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A Probabilistic Framework for Modelling and Real-Time Monit oring

Human Fatigue

Peilin Lan, Qiang Ji, Carl G. Looney

Abstract— In this paper, we introduce a probabilistic

framework based on the Bayesian Networks (BNs) for

modelling and real-time inferring human fatigue by inte-

grating information from various visual cues and certain

relevant contextual information. We first present a static

Bayesian network that captures the static relationships

between fatigue, significant factors that cause fatigue, and

various visual cues that typically result from fatigue. The

static fatigue model is subsequently parameterized based

on the statistics extracted from recent studies on fatigue

and on subjective knowledge. Such a model provides

mathematically coherent and sound basis for systemati-

cally aggregating visual evidences from different sources,

augmented with relevant contextual information. The static

model, however, fails to capture the dynamic aspect of

fatigue. Fatigue is a cognitive state that is developed over

time. To account for the temporal aspect of human fatigue,

the static BNs model is extended based on the Dynamic

Bayesian Networks (DBNs). The dynamic fatigue model

allows to integrate fatigue evidences not only spatially but

also temporally, therefore leading to a more robust fatigue

modelling and inference.

This paper also includes a review of modern phys-

iological and behavioral studies on human fatigue and

a detailed critical review of the existing techniques for
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fatigue monitoring and detection. The paper ends with a

discussion of the interface program we developed, that

combines our computer vision system for visual cues

extraction with the fatigue inference engine for real-time

non-intrusive human fatigue monitoring and detection.

Index Terms— Bayesian Networks, human fatigue mon-

itoring, information fusion, Dynamic Bayesian Networks

I. I NTRODUCTION

Fatigue has been widely accepted as a significant fac-

tor in a variety of transportation accidents [5]. Although

it is difficult to determine the exact number of accidents

due to fatigue, it is much likely to be underestimated.

In aviation, the Federal Aviation Administration (FAA)

revealed that 21% of the reports in the Aviation Safety

Reporting System (ASRS) were related to general is-

sues of fatigue and 3.8% of them were directly related

with fatigue [5]. A survey from 1,488 corporate crew

members in US Corporate/Executive Aviation operation

discovered that about 61% of these crew-members ac-

knowledged the common occurrence of fatigue during

operation. Furthermore, 71% of these pilots had “nodded

off” during some flights [38]. In highway, the National

Highway Traffic Safety Administration (NHTSA) esti-

mates that 100,000 crashes are caused by drowsy drivers,

which results in more than 1,500 fatalities and 71,000

injuries each year in US. This amounts to about 1.6%
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of all crashes and about 3.6% of fatal crashes [5]. In

marine, a 1996 US Coast Guard (USCG) analysis of

279 incidents showed that fatigue contributed to 16% of

critical vessel casualties and 33% of personal injuries

[5]. In railroad, an analysis from the Safety Board of

Federal Railroad Administration (FRA) reported that

there were also 18 cases which were coded ”operator fell

asleep” as a causal or contributing factor from January

1990 to February 1999 [5]. Therefore, it is hard to

overstate that human fatigue prevention is very essential

to improving transportation safety.

Since several decades ago, much research has been

conducted on human fatigue prevention, focusing on

two main thrusts. The first one is to understand the

physiological mechanism of human fatigue and how to

measure fatigue level [43] [37] [11]. The second

thrust focuses on developing human fatigue monitors

for commercial transportation based on the achievements

from the first effort [28] [43]. So far, these fatigue

monitoring systems can be classified into two categories

[51]: (a) measuring the extent and time-course of loss

of driver alertness and (b) developing real-time, in-

vehicle drowsy driver detection and alerting systems.

However, human fatigue results from a very complicated

mechanism and many factors affect fatigue in interacting

ways [38] [9] [43] [39]. Up to now, the fatigue

mechanism is still not well understood and few of these

existing monitoring systems are effectively used in real

world. The main drawback of them is that most of the

present safety systems only acquire information from

limited sources (often just one). Therefore, as pointed

by some researchers [21], many more efforts are still

needed to develop systems for fatigue prevention in

commercial transportation.

In our previous study [28] [27], we developed a non-

invasive computer vision system for extracting various

visual parameters that typically characterize human fa-

tigue. The systematic integration of these visual param-

eters, however, requires a fatigue model that models the

fatigue generation process and is able to systematically

predict fatigue based on the available visual observations

and the contextual information. In this paper, based on

the modern research achievements of fatigue studies [38]

[9] [51] [43] [39] and our previous successful studies

[28] [27], we present a probabilistic and dynamic frame-

work based on the Bayesian Networks for human fatigue

modeling and monitoring. The framework combines dif-

ferent information sources spatially and temporally to

monitor and infer human fatigue.

II. L ITERATURE REVIEW

A. Significant causes for fatigue

From the physiological view, it is widely accepted that

fatigue, alertness and performance are physiologically

determined [38] [9] [39] [37]. Two physiological

factors - sleep and circadian, are thought fundamental

to the determination of fatigue and alertness. Therefore,

all the factors that affect sleep and circadian system have

the potential to contribute to fatigue.

The modern scientific research has proved that sleep

is a vital physiological human being need like food,

water and air. The difference between sleep and other

physiological needs is that sleepiness is such a pow-

erful biological signal that you will fall asleep in an

uncontrolled and spontaneous way regardless of your

situation [37]. Although the world record of staying

awake is up to 264 hours, the average sleep time of a

person requires about 8 hours every day regardless of

the change of seasons [38] [9] [39] [37].
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Sleep is a very complicated physiological process. Its

quantity and quality are influenced by many factors,

including wakefulness, time of day, age, environment,

psycho-physiological state, and the individual’s innate

and learned ability to sleep. The more complicated thing

is that these factors often interact with each other [38]

[9] [37]. A survey [38] from the corporate flight

crew members in U.S. corporate/executive aviation op-

erations by Ames Research Center at NASA revealed

that the most often identified factors that interfere with

their home sleep are: anxiety/worry (19%), heat/high

temperature (17%), high humidity (15%), random noise

events (9%), and background light (8%). The surveys

of sleep quantity and quality in the On-Board crew rest

facility by Ames Research Center at NASA [39] [43]

reported more detailed but similar information on the

factors that affect the sleep in home and bunk. Napping

is identified by the drivers in truck transportation [51]

[13] as one of the significant factors that prevent fatigue.

Some investigations showed that naps of 20-30 minutes

have very important benefits by increasing alertness and

reducing fatigue. 44% of the drivers took at least one nap

during a duty cycle. These naps increased their principal

sleep periods an average of 27 minutes, for an 11%

increase in average daily sleep time [51] [13].

A sleep loss results in essentially degradation of all

aspects of functioning, including cognitive processes,

vigilance, physical coordination, judgment and decision

making, communication, outlook, and numerous other

parameters [38] [9]. For example, the investigation

[51] [13] in real-life commercial truck transportation

revealed that the average quantity of sleep obtained by

the drivers during their principal sleep periods was an

average of two hours less sleep than their daily ”ideal”

requirements. Although the quality of their sleep period

was high, probably due to their lack of sufficient time in

bed, laboratory tests show that a sleep loss of as little as

two hours can affect alertness and performance. In fact,

these drivers were later detected drowsy while driving

about 5% of the time. 14% of the drivers accounted for

54% of all observed drowsiness episodes in video tapes.

The circadian rhythm has been found to virtually

control all physiological functions of the body, including

sleep/wake, digestion, and immune function. The circa-

dian rhythm is regulated by the circadian clock that has

been found at a certain place in the brain [38] [9]

[37] [11]. Generally, sleep is programmed at night and

awake is programmed during daytime. In addition, it is

found that there are two peaks of sleepiness and alertness

each day [38] [11]. The two sleepiness peaks appear

at approximately 3-5 a.m. and 3-5 p.m. respectively.

During the sleepiness periods, sleep may come more

easily and fatigue may reach the highest level. The two

alertness peaks come about 9-11 a.m. and 9-11 p.m..

During this period, human may be difficult to fall sleep

even if his sleep was deprived in the previous night [38]

[9] [37] [11]. These concepts are soundly supported

by the fact that there was a 16 fold increase of the

risk of single vehicle truck accidents during the time

between 3-6 a.m. [11] [20]. This is further verified

by a large scale study of fatigue factors in the North

American commercial truck transportation [51] [13],

which also showed that the strongest and most consistent

factor influencing driver fatigue and alertness was time

of day. Even the hours of driving was not a strong or

consistent predictor of observed fatigue compared with

time of day.

The circadian system is very difficult to adjust to the

need of work/rest schedule or time zone changes in a

short time. Circadian disruption can cause sleep loss and
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finally results in fatigue [38] [9] [11].

Besides sleep and circadian, there are many environ-

mental or contextual factors that may contribute/cause

human fatigue. Recent years, a series of large-scale

survey of fatigue factors in aviation and land trans-

portation [38] [9] [43] [39] [51] identified some

important fatigue-causing factors. In aviation, the survey

from 1,488 corporate flight crew members in U.S. cor-

porate/executive aviation operations by Ames Research

Center at NASA [38] showed that besides sleep loss and

time of day of operation, the most often cited factors that

affect their fatigue in flight are: greater than 7 flying seg-

ments in the same duty, severe turbulence, illness, heavy

workload, late arrival, 4-6 flight legs, high temperature,

early morning departure, and no auto-pilot. The study

also discovered that besides sleeping or napping (73%),

the most often mentioned pre-trip strategies to prevent

fatigue were: healthy diet (41%), exercise (28%), flight

planning activities(26%), and caffeine (16%). Another

survey of fatigue factors from 1,424 crew members in

U.S. regional airline operation by Ames Research Center

at NASA [9] obtained similar results.

In land transportation, the US Federal Highway Ad-

ministration’s Office of Motor Carriers, in cooperation

with the Trucking Research Institute, and Safety and

Security Transport Canada, conducted the largest and

most comprehensive over-the-road study on driver fa-

tigue and alertness in North America from 1993 to 1996

to evaluate driver fatigue, alertness, and physiological

and subjective states of drivers as they performed in

real-life trips [51]. The study showed that although some

details were different, the main factors, which affected

the pilot’s fatigue in aviation, also contributed to the

fatigue of drivers in commercial truck transportation.

In railroad, the on-line research report [43] by Univer-

sity of Denver,Fatigue Countermeasures in the Railroad

Industry-Past and Current Developments, reported the

study results of the past and current fatigue countermea-

sures projects in almost all of the railroad companies

in North America. It presented much similar statistical

information about fatigue in the railroad industry to those

in aviation and highway transportation.

In addition to the above factors, some clinical stud-

ies [43] found that about one third of the population

suffers from several different types of clinical distur-

bances of sleep, which meet various diagnostic crite-

ria and significantly affect fatigue and alertness. These

disturbances are insomnia, which refers to too little

sleep, hypersomnia, which refers to too much sleep, and

parasomnia, which refers to a deviation from normal

sleep patterns. Insomnia is believed to be present in

about 5-6% population and mostly caused by high lev-

els of anxiety associated with worries, traumatic event

or prolonged stress from work, depression or other

sources [43]. Hypersomnia usually demonstrates itself as

a difficulty to stay awake in typical daily activity such as

travelling as a passenger in a car, watching TV, listening

to a lecture, or reading a newspaper. Snoring and sleep

apnea are thought as the common signs of hypersom-

nia [43]. Parasominas are disturbances during sleep and

are mostly caused by nightmares, sleep walking, restless

legs and bruxism or gnashing of teeth [43]. Sleep inertia

is also found to have effect on fatigue and there have

been many studies on it [43]. Usually it is thought to

have negative effect on fatigue but since it does not last

long time, it does not significantly interfere with people’s

work, such as driving.

In summary, the major causes for human fatigue

include sleep quality, circadian rhythm, and physical

fitness (e.g. sleep disorders). Furthermore, circumstan-
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tial factors such as weather, temperature, and type of

work, will also directly contribute to human fatigue. All

of these factors should be considered while modelling

fatigue.

B. Fatigue Measurement

Before performing human fatigue detection and pre-

diction, a metric should be established to measure fa-

tigue. Numerous studies have been conducted on it.

Many studies have shown that measuring fatigue in any

situation is a complex process and no easy method is

available. Up to now, several types of fatigue measures

have been typically used in laboratories and have varying

level of utility in the workplace [43]. The typical ones

are physiological, behavioral, visual, and subjective per-

formance measures.

Physiological Measures[43] [17] [35] [7]: This

method has been thought to be accurate, valid and

objective to determine fatigue and sleep, and significant

efforts have been made in laboratory to measure it.

The popular physiological measures include the elec-

troencephalograph (EEG) [17] and the multiple sleep

latency test (MSLT) [7]. EEG is found to be useful

in determining the presence of ongoing brain activity

and its measures have been used as the reference point

for calibrating other measures of sleep and fatigue.

MSLT measures the amount of time a test subject falls

asleep in a comfortable, sleep-inducing environment.

Unfortunately, most of these physiological parameters

are obtained intrusively, making them inapplicable in real

world applications.

Behavioral Measure[43] [40]: This method has been

also thought to be accurate and objective, and gained

popularity in recent years. This category of devices, most

commonly known as actigraph [40], is used to measure

sleep based on the frequency of body movement. The

information collector is a wristwatch-like recording de-

vice that detects wrist movement and is worn by the test

subject. The number of body movement recorded during

a specified time period, or epoch, has been found to

significantly correlate with the presence of sleep and has

a significant correlation with EEG. The disadvantages of

this method is that they are troublesome to administer

and expensive.

Visual Measures: People in fatigue exhibit certain vi-

sual behaviors, which are easily observable from changes

in facial features like the eyes, head, and face. Visual

behaviors that typically reflect a person’s level of fatigue

include eyelid movement, head movement, gaze, and

facial expression. Various studies [48] [15] have shown

that eyelid activities are the bio-behavior that encodes

critical information about a person’s level of vigilance,

intention, and needs. In fact, based on a recent study

by the Federal Highway Administration [49] [15],

PERCLOS has been found to be the most reliable and

valid measure of a person’s alertness level among many

drowsiness-detection measures. PERCLOS measures the

percentage of eyelid closure over the pupil over time

and reflects slow eyelid closures (droops). Another po-

tentially good fatigue indicator is the average eye closure

and opening speed. Since eye open/closing is controlled

by the muscle near the eyes, a person in fatigue may

open/close eyes slowly due to either tired muscles or

slower cognitive processing.

Other invalidated but potentially good fatigue pa-

rameters include various parameters that characterize

pupil movement, which relates to one’s gaze and his/her

awareness of the happenings in surroundings. The move-

ment of a person’s pupil (gaze) may have the potential

to indicate one’s intention and mental condition. For ex-
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ample, for a driver, the nominal gaze is frontal. Looking

at other directions for an extended period of time may

indicate fatigue or inattention. Furthermore, when people

are drowsy, their visual awareness cannot cover a wide

enough area, concentrating on one direction. Hence, gaze

(deliberate fixation) and saccade eye movement (con-

scious eye movement) may contain information about

one’s level of alertness. Besides eye activities, head

movement like nodding or inclination is a good indicator

of a person’s fatigue or the onset of a fatigue [3]. It could

also indicate one’s attention. Head movement parameters

such as head orientation, movement speed, frequency,

etc. could potentially indicate one’s level of vigilance.

Finally, facial expression may also provide information

about one’s vigilance. For example, a typical facial

expression that indicates the onset of fatigue is yawning.

Our recent effort [28] [27] produces a computer vision

system that can extract various parameters in real time

to characterize eyelid movement, gaze, head movement,

and facial expression. The major benefits of the visual

measures are that they can be acquired non-intrusively.

Performance Measures[43] [50]: This method uses

a number of performance tasks to determine the effects

of sleep and sleep deprivation. In the test, various tasks

ranging from simple to complex have been examined

including reaction time to visual and auditory stimuli and

vigilance tests. This method has been extensively used

by various studies including Walter Reed Performance

Assessment Battery (PAB) and the Denver Fatigue In-

ventory (a computer assisted cognitive test battery)

[46]. The advantage of this method is indirect and the

drawbacks are non-self-administered, need expert data

analysis, and is limited to laboratory studies.

Subjective performance[43] [23]: Also called Self-

Report Measures. A variety of subjective performance

measures have been developed to determine fatigue

sleepiness and alertness. The most famous ones include

the Stanford Sleepiness Scale (SSS) [23], Visual Analog

Scale (VAS) [34], mood descriptors [45], and diary

method [36]. SSS [23] method consists of seven grades

of fatigue, ranging from “wide awake” to “cannot stay

awake” and has been validated against performance mea-

sures as a function of sleep deprivation. SSS is thought as

the most widely used subjective measure of sleepiness.

VAS [34] consists of a single horizontal line presented

on a piece of paper. At either end of the lines, an

anchoring descriptor is displayed such as “wide awake”

or “about to fall asleep”. In the test, the participants are

instructed to place an X on the horizontal line between

the anchors to indicate the extent to which they best

describe their current state. VAS was initially developed

for use in educational research and has also been used in

symptom measurement. The mood descriptor lists a se-

ries of adjectives that indicate a variety of different mood

states. Subjects must then choose the adjective that best

describes their current state. The typical mood descriptor

is Thayer Activation-Deactivation Adjective Checklist

[45]. The diary method [36] requires the participants to

keep detailed logs of their activities including work and

sleep. These dairies are then used to develop descriptions

of the sleep-wake cycle of the participants and develop

a baseline for further studies. The advantages of these

methods are inexpensive, practical and readily accepted.

The drawbacks are less accurate and cannot be used for

monitoring real-time fatigue.

Multiple Measures: Since a single measurement al-

ways has some limitations or drawbacks, multiple mea-

surements are often taken to obtain comprehensive pa-

rameters in a single study. For example, in the over-the-

road study on driver fatigue in US and Canada [51],
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many measures were taken at the same time. These

measures included driving task performance (lane track-

ing and steering wheel movement), driving speed and

distance monitoring, performance on three surrogate

tests of tasks related to safe driving performance (code

substitution, critical tracking test, simple response vigi-

lance test). Moreover, the drivers were under continuous

video monitoring. During the same test, various phys-

iological measures were taken. The measures include

Polysomnography (PSG) during sleep, Electroencephalo-

gram (EEG), Electrooculogram (EOG), Electromyogram

(EMG), Respiratory effort (sensors on chest), Oxygen

saturation of arterial blood, finger probe, PSG during

driving (EEG and EOG only), body temperature during

waking hours, and Electrocardiography (ECG) during

driving and sleep. Other data collected include driver-

supplied information (pre-participation questionnaire on

sleep habits, daily log (stops, meals, noteworthy driving

events, etc.), and Stanford Sleepiness Scale (SSS) rating.

Environmental factors such as cab temperature, relative

humidity, 8-hour concentrations of carbon monoxide

and nitrogen dioxide were also recorded. Doing so, a

comprehensive research results were obtained in the

study.

C. Fatigue Detection, Prediction and Monitoring

Knowing what causes fatigue and how to measure

fatigue, the next step (also is the most important part for

human fatigue research) is to detect, predict and monitor

real-time human fatigue. Up to now, many efforts have

been made in this field and the results were reviewed

by [28] [21] etc.. Generally, all of the efforts on the

fatigue detection can be classified into the following four

groups [15] [21].

(1). Readiness-to-perform and fitness-for-dutytech-

nologies: this type of effort is to assess the vigilance

or alertness capacity of an operator before the work

is performed. The main aim of this technology is to

establish whether the operator is fit for the duration of the

duty period, or at the start of an extra period of work.

They include Truck Operator Proficiency System [44],

FACTOR 1000 [2], ART90 [8], FITR 2000 Workplace

Safety Screener [21], OSPAT [21], and Psychomotor

Vigilance Test (PVT) [21] [32].

(2). Mathematical models of alertness dynamics joined

with ambulatory technologies: they are related to the

application of mathematical models that predict oper-

ator alertness/performance at different times based on

interactions of sleep, circadian, and related temporal

antecedents of fatigue. The key issue for these models

is their predictive validity. Three of the most common

systems are the Fatigue Audit Interdyne system [12]

[21], the US Army’s Sleep Management System [4], and

the Three-Process Model of Alertness [1] [21].

(3). Vehicle-based performance technologies. These

technologies are directed at measuring the behavior of

the driver by monitoring the transportation hardware

systems under the control of the operator, such as truck

lane deviation, or steering or speed variability. All of

these systems assume the driver behavior or the vehicle

behavior deviates from their nominal behaviors when a

driver is in fatigue. The measurements include driver

steering wheel movements, systems measuring driver’s

acceleration system on braking, gear changing, lane

deviation and distances between vehicles. These systems

include the Steering Attention Monitor (S.A.M.) [52],

which monitors micro-corrective movements in the steer-

ing wheel using a magnetic sensor that emits a loud

warning sound when it detects ”driver fatigue” by the

absence of micro-corrections to steering; the DAS 2000
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Road Alert System [10], which detects and warns

drivers that they have inadvertently crossed the center

line or right shoulder lines; ZzzzAlert Driver Fatigue

Warning System [16], which is a small computerized

electronic device that monitors corrective movements of

the steering wheel with a magnetic sensor; TravAlert

Early Warning System [21] [24], which loudly notifies a

motor vehicle operator that the driver has lost attention

to proper steering; and the SAVE system [21] [32]

(System for effectiveAssessment of the driver state and

Vehicle control inEmergency situations) detects in real

time impaired driver states and undertakes emergency

handling.

(4). In-vehicle, on-line, operator status monitoring

technologies. This category of technologies seeks to

record bio-behavioral dimension(s) of an operator, such

as parameters characterizing eye movements, head move-

ments, facial expressions, heart activities, brain electrical

activity, reaction time etc., on-line (i.e., continuously,

during driving). They include Electroencephalograph

Measures (such as Electroencephalograph (EEG)) for

monitoring brain activity, ocular measures to characterize

eyelid movement (such as PERCLOS) and characterize

pupil movement (such as saccade movement v.s. fixation

time). Other visual measures include parameters charac-

terizing facial muscles, body postures, and head nodding.

In recent years, an increasing research interest has

focused on developing systems that detect the visual

facial feature changes associated with fatigue with a

video camera. These facial features include eyes, head

position, face or mouth. This approach is non-intrusive

and becomes more and more practical with the speedy

development of camera and computer vision technology.

Several studies have demonstrated their feasibility and

some of them claimed that their systems perform as

effectively as the systems detecting physiological signals

[6] [25] [41] [47] [19] do. However, efforts in this

direction are often directed to detecting a single visual

cue such as eyelid movement. Since a single visual

cue is often ambiguous, uncertain with the change in

time, environment or different persons, its validity is

questioned [22]. Therefore, developing new systems

that can detect the change of multiple visual cues and

systematically combine them over time is essential in

future. In the sections to follow, we introduce such a

system.

In summary, although many devices and technologies

currently being developed show considerable promise in

detection, prediction and monitoring fatigue, it is widely

believed that satisfactory fatigue monitoring technologies

for real world applications are not yet available, and may

not be available for some time [21].

III. FATIGUE MODELLING WITH STATIC BAYESIAN

NETWORKS (SBNS)

As we discussed above, human fatigue generation is

a very complicated process. Several challenges present

with fatigue modelling and monitoring. First, fatigue

is not observable and it can only be inferred from

the available observations. Second, the sensory obser-

vations are often ambiguous, incomplete, uncertain, and

dynamically evolving over time. Furthermore, human’s

visual characteristics vary significantly with age, height,

health, and shape of face. Third, many factors can cause

fatigue. These factors include sleep quality and quan-

tity, circadian, working environments, health etc. Their

effects on fatigue are often interacting and complex. To

effectively monitor fatigue, a fatigue model is necessary.

The fatigue model should be systematically account for

various factors causing fatigue and various observations
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that reflect fatigue. In addition, the model should be

able to handle the uncertainties and dynamics associated

with fatigue. A probabilistic fatigue model based on the

Bayesian Networks (BNs) model is the best option to

deal with such an issue.

A BN is a state-of-the-art knowledge representation

scheme dealing with probabilistic knowledge. Also re-

ferred to as graphical model, a BN is a graphical

representation of the joint probability of a set of random

variables, with the conditional independence assump-

tion explicitly embedded in the network. Its nodes and

arcs connect together forming a directed acyclic graph

(DAG). Each node can be viewed as a domain variable

that can take a set of discrete values or continuous value.

An arc represents a probabilistic dependency between the

parent node and the child node. So, a BN is said to be a

graphical model resulted from a marriage between proba-

bility theory and graph theory, and provides a natural tool

for dealing with uncertainty, knowledge representation,

and inference [29]. Many of the classic multivariate

probabilistic systems in fields such as statistics, systems

engineering, information theory, pattern recognition and

statistical mechanics are found to be the special cases

of the general BNs. These examples include mixture

models, factor analysis, hidden Markov models, Kalman

filters and Ising models.

Since the introduction of the BNs in late 70’s, numer-

ous studies have been conducted and many systems have

been constructed based on this paradigm in a variety

of application areas, including industrial applications,

military, medical diagnosis and many other commercial

applications [31]. BNs can be classified into static BNs

(SBNs) and dynamic Bayesian Networks (DBNs). While

SBNs is limited to modelling static events, DBNs can

be used to model both static and dynamic events. In

this paper, we first introduce a fatigue model based on

SBNs to capture the static aspect of fatigue modelling.

The static fatigue model is subsequently extended based

on DBNs to account for the temporal aspect of fatigue

modelling.

A. Static Bayesian Network for Fatigue Modelling

The main purpose of a BNs model is to infer the

unobserved events from the observed or contextual data.

So, the first step of BNs modelling is to identify those

hypothesis events and group them into a set of mutually

exclusive events to form the target hypothesis variables.

The second step is to identify the observable data that

may reveal something about the hypothesis variables

and then group them into information variables. There

are also other hidden states that are needed to link the

hypothesis node with the information nodes.

For fatigue modelling, fatigue is obviously the target

hypothesis variable that we intend to infer while other

contextual factors, which could cause fatigue, and visual

cues, which are symptoms of fatigue, are information

variables. Since so many factors affect human fatigue

as we discussed before, it is impossible to include

all of them into a BN model. Hence, only the most

significant ones are incorporated in the model. As dis-

cussed in section II-A, the most significant causes for

fatigue are identified as sleep quality (Sleepquality),

circadian, work condition (Workcondition), work en-

vironment (Workenvironment) and physical condi-

tion(Physicalcondition). The most profound factors that

affect work environment include temperature, weather

and noise. The most significant factors affecting one’s

physical condition are sleep disorders (Sleepdisorders).

The factors affecting work conditions include work-

load and type of work (Worktype). Factors seri-



10

ously affecting sleep quality include sleep environment

(SleepEnviornment), napping, sleep time (Sleeptime)

and sleep state (Sleepstate). Sleep state refers to the

mental state during sleep such as worry or anxiety.

Factors affecting sleep environment includes random

noise (Randomnoise), background light (Light), heat

(Heat) and humidity around the bed (Humidity).

On the other hand, when a person is fatigue,

he tends to exhibit various visual behaviors that

deviate from the nominal behaviors. The behav-

iors that typically capture the cognitive state of a

person include eye movement(Eyemovement), head

movement(Headmovement), and facial expression (Fa-

cial Exp). Our current efforts [28] in computer vi-

sion research has led to various non-invasive tech-

niques that can compute in real time various parameters

to characterize these behaviors. Specifically, for eye

movement, the parameters characterize eyelid movement

(Eyelid movement) and gaze (Gaze). For eyelid move-

ment, the parameters are PERCLOS and the average eye

closure/open speed (AECS). For gaze, the parameters

include gaze fixation distribution (Fixationdis), which

measures spatial distribution of gaze over time, and Fix-

ation Saccade ratio(Fixationsaccaderatio), which mea-

sures the ratio between amount of time on purposive eye

movement (fixation) to amount of time of random (sac-

cade) eye movement. For head movement, the parameter

we compute is head tilt frequency (Headtilt freq), which

measures frequency of head tilt to characterize head nod.

And finally, for facial expression, we monitor mouth

movement to detect yawning. We use YawnFreq to

measure the occurrence frequency of yawning. Putting

all of these factors together, the Static Bayesian Network

for modelling fatigue is constructed as shown in Fig. 1.

The target node in this model is fatigue and the nodes

above the target node represent various factors that could

lead to fatigue. They are collectively referred to as

the contextual information. The nodes below the target

node represent visual observations from the output of

computer vision system. These nodes are collectively

referred to as observation nodes.

B. Construction of conditional probability tables (CPTs)

Before using the BNs model for fatigue inference,

the network need be parameterized. This requires to

specify the prior probability for the root nodes and the

conditional probabilities for the links. The conditional

probabilities for each node are the conditional probabil-

ities of a node given its parents. Given a node with K

parents, the number of probabilities needed are2K , if

we assume all nodes are binary. Subjective estimation of

these probabilities are difficult and inaccurate. Usually,

probability is obtained from statistical analysis of a

large amount of training data. Large amount of data is,

however, difficult to acquire for this study. Fortunately,

several series of large-scale subjective surveys [38] [9]

[43] [39] provide the clues of such data. Despite

the subjectivity of these data, we use them to help

the parametrization of our fatigue model. Since these

surveys were not designed for the parametrization of our

BNs model, not all needed probabilities are available

and some conditional probabilities are therefore inferred

using the so-callednoisy-or principle [26].

The noisy-or principle states that assumingA1, . . . ,

An are binary variables (’yes’ (y) or ’no’ (n)) rep-

resenting all the causes of the binary variableB and

each eventAi = y causesB=y unless an inhibitor (also

called preventing factor, which prevents a state of the

variable to happen and has the complement probability

of other state for a binary state variable) state prevents
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Fig. 1. A Static Bayesian Network for Modelling Human Fatigue.

it, and the probability for that isqi (see Fig. 2), e.g.

P (B=n|Ai=y)=qi, and all inhibitor states are indepen-

dent, i.e.,

P (B = n|A1, A2, . . . , An) =
∏

1≤j≤n

qj

A

2


A

1


A

n


B


1-q

1


1-q

2


1-q

n


Fig. 2. The graphical explanation of thenoisy-or principle

With the noise-or principle, it is possible for the

number of the estimating conditional probabilities to

grow linearly with the number of parents, therefore to

significantly reduce the number of conditional proba-

bilities in the child nodes. The validity of thenoise-

or principle, however, remains to be validated for our

application.

Still some prior or conditional probabilities are lack-

ing in our model and they are obtained by subjective

estimation method [26]. With these, all the prior and

conditional probabilities in our SBNs model are obtained

and are listed in Tables I, II, III, IV, V, VI, VII,

VIII, and IX.

1Inferred from [9]. Given ’high’ humidity, the probability of

poor sleepenvironment is 39.5%; given background light ’on’, the

probability of poor Sleepenvironment is 38.5%; given ’high’ Ran-

dom noise, the probability of poor Sleepenvironment is 44.5%. As-

suming that the relationship between children nodes and parent node

is a noisy or, all the conditional probabilities of Sleepenvironment

given its parents variables are estimated withnoisy orprinciple [26].
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TABLE I

PRIOR PROBABILITY TABLE

Nodes State Probability Notes

Randomnoise yes 0.15 average of [38] [9]

no 0.85

Light on 0.13 average of [38] [9]

off 0.87

Heat high 0.24 average of [38] [9]

normal 0.76

Humidity high 0.19 average of [38] [9]

normal 0.81

Sleeptime sufficient(> 6h) 0.90 [9]

loss(< 6h) 0.1

Napping > 30min. 0.22 [9]

No 0.78

Anxiety yes 0.28 average of [38] [9]

no 0.72

Sleepdisorder yes 0.08 average of [38] [9]

no 0.92

Workload heavy 0.15 [9]

normal 0.85

Time drowsy time 0.26 [38]

Active time 0.74

Time zone changed 0.17 [38]

no 0.83

Temperature high 0.15 average of [38] [9]

normal 0.85

Weather abnormal 0.10 average of [38] [9]

normal 0.90

Noise high 0.15 average of [38] [9]

normal 0.85

Work type tedious 0.2 average of [38] [9]

normal 0.8

TABLE II

CONDITIONAL PROBABILITIES FOR SLEEP ENVIRONMENT NODE

Parent Nodes Sleepenvironment1

Light Randomnoise Heat Humidity poor normal

on yes high high 0.87 0.13

normal 0.78 0.22

normal high 0.79 0.21

normal 0.65 0.35

no high high 0.76 0.24

normal 0.61 0.39

normal high 0.61 0.39

normal 0.36 0.64

off yes high high 0.80 0.20

normal 0.68 0.32

normal high 0.68 0.32

normal 0.47 0.53

no high high 0.65 0.35

normal 0.42 0.58

normal high 0.43 0.57

normal 0.05 0.95

TABLE III

CONDITIONAL PROBABILITIES FOR SLEEP QUALITY NODE

Parent Nodes Sleepquality2

Sleeptime Sleepenv Sleepcondition Napping poor fair

sufficient poor good > 30min. 0.34 0.66

No 0.37 0.66

bad > 30min. 0.73 0.27

No 0.75 0.25

normal good > 30min. 0.05 0.95

No 0.10 0.90

bad > 30min. 0.62 0.38

No 0.64 0.36

loss poor good > 30min. 0.73 0.27

No 0.75 0.25

bad > 30min. 0.89 0.11

No 0.95 0.05

normal good > 30min. 0.62 0.38

No 0.64 0.36

bad > 30min. 0.85 0.15

No 0.86 0.14

TABLE IV

CONDITIONAL PROBABILITIES FOR PHYSICAL CONDITION NODE

& SLEEP CONDITION NODE

Parent Nodes Physicalcondition3

Sleepdisorder poor healthy

yes 0.95 0.05

no 0.1 0.90

Parent Nodes Sleepcondition3

Anxiety good bad

Yes 0.30 0.70

No 0.90 0.10

2Inferred from [9]. Given ’bad’ Sleepcondition, the probability

of ’poor’ sleepquality is 59%. Estimated by experience, given

’poor’ Sleepenvironment, the probability of ’poor’ Sleepquality

is 59%; given ’loss’ (< 6h) Sleeptime, the probability of ’poor’

Sleepquality is 40%; given ’No’ Napping, the probability of ’poor’

Sleepquality is 5%. Assuming that the relationship between children

nodes and parent node is anoisy or, all the conditional probabilities

of Sleepquality given its parent variables are estimated withnoisy

or principle [26].
3All of the conditional probabilities are estimated by experience.
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TABLE V

CONDITIONAL PROBABILITIES FOR WORK ENVIRONMENT NODE

Parent Nodes Work environment4

Temperature Noise Weather poor fair

high high normal 0.94 0.06

abnormal 0.99 0.01

normal normal 0.80 0.20

abnormal 0.96 0.04

normal high normal 0.73 0.27

abnormal 0.95 0.05

normal normal 0.10 0.90

abnormal 0.82 0.18

TABLE VI

CONDITIONAL PROBABILITIES FOR CIRCADIAN NODE

Parent Nodes Circadian3

Time zone Time drowsy awake

changed drowsy time 0.90 0.10

active time 0.30 0.70

no drowsy time 0.60 0.40

active time 0.05 0.95

TABLE VII

CONDITIONAL PROBABILITIES FOR WORK CONDITION NODE

Parent Nodes Work condition5

Workload Work type poor normal

heavy tediousmonotonous 0.89 0.11

normal 0.62 0.38

normal tediousmonotonous 0.72 0.28

normal 0.05 0.95

4Inferred from [9]. Given ’high’ temperature, the probability of

’poor’ Work environment is 77.5%; given ’abnormal’ weather, the

probability of ’poor’ Work environment is 80%. Assuming that the

relationship between children nodes and parent node is anoisy or, all

of the conditional probabilities of Workenvironment given its parent

variables are estimated withnoisy or principle [26].

TABLE VIII

CONDITIONAL PROBABILITIES FOR FATIGUE NODE

Parent Nodes Fatigue6

Work Sleep Physical Circadian Work yes no

env quality condition condition

poor poor poor drowsy poor 0.98 0.02

normal 0.95 0.05

awake poor 0.96 0.04

normal 0.89 0.11

healthy drowsy poor 0.97 0.03

normal 0.91 0.09

awake poor 0.94 0.06

normal 0.83 0.17

fair poor drowsy poor 0.96 0.04

normal 0.87 0.13

awake poor 0.91 0.09

normal 0.74 0.26

healthy drowsy poor 0.93 0.07

normal 0.79 0.21

awake poor 0.85 0.15

normal 0.57 0.43

fair poor poor drowsy poor 0.96 0.04

normal 0.88 0.12

awake poor 0.92 0.08

normal 0.77 0.33

healthy drowsy poor 0.93 0.07

normal 0.81 0.19

awake poor 0.87 0.13

normal 0.62 0.38

fair poor drowsy poor 0.90 0.10

normal 0.71 0.29

awake poor 0.80 0.20

normal 0.43 0.57

healthy drowsy poor 0.83 0.27

normal 0.53 0.47

awake poor 0.67 0.33

normal 0.05 0.95

5Inferred from [38],

given ’heavy’ workload, ’poor’ Workcondition is 60%; given ’te-

diousmonotonous’ Worktype, ’poor’ Work conditionis 70%. As-

suming that the relationship between child nodes and parent nodes

is a noisy or, all of the conditional probabilities of Workcondition

given its parent variables are estimated by thenoisy-orprinciple [26].
6Inferred from [9]. Given ’poor’ Sleepquality, Fatigue is 60%;

given ’drowsy’ Circadian, Fatigue 70%; given ’poor’ Workcondition,

Fatigue is 65%; Estimated by experience that given ’poor’

Work environment, Fatigue is 55%; given ’poor’ Physicalcondition,

Fatigue is 40%; Assuming that the relationship between children

nodes and parent node is anoisy or, all of the conditional probabilities

of Fatigue given its parent variables are estimated withnoisy or

principle [26].
7Some of these conditional probabilities are obtained from the

experiment results in [14].
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TABLE IX

CONDITIONAL PROBABILITIES FOR THECHILDREN NODES OF

FATIGUE NODE

Nodes Name Parent Node Parent State Child State Condition3

Variable Variable Probability

FacialExp Fatigue yes drowsyexp 0.30

yes normal 0.70

no drowsyexp 0.05

no normal 0.95

YawnFreq FacialExp drowsyexp high 0.95

drowsyexp normal 0.05

normal yawn 0.05

normal normal 0.95

FacialMuscle FacialExp drowsyexp lagging 0.80

drowsyexp normal 0.20

normal lagging 0.02

normal normal 0.98

Eye mov Fatigue yes abnormal 0.50

yes normal 0.50

no abnormal 0.02

no normal 0.98

Eyelid Eye abnormal abnormal 0.99

movement movement abnormal normal 0.01

normal abnormal 0.05

normal normal 0.95

Gaze Eye abnormal normal 0.05

movement abnormal abnormal 0.95

normal normal 0.90

normal abnormal 0.10

Head Fatigue yes abnormal 0.40

movement yes normal 0.60

no abnormal 0.05

no normal 0.95

PERCLOS7 Eyelid abnormal abnormal 0.98

movement abnormal normal 0.02

normal abnormal 0.05

normal normal 0.95

AECS Eyelid abnormal slow 0.97

movement abnormal normal 0.03

normal slow 0.05

normal normal 0.95

Fixation dis Gaze normal narrow 0.90

normal diffusive 0.10

abnormal narrow 0.90

abnormal diffusive 0.10

Fixation Gaze normal high 0.10

saccade normal low 0.90

ratio abnormal high 0.85

abnormal low 0.15

Head Head abnormal high 0.60

tilt movement abnormal normal 0.40

freq normal high 0.05

normal normal 0.95

IV. FATIGUE MONITORING MODELLING WITH

DYNAMIC BAYESIAN NETWORKS

As pointed by recent studies [51], fatigue has an ac-

cumulative property and fatigue is developed over time.

For example, a driver’s fatigue level in the beginning of

driving may be low, but it will became higher and higher

as the time passes. This fact indicates that, in addition

to sleep, circadian and some other environment factors,

fatigue status at the previous time instant is also a factor

for the fatigue status at the present time. Furthermore, for

fatigue detection, it is the persistent presence of certain

visual behaviors over time instead of the presence of

the behavior at a particular instance that leads to the

detection of fatigue. It is, therefore, important to account

for the temporal aspect of fatigue and integrate fatigue

evidences over time. Obviously, the static model fails to

capture these dynamic aspects. since it does not provide

a direct mechanism for implementing such properties.

Therefore, in order to more effectively monitor human

fatigue, the creation of a dynamic fatigue model based on

the DBNs is necessary. A dynamic fatigue model allows

to monitor and detect fatigue by integrating fatigue

evidences both spatially and temporally.

A. Dynamic Bayesian Networks

In Artificial Intelligence (AI) field, a DBNs model

describes a system that dynamically changes or evolves

over time and that enables the user to monitor and

update the system as time proceeds, and even predicts

the behavior of the system over time. Its utility lies

in explicit modelling events that are not detected on

a particular point of time, but they can be described

through multiple states of observation that produce a

judgment of one complete final event. Usually, there are

three broad categories of approaches to achieve this [33]:
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(1) models that use static BNs and formal grammars

to represent temporal dimension (known as Probabilistic

Temporal Networks (PTNs)); (2) models that use a mix-

ture of probabilistic and non-probabilistic frameworks;

and (3) models that introduce temporal nodes into static

BNs structure to represent time dependence. The third

category is most widely used and we will base it to

construct our dynamic fatigue model. In this category, a

time slice is used to represent the snapshot of an evolving

temporal process at a time instant and the DBNs can be

considered to consist of a sequence of time slices, each

representing the system at a particular point or interval

of time. These time slices are interconnected by temporal

relations, which are represented by the arcs joining

particular variables from two consecutive slices. Such

a DBNs is usually regarded as a generalization of the

singly connected BNs, specifically aiming at modelling

time series [33]. States of any system described as a

DBN satisfy the Markovian condition: the state of a

system at timet depends only on its immediate past, i.e.,

its state at timet−1. Hence, DBNs are often regarded as

a generalization of the Hidden Markov Models [18]. As

an extension of the traditional static Bayesian Networks,

DBNs describes a system that is dynamically evolving

over time and enables the user to monitor and update the

system as time proceeds. It even predicts the behavior of

the system over time. Therefore, a fatigue model based

on the DBNs is naturally the best option to model and

predict fatigue over time.

A simple illustrative DBNs is showed in Figure 3

and it’s joint probability distribution function on the

sequence ofT time slices consists of a hypothesis node

Ht, hidden statesSt, and observationsOt. Given the

DBN topology as shown in Fig. 3, we assume that, the

hidden state variablesS = {s0, ..., sT−1}, observable

variablesO = {o0, ..., oT−1}, and hypothesis variables

H = {h0, ..., hT−1}, where T is the time boundary.

The probability distribution of DBNs can be theoretically

expressed as

P (H, S, O) = P (H0)
T−1∏

t=1

P (Ht|Ht−1)

T−1∏

t=0

P (St|Ht)
T−1∏

t=1

P (St|St−1)
T−1∏

t=0

P (Ot|St). (1)

So, in order to completely specify a DBNs, we need

to define four sets of parameters:

• State transition probability distribution functions

(pdfs) Pr(St|St−1) and Pr(Ht|Ht−1), that speci-

fies time dependencies between the states

• Hypothesis generation pdfsPr(St|Ht), that speci-

fies how the hidden states relate to the hypothesis.

• Observation pdfsPr(Ot|St), that specifies depen-

dencies of observation nodes regarding to other

nodes at time slicet.

• Initial state distributionPr(H0), that brings initial

probability distribution in the beginning of the pro-

cess.

Except for the transitional probabilities, the specifica-

tion of other parameters remains the same for all time

slices as the static BNs since they characterize the static

aspect of the DBNs. The transitional probabilities specify

the state transition between two neighboring time slices.

Theoretically, they may be stationary or dynamically

vary over time.

Based on general DBNs principles [26] [33] [42] and

the above considerations, a DBNs model for modeling

human fatigue is constructed as shown in Figure 4.

The basic idea of this model is that some hidden nodes

(also referred to as temporal nodes) at the previous time

slice are connected to the corresponding nodes at current

time. The previous nodes, therefore, provide a diagnostic
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Fig. 3. A generic DBN structure, whereH(t) represents the hypothesis to infer at timet; S(t) represent hidden states at time

t; O(t) represents sensory observations at timet; andT is the time boundary.
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Fig. 4. A Dynamic Bayesian Networks Model for Monitoring Human Fatigue. While static nodes repeat in slices, corresponding temporal

nodes in neighboring slices are connected via temporal causality.

support for the corresponding variables at present time.

Thus, fatigue at current time is inferred from fatigue at

the previous time, along with current observations. These

changes allow to perform fatigue estimation over time

by integrating information over time. It also affords to

predict fatigue over time by the temporal causality of

DBNs.

The DBNs are implemented by keeping in memory

two slices at any one time, representing previous time

interval and current time interval respectively. The slice

at the previous time interval provides diagnostic support

for current slice. The two slices are such programmed

that they rotate as old slices are dropped and new slices

are used as time progresses. Specifically, at the start
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time slice, fatigue is inferred from the static fatigue BNs

model in Figure 1. Starting from the second time slice,

the static fatigue model is expanded dynamically with

additional temporal links that connect the intermediate

nodes at previous time slice to the corresponding nodes

at current time slice. Fatigue inference is then performed

on the expanded static fatigue model. This repeats with

different probabilities for the previous nodes that are

connected to current model. All the CPTs in the model

is time-invariant. Part of the CPTs and prior probabilities

in the model are adopted from the previous SBNs model

and the transitional probabilities are specified subjec-

tively.

V. EXPERIMENTS

In this section, we present our experimental results to

evaluate the proposed fatigue model.

A. The Experiment Results of SBNs Model

Given the parameterized model, the fatigue inference

can commence upon the arrival of visual evidences via

belief propagation. MSBNx software [30] is used to

perform the inference in this static model and both top-

down and bottom-up belief propagations are performed.

Given the network shown in Figure 1, with 22

evidence nodes and two states for each node, theoret-

ically, there are222 possible inference results. So, it

is very difficult to enumerate all possible combinations

of evidences. Here only those typical combinations of

evidences, which are related to fatigue node and that are

most likely to occur in the real world, are instantiated in

the model and their results are summarized in Table X.

From Table X, it can been seen that the prior probability

of fatigue (e.g. when there is not any evidence) is

0.57 (ref. No.1), representing the the average fatigue

level for the commercial pilots or truck drivers in their

normal working time. The observation of a single visual

evidence (ref. No. 2-8in table X) does not provide con-

clusive finding since the estimated fatigue probability is

less than the critical value 0.95. Even when the evidence

of eyelid movement (e.g. PERCLOS) is instantiated, the

fatigue still fails to reach the critical level, despite the

fact that the eyelid movement has been regarded as the

most accurate measurement of fatigue [28] [27]. The

same is true if only a single contextual factor (ref. No.

9-18) is given. The combination of PERCLOS and any

other visual evidences (ref. No. 20, 21) leads to critical

fatigue level. Any combination of three visual cues

guarantees the estimated fatigue probability to exceed

the critical value (ref. No. 24). With some contextual

evidences, any two visual cue evidence combinations

achieve the same purpose (ref. No. 25). This demon-

strates the importance of contextual information. In fact,

the simultaneous presence of all contextual evidences

only almost guarantees the occurrence of fatigue (ref.

No. 26). These inference results, though preliminary

and subjective, demonstrate the utility of the proposed

framework for predicting and modelling fatigue, through

systematic fusion of information from different sources.

B. Evaluation of Dynamic Bayesian Network Model for

Monitoring Fatigue

The typical evaluating results from the dynamic BNs

models and their comparisons with the static BNs model

are shown in Figures 5 6 and 7.

From Figure 5, it can been seen that if there is

not any evidence observed, the fatigue level basically

monotonically increases as time passes by. But for SBN

model, the fatigue index remains unchanged over time.

From the view of driving in the real world, the situation
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TABLE X

THE INFERENCERESULTS OFSTATIC FATIGUE BAYESIAN

NETWORK MODEL

No. Evidences Fatigue (yes)

1 No any evidence 0.57

2 YawnFreq (high) 0.82

3 FacialMuscle (lagging) 0.81

4 PERCLOS (high) 0.86

5 AECS (abnormal) 0.86

6 Fixation dis(narrow) 0.81

7 Fixation saccaderatio (low) 0.80

8 Headtilt freq (high) 0.85

9 Temperature (high) 0.72

10 Weather(abnormal) 0.72

11 Noise (high) 0.70

12 Time zone (changed) 0.63

13 Sleepdisorders (yes) 0.72

14 Napping (No) 0.58

15 Workload (heavy) 0.72

16 Work type (tediousmonotonous) 0.74

17 Anxiety (yes) 0.64

18 RandomNoise (yes) 0.60

19 YawnFreq (high),Facialmuscle (drowsy ) 0.90

20 PERCLOS (high), Fixationdis(abnormal) 0.95

21 PERCLOS (abnormal), YawnFreq(high) 0.96

22 Fixation dist (abnormal), 0.95

Facialmuscle (lagging)

23 AECS (slow), Headtilt freq(high) 0.96

24 PERCLOS(high),Headtilt freq(high), 0.99

AECS (slow)

25 Headtilt freq(high), YawnFreq(high), 0.98

Temperature (high), Anxiety (yes)

26 Time (drowsytime), Heattilt freq(high),humidity(high) 0.90

Sleepdisorders(yes), Sleeptime (loss(¿6h)),

Work type (tediousmonotonous),

Weather(abnormal),Anxiety(yes),Workload(heavy)

in DBNs model is more reasonable. The driver may feel

alert at the start of driving but as the time passes by,

fatigue begins to get built up gradually.

Figure 6 plots the fatigue index for both models

over time, with the observation of high PERCLOS value

at different time slices. It is clear that the two models

respond to evidences differently. In general, the fatigue

curve for dynamic fatigue model changes gradually

upon the arrival of an evidence or disappearance of an

evidence. On the other hand, the fatigue curve for the

static model changes drastically with evidence arrival

or disappearance, as represented by sharp turns. The

curves also show that the presence of high PERCLOS

at one time slice (slice 2) does not cause a significant

fatigue change for the dynamic model while it can lead

to a sudden change for the static model. However, if

high PERCLOS value is observed continuously (e.g.

from time 11 to 20), this will cause a gradual increase

of fatigue for the dynamic model. The fatigue index

of static model stays unchanged over this period. As

soon as disappearance of the PERCLOS evidence, the

fatigue index of static model drops immediately while

the fatigue index of dynamic model gradually decreases.

Therefore, the dynamic fatigue model is more compatible

with fatigue development. And, the dynamic model is

more tolerant to external signal disturbance. The fatigue

index from the dynamic fatigue model begins to change

only after persistent and continuous observations of

certain visual behavior.

We can reach the similar conclusion from Figure 7,

where multiple fatigue parameters may be instantiated

simultaneously. In addition, it is observed that after the

disappearance of evidences from frame 26 and on, the

fatigue index of DBN model fatigue number begins to

increase to reflect time factor while the fatigue index of

SBN fatigue number remains unchanged. In summary,

the DBN model demonstrates more powerful capabil-

ity to model and monitor human fatigue. It can more

accurately characterize and monitor human fatigue. In

addition, the dynamic fatigue model is less sensitive

to external signal disturbance and to erroneous sensory

observations.

C. Interfacing with the Vision System

To perform real-time driver’s fatigue monitoring, the

visual module from computer vision technology and

the fatigue model must be combined via an interface

program such that the output of the vision system can be
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slice 1 and between time slice 12 and 20.

used by the fatigue model to update its belief of fatigue

in real time. Such interfaces have been built. Figure 8

shows the appearance of the interface program. Basically,

the interface program periodically (every 1 second or

shorter time interim) examines the output (evidences) of

the vision module and detects any evidence change. If a

change is detected, the interface program instantiates the

corresponding observations nodes in the fatigue model,

which then activates its inference engine, and obtain

the new fatigue level. In the interface, the inference

result (fatigue level) is displayed as a real-time curve

in a window as shown in figure 8. In addition, the

interface appearance also varies with user fatigue level.

When the fatigue level is within the normal range (e.g.

below 0.85), it displays a comfortable green background

color screen. If the fatigue level is between 0.85 and

0.95, which is close to the dangerous level, it displays a

yellow background color screen with an alerting prompt

accompanied by a notifying sound. If the fatigue level

is at the critical level or higher, the color of the screen
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become red and the warning color flashes continuously,

accompanied by a warning sound to alert the driver.

Also displayed in the interface are the buttons for both

visual evidences and contextual factors. These buttons

allow the visual evidences and the contextual factors be

input manually. Finally, the interface program allows to

record the fatigue index and the visual parameters for

subsequent analysis and display.

VI. CONCLUSION AND FUTURE WORK

Fatigue is one of the most important safety concern

in modern commercial transportation industry. Moni-

toring and preventing fatigue are crucial to improving

the safety. Fatigue is affected by many complicated

factors. Sleep and circadian are two of the fundamental

physiological factors. For the commercial transportation

drivers and pilots, many other factors, such as environ-

ment factors, physical conditions, type of works, will

also significantly affect their fatigue. In addition, fatigue

exhibits different observations, varying over time and

with uncertainties. Through the research presented in this

paper, we propose a probabilistic framework based on

the Bayesian network to model fatigue and the associated

factors and observations in a principled way. Specifically,

a static fatigue model based on the static Bayesian Net-

works model was developed to model the static aspects

of fatigue and to allow to integrate the relevant contextual

information and the available visual cues spatially. The

static fatigue model is then extended based on DBNs to

better model the dynamic and evolutionary aspects of

fatigue development.

Experimental results demonstrate the importance of

simultaneous combination of various parameters as well

as the advantage of dynamic fatigue model over the static

fatigue model to more accurately and robustly model and

detect human fatigue and produce more accurate fatigue

prediction. The inference results, though preliminary and

still subjective, demonstrate the utility of the proposed

framework for consistently, robustly, and accurately pre-

dicting and modelling fatigue under uncertainty.

Though the parameters used to parameterize the net-
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Fig. 8. Interface for DBN model

works are sometimes subjective and the data used may

not accurately reflect the actual situation, the current

focus of our research is not on developing a high fidelity

fatigue model, but rather on providing a theoretical

framework that can model fatigue in a principled way.

Work is currently under way to refine the parameters of

the model with more and better data and knowledge. This

requires close collaboration with human factors experts,

requiring studies involving human subjects. Another

work to be carried out soon is to perform a systematic

and scientific validation (involving human subjects) of

our fatigue model against the established fatigue criteria

such as EEG, EOG, and psychomotor vigilance task

(PVT). This also allows to acquire training data to help

parameterize our model.
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