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ABSTRACT
Studying group dynamics requires fine-grained spatial and tempo-
ral understanding of human behavior. Social psychologists studying
human interaction patterns in face-to-face group meetings often
find themselves struggling with huge volumes of data that require
many hours of tedious manual coding. There are only a few pub-
licly available multi-modal datasets of face-to-face group meetings
that enable the development of automated methods to study verbal
and non-verbal human behavior. In this paper, we present a new,
publicly available multi-modal dataset for group dynamics study
that differs from previous datasets in its use of ceiling-mounted,
unobtrusive depth sensors. These can be used for fine-grained anal-
ysis of head and body pose and gestures, without any concerns
about participants’ privacy or inhibited behavior. The dataset is
complemented by synchronized and time-stamped meeting tran-
scripts that allow analysis of spoken content. The dataset comprises
22 group meetings in which participants perform a standard collab-
orative group task designed to measure leadership and productivity.
Participants’ post-task questionnaires, including demographic infor-
mation, are also provided as part of the dataset. We show the utility
of the dataset in analyzing perceived leadership, contribution, and
performance, by presenting results of multi-modal analysis using
our sensor-fusion algorithms designed to automatically understand
audio-visual interactions.
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1 INTRODUCTION
Groups are an intriguing social phenomena that form the core of
any organization’s functioning. Kurt Lewin [26, 27] coined the term
group dynamics and defined it as the the verbal and non-verbal
behavior and psychological processes that occur within or between
groups. Group dynamics can change even at a millisecond time
frame, making them notoriously difficult to identify and measure
[11, 23, 24]. Researchers studying group dynamics need to account
for the temporal and spatial resolution of events occurring in a
group at a very fine granularity; this translates to huge amounts
of data. For example, the authors in [25] reported that an analysis
of the verbal communication in a one-hour team meeting required
approximately 7 hours of intense human coding effort. Manually
coding nonverbal behavior like location, gaze, gestures, head and
body movements, posture, speaker segmentation, interruptions and
so on, is even more cumbersome and time-consuming.
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The availability of multi-modal sensors and advances in com-
puter vision, machine learning, and natural language processing
make it possible to automatically analyze several behavior patterns
that are important for the automatic analysis of social interaction.
Gatica-Perez [12] reviewed around a hundred papers dealing with
small social interactions with a focus on non-verbal behavior, com-
putational models, social constructs, and face-to-face interactions.
The fine-grained analyses of group interaction patterns using these
automated methods help in understanding social constructs such as
agreement/disagreement [6], cohesion [15], dominance [16], lead-
ership [3, 18, 38] and emotion [30] in group interactions.

Although many automated methods to analyze human behavior
exist, there are only a few publicly available multi-modal datasets
that can simultaneously help both communities of computer scien-
tists and social scientists [25]. Several researchers from the domains
of social psychology, social signal processing, multimodal interac-
tion, and affective computing have expressed the need for publicly
available multi-modal datasets that enable research in this inter-
disciplinary field [32]. We are also motivated by studying group
interactions where the participants are comfortable and uninhib-
ited, necessitating unobtrusive sensing techniques. Frontal video
cameras or wearable sensors can defeat the purpose of studying
natural human behavior.

In this paper, we present a new small-group interaction dataset
called the UGI Corpus (for Unobtrusive Group Interaction) whose
primary novelty is the use of ceiling-mounted depth sensors in
an unobtrusive and identity-preserving manner, which we believe
to be the first of its kind. Despite their overhead angle and lack
of color information, ceiling-mounted depth sensors allow for the
automatic identification of head pose and visual focus of atten-
tion (VFOA), upper body and head movement analysis, and body
posture and arm pose estimation. We also collected synchronized
audio information and automated, anonymized, time-stamped tran-
scripts of the group meetings. Our dataset additionally contains
demographic information and the results of a post-task participant
questionnaire that allows the correlation of derived multimodal
metrics with emergent leadership and contribution. In the rest of
the paper, we discuss the existing datasets for studying face-to-face
group interactions, our sensing infrastructure and data collection
methods, our automated algorithms for audio-visual understanding
of human behavior, and our preliminary analyses of the dataset.
The dataset is summarized and is publicly available for download
at https://sites.google.com/view/ugirpi/.

2 RELATEDWORK
Among the early research efforts to study face-to-face group inter-
actions, the most prominent is work from the Human Dynamics
Research Group at MIT, who explored the use of wearable sensors
such as the “SocioMeter" [10] and the “sociometric badge" [22, 34].
The sociometric badge could be used to understand (1) common
daily activities like sitting, standing, walking, and running in real
time using a 3-axis accelerometer, (2) social signals like interest,
excitement, and interjections from extracted speech features, (3) lo-
cation to an accuracy of 1.5m by measuring received signal strength
and using triangulation algorithms, and (4) whether people wear-
ing the badges are facing one another within a 30◦ cone and 1m
distance by using an IR sensor.

The ICSI [17] and ISL [8] meeting corpora contain audio data
from several natural and scripted meetings collected with the aim of
facilitating research in automatic speech recognition, noise robust-
ness, dialogue modeling, transcription, prosody and speaking styles.
The AMI corpus [20] was collected in the IDIAP smart room for
studying addressing behavior in small, face-to-face conversations.
It contains multi-modal sensor data and hand-annotated meeting
dialogues, gaze directions, addressees, and adjacency pairs. The
ATR database [9] collected meeting data using a table-top sensor
device consisting of a small 360-degree camera surrounded by an
array of high-quality directional microphones. The Mission Sur-
vival (MS-2) corpus [29] contains audio and video recordings of
group discussions on a hypothetical plane crash scenario. This cor-
pus was developed to study personality traits and social behavior
using audio-visual cues. The ELEA corpus [36] was formed with
the goal of analyzing emergent leadership in newly formed groups.
Close-talking mono-directional microphones, Microsoft Kinects,
and GoPro cameras were used to build the corpus [33] for analyzing
conversational behavior in group interviews.

A recent project by Müller et al. for understanding rapport in
conversations [31] is based on a multi-modal dataset in which
each participant is recorded by two external cameras and an omni-
directional microphone. Braley and Murray presented the Group
Affect and Perfomance (GAP) corpus [7], containing thirteen small-
group interactions in which the participants perform the Winter
Survival Task. The Winter Survival task [19, 21] is a group decision
making task where the participants discuss critical survival items
in a plane crash scenario in the woods during a severe winter.
In the GAP corpus, the meetings were recorded with a portable
audio recorder placed in the center of the group members, with
a webcam in front of each participant to record the frontal upper
body view. The publicly available dataset from this corpus contains
audio recordings, meeting transcripts, and post-task questionnaire
answers that included demographic details and perceptions on
cohesion, efficiency, time management, and leadership.

The available datasets for studying group behavior depend heav-
ily on the use of special wearable sensors [22, 34, 35], one or more
cameras [4, 18], or front-facing Kinects [33]. The presence of visible
cameras can alter participants’ natural behavior [39], and having
unusual sensors directly in front of ones’ face or in the line of sight
may inhibit natural group interactions. Also, datasets with frontal
cameras that reveal the identity of the participants are often more
difficult to make publicly available to the research community. We
posit that a room in which the participants are as unaware of being
sensed as possible, and where the data collection approach does
not intrude into the identity and privacy of the participants, is
beneficial for studying natural group dynamics.

As opposed to existing datasets that capture frontal face-to-face
interactions of small groups, we present a multi-modal dataset of
task-based small group interactions, using unobtrusive sensing
techniques. We recorded 22 group meetings of 86 participants, with
group size ranging from 3–5, using ceiling-mounted Kinect depth
sensors and individual lapel microphones. The depth sensors are
out of the lines of sight of participants and are privacy-preserving.
Participants completed the Lunar Survival Task [14] (described
in Section 3.1), and filled out a post-task questionnaire on their
demographics and perceptions of leadership, contribution, and the
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nature of discussion. We publish the synchronized overhead depth
videos, the anonymized, time-stamped meeting transcripts, and
the post-task questionnaire answers. We do not publish the speech
signals, as these may contain spoken names (which are anonymized
in the transcript), and can also reveal the identity of the participants.
We also summarize our baseline algorithms for automated analysis
on this multi-modal data and our preliminary results.

3 THE UGI CORPUS: SENSING
INFRASTRUCTURE

We conduct our experiments in a specially modified 11′ × 28′ con-
ference room. Figure 1 shows the meeting room, the two kinds of
sensors we use, and the group meeting layout. The visual aspects of
the meeting are captured by the depth sensors of 2 ceiling-mounted
Microsoft Kinects, placed above the edges of the table. The audio
information is captured by lapel microphones on each participant.

We record only the depth information from the Kinects, and
do not save any RGB information. The depth sensor of the Kinect
operates on the principle of time-of-flight (ToF) of light. Figure 2
shows the depth map from each of the 2 Kinects with associated
person tags, capturing the participants on each side of the table. It
is clear from Figure 2 that the overhead depth information alone
does not reveal the identity of the participants and hence their
anonymity is preserved. Since the ToF sensors are embedded in the
ceiling, they are outside participants’ sight lines and there is no
sense of being “watched". In addition to preserving the identity of
the participants and being unobtrusive, the ToF sensors have two
advantages compared to cameras. First, they return distance maps
instead of images, enabling the direct creation of 3D point clouds of
the environment, and second, they are more robust to variations in
the ambient lighting in the environment and the color/reflectiveness
of the participants’ clothing.

Figure 1: (a) The instrumented meeting room, which con-
tains (b) two ceiling-mounted Microsoft Kinects and per-
participant lapel microphones. (c) The layout of a typical
meeting.

3.1 Task-based interaction
3.1.1 The Lunar Survival Task. We recorded 86 individuals across
22 groups who completed the Lunar Survival Task [14] in the con-
ference room using the sensing architecture described in Section 3.
The Lunar Survival Task is a widely-used group discussion task that
assesses the effects of deliberation processes on decision-making
quality. In small groups of 3–5, participants discuss a hypothetical
survival scenario on the moon and rank the value of 15 supplies
that may aid in their survival.

The first stage of the task requires the participants to individually
rank the 15 items in order of their importance, without commu-
nicating with the other members of the group. This stage takes
10 minutes. In the second stage, the participants work as a group
to rank the items. The group has to employ the method of group
consensus in reaching its decision within a maximum of 15 min-
utes. Since each item ranking must be agreed upon by all the group
members, this task requires collaboration in order to reach con-
sensus. Further, some members can guide the discussion, influence
the rankings more than the other members, and act as emergent
leaders, although no group leader is designated. All the discussions
were in English.

Figure 2: The depthmap from each overhead Kinect with as-
sociated person tags. One Kinect captures individuals seated
on side A of the table completely and individuals on the op-
posite side B of the table partially. The other Kinect com-
pletely captures individuals on side B of the table only. Raw
undistorted depthmeasurements are pre-processed formax-
imum dynamic range.

Before the beginning of each task, the participants were made
aware of the existing sensors and that they would be recorded using
the overhead Kinects, the microphones, and two reference video
cameras. If they felt comfortable with participating in the study,
they were asked to sign a consent form that detailed the task and
the sensing infrastructure prior to the beginning of the experiment.

3.1.2 The Post-Task Questionnaire. After the group discussion,
each participant is asked to complete a post-task questionnaire.
In addition to questions relating to the age, race, and gender of the
participants and whether they had ever completed the task before,
the post-task questionnaire also asked the participants to rate on a
5-point scale (not at all, a little, somewhat, a lot, a great deal) the
following questions:

• How well did you know each of your group members before
today?

• Before today, how familiar were you personally with the
topic of survival in space?

• To what extent did the following group members contribute
to the discussion? [28]

• To what extent did the following group members act as a
group leader?

• For each of the following pairs of words, please indicate
the point on the scale that best represents your feelings
about the group conversation: engaging–boring, warm–cold,
comfortable–awkward, interesting–dull, friendly–detached.
[2]
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3.1.3 Demographics. The participants were all undergraduate or
graduate students. From the post-task questionnaire data, 34 par-
ticipants self-identified themselves as ‘White’, 40 participants self-
identified themselves as ‘Asian’, 10 participants self identified as
‘Hispanic’ and 2 participants self-identified as ‘White/Hispanic’.
The age of the participants varied from 18 years to 29 years, with a
mean age of 21 years, median age of 20 years and mode 18 years.
Based on self reports, 51 participants were men and 35 participants
were women.

4 DATA PREPROCESSING
4.1 Synchronizing the different modalities
The overall recorded multi-modal data included the depth map from
the 2 overhead Kinect sensors (at 15 fps), and audio information
collected from individual lapel microphones on each participant (at
48kHz). We also collected reference video using two video cameras
at the far ends of the room. The video camera data is not used for
any algorithm development and is purely used for illustrations and
ground truth determination. The video camera data is not part of
the UGI corpus or being released with this dataset.

In order to synchronize the different modalities, each meeting
started with a clap from a non-participant, visible to one Kinect
and audible in all microphones. The two Kinects are synchronized
by a single host PC. All sensors could thus be synchronized using
the clap as the audio-visual cue for the start of the meeting. The
synchronization process involved the following steps:

Synchronizing audio and reference video:

• Both the audio and video files were opened in Audacity and
the clap (which is our reference sound) was precisely located
in both modalities to a millisecond resolution of accuracy.

• The audio and video tracks were independently shifted back-
wards to have the reference clap as the starting position of
each track, by deleting information before the clap.

• Once shifted, the alignment of audio and video tracks was
checked by playing both modalities together.

Synchronizing audio and Kinect depth information:

• The precise location of the clap was determined by observing
the overhead depth maps from the Kinects.

• Each Kinect frame has an associated time-stamp. The time-
stamp of the clap frame became the zero position of the
shifted Kinect video.

• The Kinect frames are recorded at 15fps, while the audio
recording is at 48kHz. In order to have completely synchro-
nized audio-Kinect data, we needed to down-sample the
audio frames to the Kinect frame-rate. This was done by not-
ing the time-stamp differences between subsequent frames
of the Kinect starting from the clap, and calculating the cor-
responding audio frame number using this time difference.

4.2 Preprocessing the distance maps
The Kinect depth sensing range is approximately 0–6m. In order
to get the best dynamic range for algorithm development, we per-
formed the following preprocessing steps on the overhead depth
map:

• The distance measurements were subtracted from the room
height (2.8m), so that distance measurements are made from
the floor upwards as opposed to the raw measurements from
the ceiling downwards.

• We noted from the depth maps of our dataset that seated
individuals are not further than 1.3m from the ground. Also,
distance information below 0.6m is not very useful, since
the lower torsos of the participants are covered by the table
(0.9m high). In order to have the maximum dynamic range,
we clipped all measurements below 0.6m from the floor level
to 0.6m and all measurements above 1.3m to 1.3m.

• We performed linear stretching of the distance measure-
ments in the range of 0.6–1.3m to the grayscale range [0,
255], and formed videos at 15fps with these pre-processed
distance maps. Snapshots of the Kinect distance maps after
these pre-processing steps are shown in Figure 2.

4.3 Non-verbal speech segmentation
We post-processed the aligned, recorded audio signals using noise
reduction in Audacity [1]. We performed speaker segmentation
and silence detection on these synchronized, noise-reduced audio
signals using techniques described in [13]. Essentially, for each lapel
microphone recording, speech segments were detected by applying
a dynamically estimated thresholding criterion on the extracted
signal energy and the spectral centroid. As described in Section 4.1,
accurate timestamps also allowed us to downsample the speaker
identification information (collected at 48kHz) to the Kinect ToF
frame rate of 15 fps.

4.4 Transcription
The recorded audio was transcribed to text using IBM Watson’s
Speech-to-Text API [37], which uses Long Short-Term Memory
(LSTM) and Residual (ResNet) neural networks. In order to boost
the automatic transcription performance, we performed two prepro-
cessing steps on the audio signal. First, the synchronized audio track
corresponding to each individual was independently segmented to
distinguish between speech and silence sections, as described in
Section 4.3, and then the silence sections were zeroed out. Next, we
selected short segments of 1–2 minutes of each individual audio
track, such that the corresponding individual has a speaking section
during this short segment. The IBM speech-to-text transcription
software was then run several times on this short segment, with
different values of amplitude threshold, to determine the threshold
value that gives a resulting transcript that picks up the maximum
spoken content of the concerned individual and also has accurate
timestamps corresponding to a maximum number of transcribed
lines.

After the threshold has been selected for each track individually,
all the tracks are sent through the IBM speech-to-text transcription
module, which returns individual transcripts for each person. Fi-
nally, each of the individual transcripts was passed through another
script that sorts the time-stamps and accurately merges the tran-
scripts. Each person is anonymized as Person 1, Person 2, etc., and
named mentions of individuals (if any) are also anonymized. Once
the threshold values are decided for each file, the entire process of
transcription, including individual transcription and merging the
multi-person transcription, takes approximately 3 minutes for one
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minute of 4-person discussion, while running on aWindows 10 com-
puter, with 32GB RAM and Intel(R) Xeon(R) E5-2620 v3@2.40GHz
processor. Therefore, for a 4-person 15-minute discussion, the auto-
matic transcription process requires around 45 minutes. After the
automatic transcription, each transcription file is manually touched
up to ensure correctness of the transcription process.

To evaluate the transcription performance, we adopted thewidely
used Word Error Rate (WER). We computed the WER as 26.61% on
average for five randomly selected meetings, since oral representa-
tions are informal and rich in discourse markers. Since transcription
is the foundation for verbal-speech-related secondary tasks, we
also analyzed the effect of transcription performance on these tasks.
Considering that words have widely varying weights for secondary
tasks (e.g., words containing knowledge are more important than
others and less errors are allowed), we considered the difference in
information extraction performance between the automatic tran-
scripts and touched-up transcripts. In this dataset, the knowledge
is mainly about the lunar survival task items. Thus, we extracted
the item and compared extraction results. The average precision
difference is 2.37%, showing that the touched up transcriptions have
the ability to provide support for secondary tasks.

5 AUDIO-VISUAL UNDERSTANDING FROM
THE UGI CORPUS

Our primary purpose in this paper is to propose and disseminate
the UGI Corpus. In the following sections, we discuss the utility
of the dataset in studying emergent leadership, contribution and
performance in task-based group interactions, by briefly describ-
ing our automated algorithms for multimodal understanding and
preliminary analyses.

Visual Understanding: The overhead depth information from
the two Kinects allows us to accurately compute 3D point clouds
enabling tracking of participants, understanding their coarse body
and head poses, and classifying visual focus of attention (VFOA)
target locations. In order to estimate the VFOA of each participant
at each instant of time, we developed a multi-sensor fusion algo-
rithm that leverages the depth information to estimate the head
pose and the synchronized speaker identification information to
derive a contextual understanding of the meeting at that point of
time [5]. The VFOA classifier gives the VFOA target location for
each participant as one of the other participants, the paper in front
of the participant, or “unfocused”. We achieved an overall VFOA
classification accuracy of 48%, which is comparable to accuracies
using front-facing cameras (42%) in similar group meeting settings
[18]. A short video clip illustrating the VFOA estimation on a meet-
ing segment is at https://youtu.be/s1yaZk3hKFY.

Non-verbal Speech Understanding: We use the synchro-
nized and segmented speech signals to understand individual non-
verbal metrics like speaking length, successful and unsuccessful
interruptions, speaking turns, back-channels, and group level met-
rics such as group silence, and overlapping speaking lengths [5].

Verbal SpeechUnderstanding: We use Natural Language Pro-
cessing (NLP) algorithms on the meeting transcripts to detect and
extract individual opinions as the discussion proceeds, and also
to understand what influence each participant has on the other
members in reaching the consensus. The algorithm picks up ex-
plicit item and ranking mentions, and agreements/disagreements,

and constructs a bipartite graph that captures the current state of
the meeting [5, 40]. A short video clip illustrating this graphical
summarization can be found at https://youtu.be/asLSE1pxTFk.

In order to study the ability of these automatically extracted
metrics to study human perceptions of leadership and contribution,
we extracted 20 audio-visual metrics at the individual level, includ-
ing the amount and ratio of visual attention received and given
by each participant, the speaking length, turns and interruption
patterns, and the role of each participant in proposing items and
ranking, summarizing discussions, and introducing new relevant
information [5]. We studied the correlation of these metrics with
the post-task questionnaire ratings of leadership and contribution,
and used multiple linear regression to explain the variability of the
leadership and contribution scores using these automated metrics.
Our preliminary experiments show that using a combination of
visual, non-verbal and verbal metrics, we can explain 65% and 63%
of the leadership and contribution scores respectively. The metrics
also could predict perceived group leaders and major contributors
with 90% and 100% accuracy respectively [5].

6 CONCLUSIONS AND FUTURE DIRECTIONS
In this paper, we presented a multi-modal corpus for studying
face-to-face group interactions. We used the Lunar Survival Task
as our task-based collaborative discussion platform. As opposed
to existing corpora on group meeting analysis that use frontal
video cameras and wearable sensors, we propose the use of ceiling-
mounted unobtrusive and identity-preserving depth sensors to
capture the visual interactions.

We believe this dataset can be used by an interdisciplinary re-
search community for the development of automated multimodal
algorithms for human behavior analysis (e.g., VFOA, body pose,
speech analysis), as well as by social psychology and organizational
behavior researchers interested in group dynamics study. We pre-
sented our algorithms for head pose and VFOA estimation, and NLP
techniques for opinion extraction and graphical summarization. We
also presented preliminary analyses on perceived leadership and
contribution using the automatically extracted audio-visual metrics.
Our initial results show that even in the absence of rich frontal
RGB data, we can derive significant levels of understanding of the
evolving and emerging team patterns in face-to-face interactions.
One of our current research directions using the UGI corpus is the
development of an algorithm to automatically estimate arm and
body pose, which can provide non-verbal correlates of several psy-
chological variables like “trust”, “liking” and “rapport” that affect
group performance.

The preliminary analyses give us interesting findings on the
effects of group composition and presence of women on task com-
pletion, group performance and perceived leadership. While each
participant individually completed the item rankings, only 13 out
of the 22 groups could come to a consensus on all 15 items in the
stipulated time. Of the 13 groups that finished the task, 12 of them
had at least 30% women (at least 1 woman in a group of 3, or 2
women in a group of 4 or 5). Of the 9 groups that did not finish, 8
fell short of this threshold. However, the highest performing groups
had exactly 50% women and 50% men, and groups with all women
performed only slightly better than groups with all men; thus, this
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looks like a thresholding effect. This opens up new research ques-
tions about what women and men do differently that can provide
different outcomes on the same task. Having a means to automati-
cally compute audio-visual metrics enables us to study what verbal
and non-verbal behaviors encourage participation, cohesion and
contribution. Understanding these team processes can not only
provide insights into human behavior in groups, but would also
facilitate the development of active meeting facilitation systems
that can help keep meetings on track and improve productivity.
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