresponding class.

New shapes generated from one bilinear model built from this dataset are shown

in Figure 2. The bilinear model was built following the procedure described above. A

total of 99 shapes from the 6 patients’ datasets were used to build the bilinear model

with I = S = 6 and J = C = 5 (since the control parameter for style is found and
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Figure 1. Mean shapes of training data assigned to each style and content class (there
is one blank entry for a class that has no assigned training data).

(a)

(b)

Figure 2. New observations generated using a bilinear shape model of the prostate
by (a) varying the style control parameter with content control parameter fixed and
(b) varying the content control parameter with style control parameter fixed (units in
cm).

fixed for a new patient in our application, the dimension for the style parameter, I, is

set to the number of patients for maximum expressibility). The class with no training

instances was filled in with the mean observation of the same content across all styles.
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5. Adapting the bilinear model to a new patient

The main rationale for using bilinear models for shape modelling of the prostate is that

the available data form a natural two-factor problem, composed of shape changes due

to inter- and intra-patient variation. We hypothesize that the two factors can be well-

modelled using linear models individually, and that there are consistent factors governing

the changes within a patient and the changes across patients. The bilinear model can

be adapted easily to a new patient by estimating their style parameters from a small

amount of contoured data, resulting in a patient-specific variable-content model. This

is an instance of what Tenenbaum and Freeman (2000) referred to as the “translation

problem”.

Given M organ shapes from a new patient, {x(1), · · · ,x(M)}, we estimate the

corresponding style vector, â, and content vectors, {b1, · · · ,bM}, by minimizing
M∑

m=1

K∑

k=1

(xk(m)− âTWkbm)2 (11)

where the basis matrices Wk are fixed from the previous training process. The initial

estimates of â and {b1, · · · ,bM} are set as the mean of the style and content vectors of

the training data, i.e.

âinitial =
1

S

S∑
s=1

as, b̂1,initial = · · · = b̂M,initial =
1

C

C∑
c=1

bc (12)

where {as} and {bc} are fixed vectors estimated during model-building. The

minimization is accomplished through the same type of iterative procedure described

in Section 4. This process always converged to a local minimum of (11) in our

experiments. Different initial estimates of the style and content parameters may

converge to slightly different sets of parameters, but we observed that they all achieved

comparable approximation error for the remaining shapes.

A new shape that is specific to style â can then be generated by varying the content

control vector b:

xb = âTWb = Wab (13)

where Wa = âTW ∈ RIK×J expresses the resulting style-adapted basis matrices.

While it is desirable that the number of datasets used for adaptation should be

minimal, a very limited number of organ shapes can result in a poor estimate of the

style control vector. On the other hand, when a large number of shapes are used for

adaptation, the model may be adapted ‘too late’ and can only be applied to a small

number of remaining scans, limiting its usefulness. We investigate the appropriate

number of adaptation datasets in our experiments below.

6. Experiments

In this section, we compare the bilinear model against a standard PCA-based linear

model and a hierarchical PDM for the 3D prostates in our clinical dataset. We performed
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Table 1. Summary of the datasets used for the experiments.

Training sets Testing sets
Set number 1 2 3 4 5 6 7 8 9 10 11 12

Number of shapes 17 17 19 19 13 14 18 18 18 17 17 17

three types of experiments: modelling, adaptation and segmentation. In the modelling

experiments, the training and testing projection error of all models are measured, which

allows us to directly compare the representational ability of models with the same

numbers of parameters. Next, we compare the bilinear model’s performance in adapting

to scans of a new patient with adaptation experiments using the other models. Finally,

we run image segmentation experiments to investigate how each model performs in

practice.

Each model has a notion of a number of dominant modes to be selected, and

we want to investigate the performance of each model with respect to this parameter,

holding other modelling choices constant. The ASMs based on linear PCA were built

in a straightforward way as explained in Section 2. The bilinear models were built as

described in Section 4. For the hierarchical PDMs, we fixed the number of clusters to

be 3 and the overlap degree between adjacent regions to be 1.2 (Heap and Hogg 1998).

These values were obtained from the experiment that produced the best segmentation

results for the HPDM.

For the experiments in this section, 12 datasets were used, each containing several

scans from the same patient on different days of radiotherapy, as summarized in Table 1.

The training vectors for each model were composed of 400 prostate landmark points in

3D re-sampled from the clinical datasets using the method described in Jeong and Radke

(2007). We used 20 slices and 20 points per slice such that the resulting set of points well

approximates the interpolating surface of the training shapes as mentioned in Section 2.

Sets 1–6 were used to build the various models and sets 7–12 were used for testing. The

training shapes of the prostate can be all enclosed in a cube with the side length of

5 cm, and the landmark points were measured in millimeters. All the training shapes

were aligned each other using the iso-center prior to model-building.

6.1. Modelling experiment

There are several dimensions to fix when building a bilinear model: S (the number

of style classes), C (the number of content classes), I (the dimension of the style

control vector) and J (the dimension of the content control vector). It is important

to choose each dimension appropriately so the resulting model can express training data

faithfully with a reasonable number of parameters. In our experiments, we always set

I = S = 6, the number of training patients. This is primarily due to the fact that

our motivating application for the bilinear model is its adaptation to a new patient.

After this adaptation, the style vector is fixed (i.e., it is no longer a control parameter),
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Table 2. Mean approximation error (in mm) of training (compactness C(M)) and
testing shapes (generalization G(M)) using a bilinear model for several C and J values.

C(M) G(M)
C 1 2 3 4 5 6 1 2 3 4 5 6

1 2.02 2.03 2.03 2.03 2.03 2.02 2.20 2.20 2.20 2.20 2.19 2.19
2 1.78 1.82 1.88 1.84 1.89 1.80 1.87 1.98 1.91 2.01
3 1.67 1.65 1.63 1.67 1.72 1.64 1.66 1.70

J
4 1.51 1.48 1.56 1.43 1.48 1.50
5 1.39 1.42 1.30 1.35
6 1.32 1.23

so I was set to S for maximum style expressibility. The determination of J is more

difficult because J ≤ C and C has to be determined a priori. Thus, we conducted two

approximation experiments to choose C and J among various combinations.

The experiments are based on the error in projecting the training data onto the

model (also called compactness) and the error in projecting the testing data onto

the model (also called generalization) (Styner et al 2003). The projection error is

based on a distance measure D between two shapes x = (x1, y1, z1, . . . , xN , yN , zN) and

x̂ = (x̂1, ŷ1, ẑ1, . . . , x̂N , ŷN , ẑN). In our experiments, we used the average Euclidean

distance between corresponding points given by

D(x, x̂) =
1

N

N∑
n=1

√
(xn − x̂n)2 + (yn − ŷn)2 + (zn − ẑn)2. (14)

We denote PM(x) as the projection of shape x onto model M. Projection of a shape

onto a PCA model is performed using (2) with p = ΦT · (x− x), and projection onto a

bilinear model is performed as explained in Section 5.

A family of bilinear models with I = 6 and varying C and J were built using

99 prostate shapes from the 6 training datasets. The maximum C was set to 6

in our experiment because partitioning with more than 6 classes generates many

missing style/content training shapes, which makes learning the model parameters

more difficult. For each model M, the compactness is measured as the average

approximation error for all the samples in the training datasets {x(1), . . . ,x(T )}:
C(M) = 1

T

∑T
t=1 D(x(t), PM(x(t))). The generalization ability G(M) is similarly

measured for all the samples in the testing datasets. The results are summarized in

Table 2. The table indicates that the choice of C is not critical for a fixed J , which can

be observed across each row. Therefore, it seems reasonable to choose J = C for the

bilinear models in our application. The testing error in Table 2 shows a similar trend

to the training error, with slightly higher approximation error overall as expected.

For comparison, we built ASMs and HPDMs using the same 99 prostate shapes

using between 7 and 12 dominant modes. The training and testing projection error are

compared to the best bilinear model with the same number of parameters in Table 3.

We can see that all the models have good performance in an absolute sense (i.e., between
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Table 3. Mean approximation error (in mm) of ASM, HPDM and best bilinear models
of the same order (N=7,. . . ,12) over the training and testing shapes.

Training Testing
order (N) 7 8 9 10 11 12 7 8 9 10 11 12

ASM 1.49 1.40 1.30 1.22 1.16 1.10 1.63 1.55 1.44 1.33 1.28 1.22
HPDM 1.66 1.56 1.46 1.37 1.27 1.21 1.84 1.76 1.68 1.58 1.56 1.51
Bilinear 2.19 1.80 1.64 1.43 1.30 1.23 2.02 1.78 1.63 1.48 1.39 1.32

1 and 2 mm error), differing by a fraction of a mm in accuracy. However, the bilinear

models have an advantage that the ASMs and HPDMs do not: the ability to generate

inter-patient or intra-patient variation when the other factor is fixed.

6.2. Adaptation experiment

Next, we compare the adaptation ability of the bilinear model to the other models. We

investigated the adaptation performance as a function of the number of datasets used to

adapt, denoted M , as well as the dimension of the style-adapted model, J . As discussed

previously, it is desirable that both parameters be kept small while maintaining low

projection errors. To build ASMs and HPDMs to compare against the bilinear model,

we used order-J models built from the same 99 prostate shapes in the training set,

plus the first M scans from the new patient used to adapt the bilinear model. For

each patient, the projection error of the remaining scans not used for model-building

was measured for all models. The mean projection error over all testing patients as a

function of M and J=4, 5, 6 is illustrated in Figures 3(a), 3(b) and 3(c) respectively.

It can be observed that while adding the adaptation scans has relatively little

effect on the ASM and HPDM, the bilinear model consistently improves with more

adaptation datasets. Especially for low model orders, the bilinear model improves on the

linear model after only a few examples. This is desirable, since it would be realistically

unlikely that more than a couple scans could be manually contoured in a clinical setting.

Figure 3(d) shows the results for testing set 12. In this view, it can be observed that

“elbow points” of diminishing returns for the bilinear model occur at about M=3, and

that the adapted bilinear models with 4 or 5 parameters are already as good as the

ASM with 6 parameters. These results are in good agreement (though in a different

context) with the results of Yan et al (2000), which concluded that a few initial CT

scans (about 5) from a new patient over the course of fractionated radiotherapy are

sufficient to construct a cost function that accurately calculates dose distributions for

the patient.

6.3. On the use of inter-patient geometric information

To verify that the inter-patient geometric variation is necessary, we conducted an

additional modelling experiment using a model which we call the “small PCA model”;
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Figure 3. Mean projection error versus the number of shapes used for adaptation
for models of dimension (a) 4, (b) 5 and (c) 6 (- - - -: ASM, · · · · · ·: HPDM, ——:
bilinear). Panel (d) shows the projection errors of the ASMs and bilinear models with
equal model orders (4, 5 and 6) for testing set 12. In this case, the bilinear model
outperforms the ASM model with the same model order after only a few adaptation
datasets.

the model was built using only a few initial manually-contoured shapes from a new

patient. The rest of the shapes of the patient were approximated and averaged Euclidean

distances of the corresponding points were measured. The result is shown in Figure 4 for

testing set 12; the small PCA model has smaller approximation error than the adapted

bilinear model when using more than 7 sets, but at this point there would be little clinical

benefit for automatic segmentation because there remain few scans to be segmented.

6.4. Segmentation experiment

Because the shape model can be used as a constraint in segmentation, it is also useful

to see how each model actually performs in segmentation problems. We note that

segmentation is not the focus of this paper, and that different results would be obtained

with different segmentation methods.

Each model was built using the 6 training datasets, plus 4 sets of contours from the
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Figure 4. Approximation error for adapted bilinear model and small PCA model
against the number of adaptation datasets, for testing set 12.

given testing patient. In the bilinear model, these four extra sets of contours were used

for style adaptation; otherwise they were collected with the training data for model-

building, just as described in the previous section. The style-adapted bilinear model,

ASM and HPDM were then used to segment the remaining images of each test set.

The dimensionality of all the models was set to 4 so that the segmentation was fast.

For all experiments, we used the 3D model-based segmentation algorithm described in

Freedman et al (2005). This algorithm is based on minimizing the distance between

the cumulative density function (CDF) of the intensities of the pixels inside the evolving

surface boundary (qS(β)) and the CDF of an appearance model (m(β)), subject to the

constraint that the evolving surface is generated by the specified parametric shape model

(S(β)):

min
β

K
(
qS(β),m(β)

)
(15)

where K is a distance measure between two CDFs. The appearance model can be

obtained as the pixel-intensity histogram of the region in an image to be segmented

that best matches one of the pixel-intensity histograms of the training data. Refer to

Freedman et al (2005) for more details of the segmentation method.

One segmentation result for the bilinear model applied to the CT images from a

testing dataset is shown in Figure 5. Median statistics of the segmentation results for

all the scans of the testing datasets are summarized in Table 4. The segmentation is

validated against manual ground-truth using the following measures:

• vd, the probability of detection, calculated as the fraction of the ground-truth organ

that was contained by the estimated organ. For a good segmentation, vd should be

close to 1.

• vfa, the probability of false alarm, calculated as the fraction of the estimated organ

that lies outside the ground-truth organ. For a good segmentation, vfa should be

close to 0.
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Figure 5. Cross-sections of the automatic segmentation of one 3D CT scan from
testing patient 12 using the bilinear model of order 4. The dark contours are the
automatic model-based segmentation results, and the light contours are the physician-
labelled ground-truth.

Table 4. Image segmentation statistics over the testing datasets.

Statistic Set ASM HPDM Bilinear Set ASM HPDM Bilinear

med Vd 0.45 0.70 0.71 0.70 0.72 0.77
med Vfa 7 0.05 0.11 0.09 10 0.16 0.18 0.10
med centr. dist. (mm) 12.90 6.31 5.88 9.94 8.48 6.18

med Vd 0.64 0.55 0.56 0.76 0.89 0.68
med Vfa 8 0.08 0.09 0.12 11 0.39 0.42 0.24
med centr. dist. (mm) 8.86 10.10 10.46 10.52 8.15 9.71

med Vd 0.69 0.65 0.64 0.71 0.70 0.78
med Vfa 9 0.03 0.03 0.15 12 0.54 0.43 0.36
med centr. dist. (mm) 4.97 5.72 6.56 10.80 10.10 5.95

• The centroid distance, calculated as the norm of the vector connecting the centroids

of the ground-truth and estimated organs.

We can see from the table that the bilinear models have good relative and absolute

performance. Although the patient-specific models built using the bilinear model can

better approximate the unseen shapes of the new patient than other methods, the

segmentation algorithm does not always seem to find the best possible shapes. If such

an optimal segmentation is possible, the bilinear model can yield the best performance

theoretically as shown in the modelling experiment in Section 6.1.
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7. Conclusions

We demonstrated a novel application of bilinear models to the shape modelling of

anatomical objects. The experimental results showed that the bilinear shape model

performs well in fitting both training and testing shapes. In adaptation tests, the

bilinear shape model performed as well as or better than a linear shape model using

the same number of parameters, especially for small model orders. The results show

the potential of bilinear models to compactly represent medical datasets that have two

inherent types of variation. Our initial tests indicate that the adapted bilinear model

can be used as an effective shape constraint in the segmentation of medical images. In

future work, the bladder and rectum, the two organs surrounding the prostate, could

also be modelled using the proposed method. We previously showed in Freedman et

al (2005) that PDMs can be successfully applied to the rectal wall (basically a tubular

shape), and the bladder (basically a round shape) can be represented similarly to the

prostate.

We believe a better shape model using the bilinear approach is possible, since the

assignment of content classes plays an important role in the bilinear model and could be

improved. For example, additional information about the patients such as age or weight

could be used in defining the content bins if there is correlation between the shape

change of an organ and these characteristics of the patient. Although we assumed two

factors in our data, the number of true inherent variation axes may be more than two.

In such a case, a multilinear model (e.g. Vasilescu and Terzopoulos 2002) may express

the variation better than bilinear model, although the difficulty of defining good content

classes still remains.
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