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Self-Calibration of a Rotating Camera
With a Translational Offset

Qiang Ji, Member, IEEE, and Songtao Dai

Abstract—Camera self calibration, based on a purely rotational
movement of the camera, receives the most attention among
different camera self-calibration methods due to its algorithmic
simplicity. The existing purely rotational methods, however,
assume camera rotates around its optical center, therefore yielding
no translation offset. This assumption is not realistic, since
in practice, the precise location of the optical center is often
unknown, and the rotation is often performed about an unknown
but fixed point near the optical center. The conventional methods
tend to ignore the offset, and therefore, could lead to significant
errors with the estimated camera parameters. In this paper, we
introduce a new rotation-based camera self-calibration method,
which explicitly accounts for the unknown translation offset. To
this end, the problem is mathematically formulated and solved
for differently taking the translation into consideration. To obtain
the camera parameters with unknown camera rotations, our
algorithm requires the camera to rotate around an unknown but
fixed axis twice, by the same yet unknown angle. This is not an
unreasonable assumption for precalibrating a camera on an active
head. Experiments with both synthetic and real data show that
the systematic errors caused by ignoring the translational offset
will be effectively eliminated by our approach.

Index Terms—Camera calibration, homographic matrix, pure
camera rotation, self-calibration.

1. INTRODUCTION

AMERA calibration is a fundamental issue in computer

vision and photogrammetry, especially for three-dimen-
sional (3-D) computer vision and robotics applications. Camera
calibration is defined as the determination of internal sensor pa-
rameters such as focal length, pixel skew, and principal point [1].
Camera calibration permits prediction of where in the image a
world point will appear [2] and allows extracting 3-D metric in-
formation and recovery of the Euclidean structure of the scene
from 2-D images [3], [4]. Although there are techniques infer-
ring 3-D information about scene from uncalibrated cameras,
effective camera calibration procedures open up the possibility
of using a wide range of existing algorithms for 3-D reconstruc-
tion and recognition, all relying on the knowledge of the camera
parameters [5].

There are two basic methods of calibrating cameras in com-
puter vision. The traditional one is to use an object with a priori
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known Euclidean dimensions, the calibration pattern, in order
to find the relation between world coordinates and image coor-
dinates from which the internal parameters of the camera can be
extracted. Another approach developed quite recently is called
camera self calibration, which requires that the camera undergo
amovement [6]. These methods require only 2-D point matches
in several views obtained during either known [7]-[9] or un-
known [6], [10], [11] camera motions, without a priori 3-D
knowledge of the calibration scene [12]. Camera self calibration
is important, especially in circumstances where the execution of
the underlying visual tasks does not permit the use of reference
objects [13].

There are three basic approaches in performing self calibra-
tion of cameras: 1) general camera motion approach with either
limited or arbitrary number of views [10], [6], [14]-[22]; 2)
pure translation approach [9]; and 3) pure rotation approach
[7], [8], [23], [24]. According to the first approach, the camera
undergoes general motion (rotation and translation) to obtain
images of a scene from different viewpoints. Calibration is
then accomplished using the matched 2-D points from different
images. First introduced by Maybank and Faugeras [10], [6],
their calibration method makes use of the epipolar structure
of image pairs. Given three pairs of views, the set of six
resultant quadratic equations can be solved by using homotopy
continuation [10], [25] to obtain camera parameters.

However, the method initially presented by Faugeras et
al. requires extreme accuracy of computation [23], [26] and
is computationally expensive and sensitive to noise [12].
Furthermore, in order to use the epipolar structure, this method
requires that the two views be taken from different viewpoints
and images must first undergo a complex rectification process
[27]. The applicability of these methods is thus complicated by
the problem of finding matched points in images taken from
different viewpoints, because of occlusion, aspect changes and
lighting changes that inevitably occur when the camera moves.
In many cases, all the images of a scene are taken from the
same point in space, and the epipolar structure does not exist,
so Maybank and Faugeras’ method does not apply [23]. Finally,
their method only uses two images, therefore susceptible to
input perturbations. The use of more images by more recent
techniques [17], [28], [21] leads to significant performance
improvement.

In order to overcome the problems inherited in the Maybank
and Faugeras method, several other self-calibration methods
have been developed thereafter. Many of them require camera to
undergo certain particular types of motion and utilize the special
motions for camera calibration. This knowledge simplifies the
calibration task enormously and yields a numerically more stable
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Fig. 1. Camera and perspective projection geometry.

and robust solution. Two most common approaches of camera
self calibration are purely translational [9] and purely rotational
approaches [7], [8], [23] with fixed camera parameters and the
latest pure rotational approaches [29]-[31] that allow varying
camera parameters. Among various approaches developed so
far, approaches based on pure camera rotation have been proved
to be very feasible, simple in operation, and received the most
attention. According to this approach, multiple images of a scene
are obtained by making the camera undergo only rotational
movement while remain fixed in the same viewpoint. Camera
calibration is then performed using the images.

Unfortunately, most such work made certain a priori assump-
tions about the rotational movement. A basic assumption is that
the rotational movement is pure or close to pure in the sense
that no relative translational movement is introduced between
two camera coordinate frames. To ensure this, camera must ro-
tate around the optical center.! In many real situations, how-
ever, the optical center is not exactly known and rotations are
usually carried out around some fixed spatial point located on
a support facility. As a result, the camera optical center under-
goes a relative translational movement after rotation and the ro-
tation is not therefore pure. In fact, the translational movement
could be relatively significant in comparison to the distance of
object points to the camera for certain applications. The existing
purely rotational methods tend to ignore any translational move-
ment, and thus, significant errors could be introduced to the es-
timated camera parameters, when camera is close to the cali-
bration scene [32], [33]. Hayman e al. analytically studied the
errors introduced when the assumption of pure rotation about
the camera’s optic center is violated. To the first order linear
approximation, they derived expressions that relate the errors
of the estimated camera parameters to the translational offset.
Through study with synthetic data, they showed that pure ro-
tational methods are only sufficient for applications where the
translational offset is small relative to the distance of the cal-

IRotation around a point is defined as rotation around any axis passing
through the point.
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ibration target to the camera. Their conclusions are primarily
arrived at for cases when the rotation arm is of fixed length, as
is indeed the case with many cameras mounted on tripods or
robotic heads. However, for applications where high accuracy
with the camera parameters is required, the errors introduced
by the translational offset cannot be ignored. Recent work by Li
[34] intended to overcome this problem by solving the transla-
tional offsets. But his method requires the use of a special cali-
bration pattern.

In this paper, we introduce a new rotation-based camera self
calibration method that uses the same images as the conventional
rotational methods yet explicitly accounts for the unknown
but fixed relative translation between rotation center and the
optical center. To this end, our algorithm requires the camera to
rotate around an unknown but fixed axis twice, by the same yet
unknown angle. Images resulted from such rotations are then
used to compute the camera parameters. Our approach consists
of two steps. We first solve for the infinite homography matrix
with camera undergoing equal yet but unknown translations
and rotations. This represents a novel part of this paper. The
camera internal parameters are then solved for from the infinite
homography matrix using existing techniques.

II. MATHEMATICAL PROJECTION MODELS

Let P be a3-D pointand (z y z)! be the coordinates of P rel-
ative to the object coordinate frame C,. Let (¢, r) be the pixel co-
ordinates of P relative to the row-column frame C,,. C), is located
at the upper left corner of the image with c axis pointing from left
toright and r axis pointing downward. Fig. 1 depicts the pin-hole
camera model and the associated coordinate frames.

Based on the theory of full perspective projection, the projec-
tion that relates (¢, r) on the image plane to the corresponding
3-D point (z, y, ) in the object frame can be described by

C

Mo =KR T M

— Ny
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where A is a scalar, K is a 3 X 3 matrix containing the intrinsic
camera parameters, and R and 1" are respectively the rotation
matrix and translation vector that specify the relative pose of
the object frame to the camera frame. K is parameterized as

[ 0 Uo
K= 0 fsy wo
0 0 1

where f is camera focal length, s, and s, are the scale factors
(pixels/mm). ug and vg are the coordinates of the principal point
in pixels relative to C,. Here we assume image skew and lens
distortions are negligible. K is called intrinsic camera calibra-
tion matrix. Details on pinhole camera model equations may be
found in [35]. The goal of camera calibration is to determine el-
ements of K.

III. THEORY OF THE PROPOSED APPROACH
A. Problem Statement

According to our approach, to calibrate a camera, the camera
may rotate around a fixed point other than the initial camera op-
tical center. The rotations yield several image views of a given
scene. The purpose of this research is to develop a method that
computes the matrix K from these images, given the fact that ro-
tation is not around the optical center. In the sections to follow,
we first discuss the theory for the more ideal pure rotation case,
followed by a discussion of the theory for the case where rota-
tion is around a fixed point that deviates from the camera optical
center.

B. Theory for Pure Rotation

Here, we will first reformulate the purely rotational approach
originally put forward by Hartley [23]. For a general camera
motion, from one configuration, I, to another configuration, II,
if an object point (x, y, z) in a scene appears in both image I and
I1, then the two image points (¢q,71) and (c2,72) of the same
object point (x,y, z) are thus determined by the equations

€T
C1
/\1 T1 :K[Rl Tl] g (2)
1 1
c T
2
Xo | m | =K[Ry T Z . 3)
1 1

In a purely rotational approach, the fixed point of rotation
coincides with the camera optical center and remains the same
before and after rotation. For convenience and without loss of
generality, we may just choose the object-frame coordinate
system such that its origin lies at the optical center of the
camera. With this choice, the translations in (2) and (3) turn out
to be zero, which will greatly simplify the calibration task as
indicated below. As a result, (2) and (3) are reduced to

C1 xr
)\1 71 = KRl Yy (4)
1 z

Co T
)\2 T2 = KR2 Yy . (5)
1 z

By eliminating the coordinates of the object point (z,y, z)
in this pair of equations, we obtain the following image-image
transformation (mapping) as

(&1 C2
MRIUK™ [ ry | = aRyIK [ 1o | (6)
1 1

Introducing a relative rotation

Ri = RR,
(6) can be simplified as
C1 )\2 C2
r | = /\—11(1%*1 o (7

1 1

which serves as the key working equation for the purely rota-
tional approach to camera self-calibration. For convenience, let
us define

H=KRK™!

With these two definitions, (7) can be rewritten as

C1 Co
A 1 =H T2 . (8)
1 1

Here the parameter A depends on the location of the object
point. Matrix H is usually called the infinite homography in
computer vision literature [18]. As a result, this equation indi-
cates that the image-image mapping of each object point yields
two independent linear equations in terms of the elements of H
matrix. Given a minimum of 4 matched 2-D points, H can be
solved up to a scale factor. The scale factor can subsequently be
resolved by using the fact that det(H) = 1. Hartley [23] intro-
duces a linear and an nonlinear method to solve for H.

C. Solution to K

Given H, we can then solve for the intrinsic matrix K. The
solutions to K depend on if the rotation matrix R is known or
unknown. We discuss solution for each case.

1) R Is Known: If R is known, then K can be derived from
asingle H analytically. Here we introduce a linear solution sim-
ilar to that of Stein’s [24]. From H = K RK !, we have

HK = KR. )

Equation (9) provides nine linear equations, involving the four
unknown intrinsic parameters. Element of K can, therefore,
be solved analytically via a system of linear equations. Given
more images produced with additional rotations, we can pro-
duce more equations like (9) and stack them together to form a
larger system of linear equations, based on which we can solve
for elements of K. The solution is more accurate due to the re-
dundancies provided by additional images.
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Fig. 2. Relative errors of the estimated camera parameters by the linear approach for pure rotation as a function of the image errors. 50 points are used.

2) R Is Unknown: Linear Solution: In practice, the rotation
matrix R is often unknown. The above solution is not applicable.
Here we introduced a linear solution similar to that of Hartley
[23] to solve for the intrinsic matrix K. Let C = KK, then
from H = K RK~! and using the orthonormality constraint of
R, wehave HCH? = (. The solution to C, up to a scale factor,
is formulated as a linear least-squares problem using a minimum
of two H matrices. Solution to elements of C' corresponds to the
eigen vector of the smallest eigen value of the design matrix.
The scale factor is solved by imposing the constraint that the
last element of C (i.e., C(3, 3)) is 1.

Once C is solved for, Hartley proposed to use Cholesky De-
composition to linearly determine the camera calibration matrix
with the constraint that the solution is an upper triangle matrix, as-
suming C is positive definite. We found this approach is difficult
to impose the zero skew constraint. To impose this constraint, we
explicitly encode it in the K matrix and obtain K K¢ as

282 +u? U U
KK'= uw fsi4+0 v
U v 1

Given C' we can, therefore, obtain elements of K from

u=C(3,1)

v=C(3,2)
fs.=/C(1,1) —u?
fsy = \/m

Our study, however, shows that the linear solution, though ele-
gant,issensitivetopixelerrorsasshowninFig.2. Thefigure shows
all four parameters deviate considerably from their correct values
when the error for each image point exceeds two pixels. This is
especially the case for the parameters « and v, which are twice as
sensitive to pixel errors as the two scale factors.

Moreover, the decomposition is numerically very unstable for
a poorly conditioned C. One way of improving the sensitivity
of the solution is to impose the zero-skew constraint while com-
puting the matrix C' as demonstrated in the work by De Agapito
[31] and Zisserman [36]. Furthermore, the sensitivity and nu-
merical instabilities problems can be further corrected using the
bundle-adjustment method [37].

3) R Is Unknown: Nonlinear Solution: To further improve
the solution to K, we introduce a one-step nonlinear approach,
that computes K directly from H without computing C. The
one-step nonlinear approach is found to produce more robust
and accurate estimate.

Given H, the orthonormality of R can be utilized to form
an equation that does not involves R. Since H = KRK -1
we have R~ = KT H~t*K ~*. Thus, the application of the or-
thonormality constraint (R = R™") of R yields

(KKt)H_t = H(KKt) (10)
where
33:f2 + u% U Vg U
KK'= U Vg s§f2+vt2) o
U Vo 1

Equation (10) is similar to the Kruppa equations for the ro-
tational camera. It links the image transformation to the camera
internal parameters.

Now, we present a nonlinear method, similar to the one pro-
posed by by De Agapito [29], to solve for K from H using (10),
assuming R is unknown. Like the linear solution, our solution
also needs two different H matrices to uniquely determine K.
From (10), we define matrix A* as

A" = (KK")H; ' - H(KK") wherei=1,2 (11)
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Fig.3. Object frame and the initial camera frame, along with the optical center

and the fixed point of rotation.

then we define the criterion function F' to minimize as

2
2 2 2 2 02
F(K):ZA00+A01+A02+A 0+ AT
=1
+ AT, + Al + AT + AT, (12)

where A%, is the (j, k) entry of the matrix A’. Since H has
been calculated in the previous steps, F' is a function of four in-
trinsic parameters (s.. f, s, f, uo, vo). The four intrinsic parame-
ters which make function ' minimum are the solutions to (12).
Matlab function Isqcurvefit() is used to implement the
nonlinear minimization problem. The initial guess for the
nonlinear solution is obtained from linear solution introduced
in Sections III-B and III-C that solves for K from H. Given a
sequence of images, the estimate for H can be further refined
using the conventional bundle-adjustment algorithm [37].

D. Camera Rotation With Fixed Translation

In many real-world environments, it is very difficult to per-
form pure camera rotations due to lack of knowledge about the
location of camera optical center. Camera rotations are usu-
ally carried out around some fixed spatial point located on the
camera support facility. This, therefore, yields a relative transla-
tion between the two camera frames before and after rotation. In
this section, we mathematically reformulate the problem taking
the relative translation into consideration. Our formulation is
more general in that the pure rotation can be treated as a spe-
cial case.

Without loss of generality, let us assume that the object frame
is located at the fixed point of rotation and is aligned with the
initial camera frame as shown in Fig. 3.

It is observed that, although both panning and tilting are al-
lowed during the rotation of the camera, the point of rotation is
fixed. This leads to an important fact: the location of the fixed
point of rotation relative to the camera frame (either before or
after) remains unchanged, i.e., 71 = 7> = T'. This fact turns

out to be a key point for our approach. As a result, (2) and (3)
remain true, i.e.,

c1
)\1 T1 = K[Rl T]

IS NS

13)

C2

)\2 T2 = K[R2 T] (14)

N 8 =

In the case of pure rotation, we can choose 7' to be zero, then this
set of equations is exactly the same as that of pure ideal rotation
case. In the case of rotation with fixed translation, 7" can not be
zero, since we will have different optical centers after each ro-
tation. This greatly complicates the image-image mapping and
the set of linear equations in terms of the entries of the H matrix
such as those for pure rotation are no longer available.

Fortunately, in spite of its complication, (13) and (14) do have
a potentially useful feature: fixed translation 7'. In order to make
use of this valuable feature, we can take into account three dif-
ferent camera system configurations, I, II, and III, which corre-
spond to three different images of a given object point and are
determined by

€1

)\1 T1 = K[Rl T] (15)

C2

/\2 T = K[Rz T] (16)

C3

)\3 T3 = K[Rg T] (17)

RN 8 mPuRe 8 R 8

From (15) and (16), after eliminating the translation 7', we ob-
tain

C1 C2 x
M| =Xl | =KRi—R) |y (18)
1 1 z
Similarly, from (16) and (17), we obtain
C3 Co xr
)\3 T3 — )\2 T2 = K(R3 — Rg) y (19)
1 1 z

Equations (18) and (19) can be rewritten as after placing K
to the left side of the equations

C1 C2 x

K A =Xfr =(R1—R2) |y | (20)
1 1 z
C3 C9 €T

Kil /\3 T3 — )\2 T = (Rg — RQ) Yy . (21)
1 1 z
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By introducing two relative rotations 2R and 3 R

Ry, =2RR;
R3 = 3RR,.

Thus, (20) and (21) take the form

C1 C2 r

K'Y Mx|r|=X|rn]||=0(R-1)R: |y
1 1 z
(22)
C3 C2 xr
K_l )\3 T3 —)\2 T2 = (gR—I) R2 y
1 1 z
(23)

In many applications such as precalibrating a camera on an ac-
tive head, the rotation of a camera can be accurately controlled.
For the purpose of camera calibration, it is thus reasonable and
convenient to choose the three orientations of the camera such
that the following conditions are satisfied:

SR=2R=R" (24)
Physically, this simplification means the relative orientation be-
tween frames 1-2 is the same as the the relative orientation be-
tween frame 3 and frame 2. In other words, given frame 1 and
frame 2, frame 3 can be obtained by rotating the camera again

by the same rotation as the one between frame 1 to frame 2. With
this simplification, (22) and (23) reduce to

C1 C2 xr
)G DV IR D P o =-R(R"—DRy | y
1 1 z
(25)
C3 Co x
K[ xs|rs | =X =(R'"—=DRy | y | -(26)
1 1 z
T
Equating (25) and (26) by removing (Rt — )Ry | vy | yields
z
C1 C2 C2 C3
/\1 T1 — )\2 T2 = KRK_I )\2 ) — /\3 T3
1 1 1 1
27)

Therefore, we obtain a key working equation, which is similar
to (7) in purely rotational approach. The difference lies in that
(7) is derived from two image frames and contains two unknown
scalars (A1, A2), while (27) is derived from three image frames
and thus contains three unknown scalars A1, Ao, A\3. In the re-
maining part of this section, we will present our solution to this
working equation.

Equation (27) shows that for each matched object point, we
have two additional independent parameters, i.e., (A1/\2) and

(A3/A2), and three equations. By eliminating these two addi-
tional parameters, we can obtain one equation for each matched
point. Let

H=KRK™!
AL
A2 = ™
A3
)\32 = )\—2

Then (27) can be written as

c1 Co C2 C3
Az | ™ — | T2 =H T2 —Az2 | 73 (28)
1 1 1 1
Hy
With the use of the notation for H = | H} |, where H} rep-

H
resents the 7th row of matrix H, (28) thus leads to the following
three equations:

C2 — Azac3
A2¢1 — ¢ = H{ T9 — A32T3 (29)
1= 32
C2 — Azac3
Aary — 12 = Hy | 72 — Asars (30)
1— A3
c2 — A3a2C3
)\12 —1= H§ Tro — )\327‘3 (31)
1 - )\32

From (29) and (31), after eliminating the parameter A12, we have

C2 — A32C3
Cl—CQZ(HI—ClHé) ’I“g—)\327"3 (32)
1 — A3z
Similarly, from (30) and (31) , we have
C2 — A32C3
TYy — T2 = (H; - T1H§) T9 — )\327”3 (33)

In (32) and (33), only one object-point dependent scalar param-
eter \s» is left, which can be expressed, from (32), as

Cc2
02—01+(H{ —ClHé) 79
1
Azz = (34)
c3
(H{ —c1Hg) | 73
1
Similarly, from (33), we can express A3o as
C2
T —T1 + (H; — 7‘1H§) T2
1
. (35)

c3
(Hf —ri HS) | 3
1

|
|

Authorized licensed use limited to: IEEE Transactions on SMC Associate Editors. Downloaded on October 12, 2008 at 11:18 from IEEE Xplore. Restrictions apply.



JI AND DAI: SELF-CALIBRATION OF A ROTATING CAMERA WITH A TRANSLATIONAL OFFSET 7

Combining (34) and (35) and eliminating A3 yield an nonlinear
equation in terms of the H matrix elements as

C2
62—61—|—(Hf—61H§) T9
1
c3
(Hf — e HY) | 73
1
C2
T2—T1~|—(H§—’I‘1H§) T2
1
= . (36)
3
(Hj —rH3) | 3
1

Therefore, for each object point tracked, we obtain one non-
linear equation in terms of the H matrix elements only. Given
sufficient number of points, H can be solved for numerically.
Specifically, Let U and V represent the left and right sides of
(36), then for each matched point in three views, we have ide-
alyU = V.

If N matched points are chosen, we have U; = V; for i =
1,2..., N. The algebraic error criterion function f can there-
fore be established as

N

FH) =Y (Ui = V)2,

i=1

(37)

Given a minimum of eight (i.e., N > 8) points, H can be found
up to a scale factor by minimizing (37). This minimization is im-
plemented using the MATLAB function Isqcurvefit(). The initial
estimate for the nonlinear solution was provided using the linear
technique discussed in Sections III-B and III-C , assuming trans-
lation offset is zero. Our study using synthetic data showed that
the H matrix can be relatively accurately estimated given the
initial estimate about £15% off its true value. The scale factor
for H was subsequently solved for using the fact that the de-
terminant of H is 1. Given H, the solutions introduced in Sec-
tion III-C can be used to solve for K.

E. Degeneracy in Camera Self Calibration

Studies by Sturm [20] have identified certain types of camera
motion, often referred to as critical motion, lead to degeneracy
in camera self-calibration solution. Degeneracy means the ex-
istence of multiple solutions. A complete characterization of
critical motion sequences for constant intrinsic camera param-
eters may be found in [20]. In particular, they have identified
some degenerate motion sequences that often occur in practice
such as rotation round the parallel (or the same) axis or planar
motion, etc. They proved that for a camera with fixed intrinsic
camera parameters, any camera motion resulted from rotation
around the same axis with arbitrary translation is critical, there-
fore leading to multiple solutions. This seems to indicate that
the motion sequence used for our technique is critical as well
since it involves rotation about the same axis with fixed transla-
tion. Further study by Kahl ez al. [38] and Zisserman et al. [36],

however, shows that rotation about the fixed axis may not always
be critical, depending on the constraints imposed on the camera
parameters. For example, Kahl proved that if skew is assumed
to be zero, then for constant camera parameters, only rotation
about axes (0,*,*) and (*, 0, *) is critical, where “** denotes an
arbitrary real number. With assumption of only zero skew, our
rotation is not critical if we can avoid rotating about these critical
axes. In fact, this can be accomplished by first rotating about the
pan axis (two equal rotations, three images) followed by rotating
about the tilt axis (again, two equal rotations, three images). This
provides two infinite homographies, no longer about a single
axis, to be input into the second stage of the algorithm. This is
also supported by our experiments since we can uniquely de-
termine the four intrinsic camera parameters by rotating camera
around an axis other than the critical axes mentioned above.

IV. EXPERIMENTS

In this section, we present results of experiments that were
aimed at characterizing the performance of our self calibration
algorithm. The calibration algorithm was first tested on syn-
thetic data to determine its performance under varying amount
of noise, different numbers of points, and different exterior
camera orientations. The algorithm is then applied to a set of
real images to recover the intrinsic camera parameters. Finally,
we present results from a comparison of our approach with an
existing method that ignores the translation offset.

A. Tests With Synthetic Data

In the experiments with synthetic data, the 3-D data
(3-D points) are generated randomly within certain speci-
fied ranges. 2-D data (image coordinates) are generated by
projecting the 3-D data onto the image plane using fixed
intrinsic camera parameters. To study the performance of
our method under different camera parameters, three sets
of ideal camera parameters are used, (fss, fsy,uo,v0) =
(1306, 1306, 160, 120), (1306, 1206, 160, 120), and (263, 263,
157,127), respectively. Given the first image, the second image
is generated by rotating the camera around an axis by # degrees
while the third image is generated by rotating the camera again
around the same axis by # degrees. The default translational
offset is set at 20% for most experiments. The 2-D image data
are subsequently corrupted by independently and identically
distributed (i.i.d.) Gaussian noise of mean zero and standard
deviation o. The noise level is quantified using o. o varies
from 0—4.0 pixels, although a realistic noise level is only about
1.5 pixels [23]. From the generated 2-D/3-D data, we estimate
the intrinsic camera parameters (fs., f$y,uo,vo) using our
algorithm. The performance is judged by the absolute relative
errors between the estimated parameters and their true values
under various conditions as discussed below.

1) Influence of the Number of Matched Object Points and
Image Noise: Here, we summarize the performance of our self
calibration approach under varying number of image points and
varying amount of image noise. In each case, the size of the syn-
thetic image is 320 x 240 and the rotations are around two gen-
eral axes (0.2, 0.5, 0.59) and (0.8, 0.5, 0.33). In the first exper-
iment, we fixed the image noise at 1.5 pixel standard deviation
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and gradually vary the number of points. The results are sum-
marized in Fig. 4, which plots the relative errors of the estimated
camera parameters as a function of the number of points partic-
ipating in the computation. In the second experiment, we fix the

number of points at 75 points and vary the image noise level.
The results are summarized in Fig. 5, which plots the relative
errors of the estimated camera parameters as a function of the
image noise level. For each case, the initial guess of the intrinsic
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camera parameters are 20% deviated from their true values and
each point in the figure represents the average of 100 trials under
the same noise level.

It is clear from the two figures that increasing the number
of points can significantly improve the tolerance of our algo-
rithm to noise. The algorithm is rather unstable using only 10
points. However, with 20 points or more, the algorithm can tol-
erate rather high noise level (o = 1.5), which is close to the
realistic noise level encountered with real image data. When
the number of points increases to 100, our algorithm shows a
marked improvement. It can generate very accurate results for
all four parameters even under noise level up to two-pixel stan-
dard deviation.

2) Accuracy Versus the Number of Images: Here, we study
the accuracy of our method as a function of the number of im-
ages (rotations) used. Theoretically, we should input as many
images from a long sequence as possible to any self-calibra-
tion problem, and find the solution using all data simultane-
ously. This could improve the robustness and accuracy of the
method. But in practice, it is difficult to acquire many images,
partially due to occlusion. To avoid this problem, we use three
images (two rotations) to compute a homography. We then ac-
quire another three images under different rotations to compute
another homography. This repeats until we collect a set of ho-
mography matrices, which are then stacked together and used
simultaneously to solve for the intrinsic camera parameters. For
the experiments we did, we acquired up to 15 homography ma-
trices and studied the accuracy of our method as a function of
the number of homography matrices used. The results are sum-
marized in Fig. 6, where the number of 3-D points are used was

3.5

2.5

1.5

Average relative errors for Sy (%)

0.5 : :
0 5 10
Number of rotations

15

14

121

10

Average relative errors for v (%)

0 5 10
Number of rotations
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100 and the noise level of each pixel was at 0.8. Each point in
the figure represents the average of 100 trails. We can conclude
that as the number of images used increases, the estimation er-
rors decrease. For some camera parameters (e.g., u and Sy), this
decrease, however, begins to taper off when the number of rota-
tions reaches certain level (e.g., 10).

3) Robustness Versus Initial Guesses: For our nonlinear so-
lution, an initial guess of the intrinsic camera parameters is
required for further calculations. In order to test the robustness
of our calibration algorithm, in case of the number of matched
object points 100, we chose two different initial estimates
which are about 10% and 20% deviated from the true intrinsic
values. These results are plotted in Fig. 7, which plots the rel-
ative errors of the estimated camera parameters under varying
amount of image noise, with two different initial guesses. It
is clear that the algorithm, in spite of different initial guesses,
follows a very close solution even under very large noise
levels. The robustness of our self-calibration algorithm is thus
clearly demonstrated.

4) Robustness in Terms of the Camera Translation
Offset: One major feature of our algorithm is that the
translation offset (distance between point rotation and the
initial camera optical center) is fixed but unknown. Here, we
studied two quite different camera translation offset ratios?
(small translation ratio 0.2 and large translation ratio 0.5) in
the case of a number of points equal to 100. We achieved
similar results for all four parameters. The result is shown in

2The ratio of the translational offset to the distance of the calibration
scene to the camera.
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Fig. 8. It is clear that the two estimations follow each other optical center, which is often the case in practice. The larger
closely. But the one with larger offset ratio tends to produce estimation errors of our method under large translation offset
larger estimation errors. This implies that for a real image, and noise may partially attribute to the poor initial estimates
the point of rotation should not be too far from the camera provided by the linear methods.
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5) Camera Estimation Accuracy Versus Inequality in the Ro-
tations: In practice, it is difficult to ensure the two consecutive
rotations are exactly equal. It is expected that there are minor
discrepancies between the two rotations. Here, we study the sen-
sitivity of our approach to a minor inequality of the two rota-
tions. The inequality is expressed in terms of the relative differ-
ence between the two rotation angles. The results are plotted in
Fig. 9. For this experiment, the number points used was 100 and
the noise level was fixed at 0.8 pixel standard deviation.

From Fig. 9, the relative rotation angle difference ranges from
1% to 15%, and the maximum relative errors of the estimated
intrinsic parameters remain below 20%. This demonstrates this
our algorithm can tolerate modest inequality between two con-
secutive rotations. This is important for practical purposes.

B. Comparison With Conventional Pure Rotational Approach

In this section, we perform a quantitative comparison of
our approach with a pure rotational self-calibration approach
that does not account for the translation offset. Due to lack
of ground-truth data with real images and the difficulty of
obtaining different translation offsets, the performance com-
parison is undertaken using synthetic data. The pure rotational
approach we chose to compare with is the linear approach
introduced in Section III-B, with zero skew imposed.

To produce the image data, the camera is rotated around
a general axis ((1/v/3),(1/v3),(1/v/3)) passing through
the point (0, 0, 0) for 5, 10, and 15 degrees, respectively, to
produce the needed three images. The images are subsequently
perturbed with a noise level of 0.5. The average distance (77.)
between camera and the 3-D points are fixed at 4 m. The offset

(distance between the initial camera optical center and the
point of rotation) varies to produce the data. Fig. 10 shows
the errors of the estimated intrinsic camera parameters as a
function of the offset ratios. It is clear that the proposed method
produces rather consistent and accurate results (small errors)
even under larger offset (ratio = 1.0) for all four parameters.
It basically eliminates the errors resulting from rotating the
camera around a point other than the camera optical center.
On the other hand, the conventional pure rotational approach
becomes unstable even under a very small translation offset
ratio (0.1). We see a significant increase in estimation error
with the conventional approach as the offset ratio increases.
Nevertheless, when the offset is very small, e.g., less than 0.05,
the conventional approach can produce reasonable results. This
echoes the conclusion from Hayman’s study [33]. This explains
why the pure rotational approach works reasonably well for
some applications where the offset percentage is negligible.
This study demonstrates that our approach is much better for
applications where the offset percentage is unknown but is
expected to be large. Our study, however, also reveals that our
method becomes numerically unstable as the offset continues
to increase. This may be either due to the highly nonlinearity
nature of our method or to the poor initial estimates provided
by the linear method under a large translation offset.

C. Tests With Real Images

The ultimate test of our algorithm is its performance on real
images. Here, we present the results from real image data. A
charge-coupled device (CCD) camera was used in our experi-
ments, which was mounted on a support, and the rotations were
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First image of the calibration pattern.

performed by panning and tilting the camera around the point of
support. Images were taken of a calibration metric, which is lo-
cated about 1.2 m away from the camera. Sample images of the
calibration pattern are shown in Figs. 11, 12, and 13, respec-
tively. Points matching are done manually. The image size is
320 x 240. The calibration results were summarized in Table I
and compared with the calibration results obtained using a con-
ventional camera calibration procedure [39]. The results from
the pure rotation approach that ignores the offset is also in-
cluded in the table. It it clear that the calibration results from our
approach and the traditional approach are in quite satisfactory

Fig. 12.  Second image of the calibration pattern after the first camera rotation.

agreement, while the results from the pure rotation approach de-
viate significantly from the results of the traditional approach.
The errors with the pure rotational approach are due to ignoring
the translation offset resulting from camera rotation.

V. SUMMARY AND DISCUSSION

In this paper, we introduce a more practical rotation ap-
proach to camera self calibration. Our approach consists of two
steps. We first solve for the infinite homography matrix with
the camera undergoing equal but unknown translations and
rotations. This represents a novel part of this paper. The camera
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Fig. 13. Third image of the calibration pattern after rotating the camera twice.

TABLE 1
CALIBRATION RESULTS OF OUR METHOD USING IMAGES OBTAINED BY
ROTATING THE CAMERA AROUND THE POINT OF SUPPORT

Conventional method | our method | pure rotation
fs, 263 268 295
Uo 157 164 130
v 126 127 150

internal parameters are then solved for from the infinite ho-
mography matrix using existing techniques. Experiments based
on synthetic data demonstrate the robustness and accuracy of
our approach under different conditions such as different noise
levels, different number of points, different initial estimates,
and different translation offsets. Compared with the existing
methods that ignore rotation offset, ours is especially effective
when the offset is large. Our study also reveals that given
a sufficient number of points, our method can tolerate (in
terms of numerical stability and estimation accuracy) error
up to three pixels, much higher than the 1.5 pixel errors in
most images. Our experiments with real images show that
our approach, in the presence of translation offset, produces
estimates comparable with those obtained using the traditional
camera calibration method. This provides further justification
of our self-calibration algorithm. As pointed out throughout
the paper, the camera estimates can be further refined using the
bundle adjustment method, initialized using our methods. It
can be used to refine the initial projective homographies, and
also in the final Euclidean step.

While our approach is similar to that of Stein’s [24], our tech-
nique is, however, more practical, since our method does not
need the knowledge of the rotations, which are often difficult to
acquire accurately. Yet, our method can utilize the rotations, if
known, to improve the estimation accuracy. On the other hand,
for applications where the rotation matrices can be accurately
estimated from an apparatus such as the shaft encoder of an ac-
tive head, the two techniques are comparable.

The major assumption that underlies our algorithm is that the
two rotations must be about the same axis and with equal an-
gles. We realize this assumption limits the practical utilities of
our approach. Our study indicates that our algorithm can tolerate

minor inequality between the two rotations (up to 15) and still
produces reasonably accurate results. Moreover, this assump-
tion can be realized for certain applications, such as photogram-
metry and some robotics applications, with the aid of auxiliary
equipment. In particular, for precalibrating a camera on an active
head that can pan and tilt, it is not an unreasonable assumption
to make.
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