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Abstract

This paper presents a hierarchical multi-state pose-dependent approach for facial feature detection and tracking under varying facial expression
and face pose. For effective and efficient representation of feature points, a hybrid representation that integrates Gabor wavelets and gray-level
profiles is proposed. To model the spatial relations among feature points, a hierarchical statistical face shape model is proposed to characterize
both the global shape of human face and the local structural details of each facial component. Furthermore, multi-state local shape models are
introduced to deal with shape variations of some facial components under different facial expressions. During detection and tracking, both facial
component states and feature point positions, constrained by the hierarchical face shape model, are dynamically estimated using a switching
hypothesized measurements (SHM) model. Experimental results demonstrate that the proposed method accurately and robustly tracks facial

features in real time under different facial expressions and face poses.
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1. Introduction

Face plays an essential role for human communication. It
is the main source of information to discriminate and identify
people, to interpret what has been said by lipreading, and to
understand one’s emotion and intention based on the emotional
facial expressions. The facial feature points are the prominent
landmarks surrounding facial components: eyebrows, eyes,
nose, and mouth. They encode critical information about fa-
cial expression and head movement. Therefore, facial feature
motion can be defined as a combination of rigid head motion
and nonrigid facial deformation. Accurate localization and
tracking facial features are important in applications such as
vision-based human—machine interaction, face-based human
identification, animation, entertainment, etc. Generally, the fa-
cial feature tracking technologies could be classified into two
categories: model-free and model-based tracking algorithms.
The model-free tracking algorithms [1-7] are general pur-
pose point trackers without the prior knowledge of the object.
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Each facial feature point is usually tracked by performing a
local search for the best matching position, around which the
appearance is most similar to the one in the initial frame. How-
ever, the model-free methods are susceptible to the inevitable
tracking errors due to the aperture problems, noise, and occlu-
sion. Model-based methods, on the other hand, focus on explicit
modeling the shape of the objects. Recently, extensive work has
been focused on the shape representation of deformable objects
such as active contour models (Snakes) [8], deformable tem-
plate method [9], active shape model (ASM) [10], active ap-
pearance model (AAM) [11], direct appearance model (DAM)
[12], elastic bunch graph matching (EBGM) [13], morphable
models [14], and active blobs [15]. Although the model-based
methods utilize much knowledge on face to realize an effective
tracking, these models are limited to some common assump-
tions, e.g. a nearly frontal view face and moderate facial ex-
pression changes, and tend to fail under large pose variations
or facial deformations in real-world applications.

Given these challenges, accurate and efficient tracking of fa-
cial feature points under varying facial expression and face pose
remains challenging. These challenges arise from the potential
variability such as nonrigid face shape deformations caused by
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Fig. 1. The flowchart of the automatic facial feature tracking system based on the multi-state hierarchical shape model.

facial expression change, the nonlinear face transformation re-
sulting from pose variations, and illumination changes in real-
world conditions. Tracking mouth and eye motion in image
sequences is especially difficult, since these facial components
are highly deformable, varying in both shape and color, and
subject to occlusion.

In this paper, a multi-state pose-dependent hierarchical
shape model is presented for facial feature tracking under
varying face pose and facial expression. The flowchart in
Fig. 1 summarizes our method. Based on the ASM, a two-level
hierarchical face shape model is proposed to simultaneously
characterize the global shape of a human face and the local
structural details of each facial component. Multi-state lo-
cal shape models are further introduced to deal with shape
variations of facial components. To compensate face shape
deformation due to face pose change, a robust 3D pose estima-
tion technique is introduced, and the hierarchical face shape
model is corrected based on the estimated face pose to im-
prove the effectiveness of the shape constraints under different
poses. Gabor wavelet jets and gray-level profiles are combined
to represent the feature points in an effective and efficient
way. Both states of facial components and positions of feature

points are dynamically estimated by a multi-modal tracking
approach.

The rest of the paper is arranged as follows. Section 2 pro-
vides a detailed review on the related work of model-based
facial feature tracking approaches. Section 3 presents our pro-
posed facial feature tracking algorithm including the hierarchi-
cal multi-state pose-dependent face shape model, the hybrid
feature representation, and the proposed multi-modal facial fea-
ture tracking algorithm. Section 4 discusses the experimental
results. The paper concludes in Section 5, with a summary and
discussion for future research.

2. Related work
2.1. Facial feature tracking in nearly frontal view

Extensive recent work in facial component detection and
tracking has utilized the shape representation of deformable
objects, where the facial component shape is represented by a
set of facial feature points.

Wiskott et al. [13] present the EBGM method to locate facial
features using object adopted graphs. The local information
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of feature points is represented by Gabor wavelets, and the
geometry of human face is encoded by edges in the graph.
The facial features are extracted by maximizing the similarity
between the novel image and model graphs.

Recently, statistical models have been widely employed in
facial analysis. The ASM [10] proposed by Cootes et al., is
a popular statistical approach to represent deformable objects,
where shapes are represented by a set of feature points. Feature
points are searched by gray-level profiles, and principal com-
ponent analysis (PCA) is applied to analyze the modes of shape
variation so that the object shape can only deform in specific
ways that are found in the training data. Robust parameter esti-
mation and Gabor wavelets have also been employed in ASM
to improve the robustness and accuracy of feature point search
[16,17]. Instead of using gray-level profiles to represent feature
points, multi-scale and multi-orientation Gabor wavelet coeffi-
cients are utilized to characterize the local appearance around
feature points. The AAM [11] and DAM [12] are subsequently
proposed to combine constraints of both shape variation and
texture variation.

Unfortunately, the current statistical model-based facial fea-
ture detection and tracking methods are limited to a narrow
scope due to the global linear assumptions with PCAs. Research
has shown that the assumption of nearly frontal view is effec-
tive and convenient in facial feature tracking, while it tends to
fail under large pose variations or significant facial expressions
in real-world applications.

2.2. Facial feature tracking under varying pose and
expressions

Recent research has been dedicated to model the nonlinear-
ity of facial deformations caused by pose variations or facial
expressions. Generally, these approaches could be grouped into
three categories: a group of approaches utilizes a collection of
local linear models to deal with the global nonlinearity [18-21],
an alternate class of technologies employs 3D facial models
derived from the image sequences [22-24], and another group
of approaches [25,26] models the nonlinearity explicitly.

(1) Multi-modal approaches for facial feature tracking: The
multi-modal approach assumes that each shape/appearance cor-
responding to one specific pose (or expression) could be ap-
proximated linearly by a single shape/appearance model, such
that a set of 2D linear shape/appearance models could be com-
bined to model the nonlinear variations. Cootes et al. proposed
a weighted mixture of Gaussian models [20] to represent the
complex shape variation. An EM algorithm is used to estimate
the model parameters from a set of training data. After the
mixture Gaussian model is obtained, PCA is applied to each
Gaussian component for dimensional reduction. Similar to the
conventional ASM, feature search is performed once for each
mixture component. By projecting back into the original shape
space, the probability that the searched shape is generated by
the model is computed, and the component that yields the high-
est probability is selected. Christoudias et al. [21] extend the
mixture Gaussian model to represent both the object appear-
ance and shape manifold in image space. The mixture model

restricts its search to valid shapes and appearance, and there-
fore avoids erroneous matches. However, the main problem for
both methods is that performing mixture of Gaussian fitting in
original space is time consuming and requires a lot of training
data due to high dimensionality with each component, if each
component is described by a full covariance matrix. In addi-
tion, the best facial features are detected by enumerating each
mixture component, which is again time consuming and makes
real-time implementation of such methods infeasible.

Assuming that the model parameters are related to the face
pose, Cootes et al. develop a view-based AAM [18] to represent
the face from a wide range of face poses. The view-based AAM
consists of five 2D shape models, each of which represents
the shape deformation from a specific view point. Each 2D
model is trained using a different set of feature points from
a set of training images taken within a narrow range of head
pose for each view. The relationship between face pose angle
and the model parameters can be learned from images taken
from different views simultaneously. Initially, the best match is
achieved by comparing the searching results against the models
from all view points. The head pose is then estimated from
the model parameters, and the facial features are tracked given
the head pose. However, only one pose parameter (pan, tilt or
swing) is considered at one time, so that the feature points are
assumed to move along circles in 3D space and ellipses in 2D. In
real-world condition, however, the head rotation often involves
a combination of the three angles. In addition, enumerating
each view to find the best view is also time consuming.

Similarly, Yan et al. [27] extend the DAM into multi-view ap-
plication by combining several DAMs, each of which is trained
from a range of face poses. During the facial feature tracking
process, the models corresponding to the previous view and the
neighboring two views are attempted, and the best matching is
chosen as the one with the minimum texture residual error.

Grauman et al. [28] propose a nearest neighbor (NN) method
to represent the human body shape across poses. Christoudias et
al. [21] extend the NN method to model the manifolds of facial
features. Starting from an initial guess, the NN search is per-
formed by minimizing the distance with all prototype examples
in pixel space and retaining the k-nearest neighbors, then a new
example could be generated by using a convex combination of
the neighborhood’s shape and texture. This method has several
advantages: it does not need assumption about the global struc-
ture of the manifold, and it could be more naturally extended
to shape features having multiple dimensionality. However, it
needs many representative prototype examples.

The hierarchical point distribution model (PDM) is proposed
by Heap et al. [19] to deal with the highly nonlinear shape
deformation, which will result in discontinuous shape param-
eter space generated by PCA. The hierarchical PDM consists
of two levels of PCAs: in the first level, the training data is
projected into shape parameter space, and the shape parameter
space is divided into several groups, each of which corresponds
to a distinct face pose and facial expression combination, by
clustering; in the second level, each cluster is projected onto a
local PCA space, respectively, to give a set of overlapped local
hyper ellipsoids. A highly nonlinear shape parameters space is
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generated by the union of the piece-wise local PCAs. Different
from the mixture Gaussian approaches, the hierarchical PDM
does not have a probabilistic framework. In addition, choosing
the optimal number of local clusters is difficult, and substantial
data is required for constructing the model. Although hierar-
chical formulations are employed in Ref. [19], all the feature
points are at the same level, and their positions are updated
simultaneously.

To handle appearance variations caused by the facial expres-
sion changes, Tian et al. [29] propose a multi-state facial com-
ponent model combining the color, shape, and motion informa-
tion. Different facial component models are used for the lip,
eyes, brows, respectively. Moreover, for lip and eyes, each com-
ponent model has multiple states with distinguished shapes. The
state of component model is selected by tracking a few control
points. The accuracy of their method, however, critically relies
on how accurately and reliably the control points are tracked
in current frame. Hence, an automatic state switching strategy
is desirable. In addition, the facial feature points are manually
initialized in the first frame.

The multi-modal approaches have the advantage of handling
very large face pose by using a few linear statistical models with
different topologies or even different dimensionality for specific
view points. These approaches could also be generalized to deal
with the nonlinear deformation due to facial expressions. The
main weakness with current multi-modal approaches is that they
could handle facial deformation either from significant facial
expression change or from face pose variation, but not both. In
contrast, our proposed hierarchical model explicitly accounts
for the deformations of the facial components under different
states and poses, therefore is able to track the facial features
under large variation of facial expression and face pose.

(2) Modeling facial features by using a 3D face model: The
previous approaches on 3D deformable models [30-32] utilize
a 3D face mesh to model the global rigid motion and the lo-
cal nonrigid facial motion, respectively, by a two-step proce-
dure. The 3D local models, however, do not explicitly model
each facial component. Furthermore, the complexity to obtain
a dense point-to-point correspondence between vertices of the
face and the face model is considerable. In addition, the local
models used in the 3D deformable model are not sufficient to
handle the high nonlinearity due to significant facial expression
changes.

To reduce the computation complexity, Li et al. [22] pro-
pose a multi-view dynamic sparse face model to model 3D
face shape from video sequence, instead of a dense model. The
model consists of a sparse 3D facial feature PDM, a shape-
and-pose-free texture model, and an affine geometrical model.
The 3D face shape model is learned from a set of facial feature
points from 2D images with labeled face poses. The 3D coordi-
nates of each facial feature point are estimated using an ortho-
graphic projection model approximation. The texture model is
extracted from a set of shape-and-pose-free face images, which
is obtained by warping the face images with pose changes onto
the mean shape at frontal view. The affine geometrical model is
used to control the rotation, scale, and translation of faces. The
fitting process is performed by randomly sampling the shape

parameters around the initial values. The best matching set of
parameters is obtained by evaluating a loss function for all pos-
sible combinations. The time complexity of such a method is
high, and it could not handle facial deformation due to facial
expression change.

Xiao et al. [24] propose a 2D 4+ 3D AAM, in which they ex-
tend the 2D AAM to model 3D shape variation with additional
shape parameters and use a nonrigid structure-from-motion al-
gorithm [33] to construct the corresponding 3D shape modes of
the 2D AAM. Compared with the 3D morphable model with a
dense 3D shape model and multi-view dynamic face model with
a sparse 3D shape model, the 2D+ 3D AAM only has 2D shape
model. The 2D shape model has the capability to represent the
same 3D shape variations as 3D shape model, while needing
more shape parameters. However, the 2D shape model can gen-
erate the shape modes, which are impossible for 3D model. The
3D pose obtained by a structure-from-motion method is used to
constrain the 2D AAM to only generate the valid shape modes
corresponding to possible 3D shape variations. Compared with
the 3D shape model approach, the 2D + 3D AAM has the ad-
vantage of computational efficiency. However, the 2D AAM
requires a large number of parameters.

The advantage of employing 3D pose information is the abil-
ity to render the 3D model from new view points. Thus it is use-
ful for 3D reconstruction. However, this group of approaches
is limited to dealing with the nonlinear variations caused by
face pose, and the nonrigid deformation due to facial expres-
sion is not considered. In addition, these methods often suffer
from significant time complexity, impeding them for real-time
applications.

(3) Nonlinear models: Rather than utilizing a set of linear
models, Sozou et al. [25] propose a nonlinear polynomial re-
gression point distribution model (PRPDM), which can approx-
imate the nonlinear modes of shape variations by using poly-
nomial functions. However, it requires human intervention to
determine the degree of polynomial for each mode. Moreover,
the PRPDM could only succeed in representing limited nonlin-
ear shape variability.

Romdhani et al. [26] introduce nonlinearity into a 2D appear-
ance model by using Kernel PCA (KPCA). A view-context-
based ASM is proposed to model the shape and the pose of
the face under different view points. A set of 2D shape vec-
tors indexed with the pose angles and the corresponding gray-
level appearances around feature points are used to model the
multi-view face through KPCA. The nonlinearity enables the
model to handle the large variations caused by face pose, but
the computational complexity is prohibitive.

In summary, despite these efforts, previous technologies of-
ten focus on only one of the source of nonlinear variations ei-
ther caused by face pose or by the nonrigid deformation due to
facial expression, while ignoring the other. In real applications,
the nonlinearity from both of face pose variation and facial ex-
pression changes should be taken into account. For example,
tracking mouth and eye motion in image sequences is especially
difficult, since these facial components are highly deformable,
varying in shape, color, and size resulting from simultaneous
variation in facial expression and head pose.
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3. Facial feature tracking algorithm

3.1. Hierarchical multi-state pose-dependent facial shape
model

To model 3D facial deformation and 3D head movement, we
assume that a 3D facial model can be represented by a set of
dominant facial feature points. The relative movements of these
points characterize facial expression and face pose changes.
Fig. 2 shows the layout of feature points including fiducial
points and contour points.

Fiducial points are the key points on the human faces. They
are located at well-defined positions such as eye corners, top
points of eyebrows, and mouth corners. Fiducial points are fur-
ther divided into global and local fiducial points. The global
fiducial points are relatively stable with respect to facial ex-
pression change, and their movements are primarily caused by
head movements. The local fiducial points are the dominant
points located along the boundary of a facial component. Con-
tour points are interpolated between the fiducial points along
the boundary of a facial component. They, along with the local
fiducial points, are primarily used to characterize facial expres-
sion change.

(1) Point distribution model: Given these facial feature points
for a particular face view, a PDM can be constructed to char-
acterize possible shape variations of human faces. Using the
principle of the ASM, the PDM is constructed from a train-
ing set of face images. Facial feature points are marked on
each face to outline its structure characteristics, and for each
image a shape vector is used to represent the positions of fea-
ture points. All face shape vectors are aligned into a common
coordinate frame by Procrustes transform [34]. Then the spa-
tial constraints within feature points are captured by PCA [10].
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Fig. 2. Feature points in the facial model: fiducial points marked by circles
(global) and big black dots (local), and contour points marked by small black
dots.

A face shape vector s can be approximated by
s =s+ Pb, (1)

where s is the mean face shape; P is a set of principal orthogonal
modes of shape variation; and b is a vector of shape parameters.

The face shape can be deformed by controlling the shape
parameters. By applying limits to the elements of the shape
parameter vector, it is possible to ensure that the generated
shape is an admissible configuration of human face. The ASM
approach searches the face shape by an iterative procedure. At
each iteration the algorithm seeks to match each feature point
locally and then refine all feature point locations by projecting
them to the PCA shape space of the entire face. Fitting the
entire face shape helps mitigate the errors in individual feature
matchings.

(2) Hierarchical shape model: In the conventional ASM, all
the feature point positions are updated (or projected) simul-
taneously, which indicates that the interactions within feature
points are simply parallel. Intuitively, human faces have a so-
phisticated structure, and a simple parallel mechanism may not
be adequate to describe the interactions among facial feature
points. For example, given the corner points of an eye, whether
the eye is open or closed (or the top and bottom points of the
eye) will not affect the localization of mouth or nose. This im-
plies that the eye corners determine the overall location of the
eye and provide global shape characteristics, while the top and
bottom points of the eye determine the state of the eye (open
or closed) and contain local structural details. Generally, facial
feature points can be organized into two categories: global fea-
ture points and local feature points. The first class characterizes
the global shape constraints for the entire face, while the second
class captures the local structural details for individual facial
components such as eyes and mouth. Based on the two-level
hierarchy in facial feature points, a hierarchical formulation of
statistical shape models is presented in this section.

The face shape vector s now could be expressed as (sg, s;)T,
where s, and s; denote global and local feature points, respec-
tively. The global and local fiducial points are marked by cir-
cles and large black dots as shown in Fig. 2, respectively. All
the contour points (marked as small black dots) are used as lo-
cal feature points in our facial model. It can be seen from the
facial model that the global feature points are less influenced
by local structural variations such as eye open or closed, com-
pared to the local feature points. The facial model is partitioned
into four components: eyebrows, eyes, nose, and mouth. The
two eyes (or eyebrows) are considered as one facial component
because of their symmetry.

For the global face shape, a PDM can be learned from the
training data,

S, =5, + P;by, )

where S, is the mean global shape; P, is a set of principal
orthogonal modes of global shape variation; and by is a vector
of global shape parameters.

The local shape model for the ith component is denoted by
a shape vector Sg, ;;, where sg, 1, = {Sg;, 5} and sg; and s,
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represent the global and local feature points belonging to the
ith facial component, respectively. We have

Sgi.li = ggiJi + Pgblibgi»li’ 3

where Sy, 1, Pg; ;;, and by, ;; are the corresponding mean shape
vector, principal orthogonal modes of shape variation, and
shape parameters for the ith facial component, respectively.

The feature search procedure in the hierarchical shape model
is divided into two stages. In the first step, the positions of
global feature points are matched, and shape parameters are up-
dated iteratively using the global shape model in Eq. (2), which
is the same as the search process in the ASM. In the second
step, only the local feature points are matched for each facial
component, and shape parameters are updated iteratively using
the local shape model in Eq. (3), meanwhile positions of the
global feature points remain unchanged. Therefore, in the hi-
erarchical formulation, the global shape model and local shape
models form shape constraints for the entire face and individ-
ual components, respectively. The positions of global feature
points will help the localization of local feature points from
each facial component. Furthermore, given the global feature
points, localization of the local feature points belonging to one
facial component will not affect locating the local feature points
of other components. For example, given the rough positions
of eyes and mouth, whether the eyes are open does not affect
locating the feature points on the lips.

(3) Multi-state local shape model: Since it is difficult for
a single-state statistical shape model to handle the nonlinear
shape deformations of certain facial components such as open
or closed eyes and mouth, multi-state local shape models are
further introduced to address facial expression change. Specif-
ically, for our local facial models, there are three states (open,
closed, and tightly closed) for the mouth, two states (open and
closed) for the eyes, and one state for the other two compo-
nents (eyebrows and nose). Given this, for the ith facial com-
ponent under the jth state, the shape vector becomes sg; ;; i and
the local shape model in Eq. (3) is extended by the multi-state
formulation:

Sgilij = Sgili; T Pgixli,jbgi,[i.j’ (4)

where S, 1, ;. Pg; 1, ;, and by, j, . are the corresponding mean
shape, principal shape variation, and shape parameters for the
ith facial component at the jth state.

Hence a local shape model is built for each state of the
facial component. Given the states of facial components, feature
points can be searched by the two-stage procedure described
in Section 3.1-(2). Therefore, the multi-state hierarchical shape
model consists of a global shape model and a set of multi-state
local shape models.

(4) Pose-dependent face shape model: The hierarchical face
shape model, which we have introduced so far, basically as-
sumes normative frontal face. The shape model (both local and
global) will vary significantly, if face pose moves away from
the frontal face. To compensate facial shape deformation due to
face pose, we propose to estimate the 3D face pose and then use
the estimated 3D pose to correct the hierarchical shape model.

a

Fig. 3. A synthesized frontal face image (a) and its 3D face geometry (b)
with the rigid facial feature points marked by the white dots.

Robust face pose estimation: Given detected feature points
at the previous frame, the 3D face pose can be efficiently es-
timated. In order to minimize the effect of facial expressions,
only a set of rigid feature points that are not sensitive to fa-
cial expression changes is selected to estimate the face pose.
Specifically, six feature points are selected, which include the
four eye corners and two fiducial points at the nose’s bottom
shown in Fig. 3(a).

In order to estimate the face pose, the 3D shape model com-
posed of these six facial features has to be initialized. Cur-
rently, the coordinates X; = (x;, yi, zi)T of the six facial fea-
ture points in the 3D facial shape model are first initialized
from a generic 3D face model as shown in Fig. 3(b). Due to
the individual difference with the generic face model, the x
and y coordinates of each facial feature point in the 3D face
shape model are adjusted automatically to the specific indi-
vidual based on the detected facial feature points in the initial
frontal face view image. Since the depth values of the facial
feature points are not available for the specific individual, the
depth pattern of the generic face model is used to approximate
the z; value for each facial feature point. Our experiment results
show that this method is effective and feasible in our real-time
application.

Based on the personalized 3D face shape model and these
six detected facial feature points in a given face image, the face
pose vector &= (G pan, Psii» Kswing» /)T can be estimated accu-
rately, where (6 pan, ¢rijr» Kswing) are the three face pose angles
and Z is the scale factor. Because the traditional least-square
method [35] cannot handle the outliers successfully, a robust
algorithm based on RANSAC [36] is employed to estimate the
face pose accurately.

The pose estimation algorithm is briefly summarized as fol-
lows. The procedure starts with randomly selecting three fea-
ture points to form a triangle 7;. Under weak perspective pro-
jection model [37], each vertex (ck, r¢) of 7; in the given image
and the corresponding point (xg, yx) on the 3D face model are
related as follows:

Ck — Co Xk — X0
o) ()
Tk — 10 Yk — Y0



Y. Tong et al. / Pattern Recognition 40 (2007) 3195-3208 3201

i

Fig. 4. The face pose estimation results under different facial expressions:
face normal is represented by the dark line, and the detected facial feature
points are marked by the red dots.

where k = 1,2, and 3; M; is the projection matrix; (co, 7o)
and (xq, yo) are the centers of the triangle in the given image
and the reference 3D face model, respectively. Given the three
detected feature points and the corresponding points on the
3D face model, we can solve the projection matrix M; for 7;.
Using M;, the face model is projected onto the given image. A
projection error e; is then computed for all six feature points.
e; is then compared with a threshold eg, which is determined
based on the amount of outliers estimated. M; is discarded,
if e; is larger than eg. Otherwise, a weight w; is computed
as (ej — eg)> for M. After repeating the above procedure for
each triangle formed by the six feature points, we will get a
list of matrices M; and their corresponding weights w;. From
each projection matrix M;, a face pose vector «o; is computed
uniquely after imposing some consistency constraints. Then the
final face pose vector can be obtained as:

K .
g M ©6)

K
Dis1 O

Fig. 4 shows some face pose estimation results, where the
face normal is perpendicular to the face plane and represented
by the three estimated Euler face pose angles.

Face shape compensation: Given the estimated 3D face pose,
the hierarchical model is modified accordingly. Specifically, for
each frame, the mean global and local shapes are modified by
projecting them to the image plane using the estimated face pose
through Eq. (5). The modified mean shapes are more suitable
for the current pose and provide better shape constraints for the
feature search. Moreover, the projected mean shapes offer good
initialization to avoid being trapped into local minima during
the feature search process.

3.2. Multi-modal facial feature tracking

A multi-modal tracking approach is required to enable the
state switching of facial components during the feature tracking
process. Since the global feature points are relatively less influ-
enced by local structural variations, it is assumed that the state
switching of facial components only involves local shape mod-
els, and the global shape model in Eq. (2) remains unchanged.
In this work, the switching hypothesized measurements
(SHM) model [38] is applied to dynamically estimate both the

Fig. 5. Directed acyclic graph specifying conditional independence relations
for switching hypothesized measurements model, where s; is the component
state, z; represents the positions and velocities of facial feature points belong
to each facial component, and 0 s jel, ..., K are the measurements at
time 7.

component state s; and feature point positions of each facial
component at time instant 7.

For feature points of a facial component, the hidden state z;
represents their positions and velocities at time instant 7. The
hidden state transition can be modeled as

7z, =Fz,_1 +n, (7

where F is the state transition matrix, and n represents the
system perturbation with the covariance matrix Q.

The switching state transition is modeled by a first order
Markov process to encourage the temporal continuity of the
component state. For the local shape model of ith component
with K possible states, Fig. 5 illustrates the SHM model by a
representation of dynamic Bayesian network, where the nodes
s, and z, are hidden nodes, and the shaded nodes o, ;, j €
1, ..., K are observation nodes representing the measurements
at time ¢. Since the component state s; is unknown, feature point
positions are searched once under each hypothesized compo-
nent state. Under the assumption of the jth state of the com-
ponent, a hypothesized measurement o, ; represents the fea-
ture point positions of the facial component obtained from the
feature search procedure at time ¢. Given the component state
s¢, the corresponding hypothesized measurement o; 5, could be
considered as a proper measurement centering on the true fea-
ture positions, while every other o, ; for j # s; is an improper
measurement generated under a wrong assumption. The im-
proper measurement should be weakly influenced by true fea-
ture positions and have a large variance. To simplify the com-
putation, the measurement model is formulated as

{HZ[ +V[’j if j:Stv

®)

Oy, j= A
otherwise,

where H is the measurement matrix; v, ; represents the mea-
surement uncertainty assuming as a zero mean Gaussian
with the covariance matrix R;; and w is a uniformly dis-
tributed noise. The state transition matrix F, system noise n,
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and measurement matrix H are defined in the same way as in
a Kalman filter [39]. The state transition matrix F relates the
state vector z,_; at the previous time step r — 1 to the state
vector z, at the current step f. The measurement matrix H
relates the state vector z; to the measurement o, ; at current
time step ¢ under the correct state assumption, i.e. j = s;. In
this work, we assume the matrices F and H are stationary.

At time 7, given the state transition model, measurement
model, and the measurements, the facial feature tracking is per-
formed by maximizing the posterior probability:

P41 =1, Z 41101 41) = p(Sr41 =1]01:41)
X p(Zeg1lSi41 =1, 01:441), 9)

where 0,, = {01, ..., 0k}, I <m <t + 1.

Let f,; = p(s; = ilor,) with >, f,; =1, and assume
that p(z:|s; =i, 01,;) is modeled by a Gaussian distribution
N (2s; py i, Pr i), with the mean p, ; and covariance matrix Py ;.
Then at time 7 + 1, given the hypothesized measurements 0,41,
the parameters {f, . ;, tt; 41> Pr+1,i} are updated in the SHM
filtering algorithm [38] as below:

Bri1.i = PGry1 =il01:141)

K .
27 VBN @i Hpty gy o St )

= ., (10)
K K
2o 2 VB N iy s Senigj)
where 7; ; is the state transition probability:
Vij = PSip1 =ilsi =) (11
with 3K Vi,j =L
Besrpej = Fay s (12)
Py =FP F' +Q, (13)
Si+1,ij = HPyp1, jH + R, (14)
Grovifj = Pron jJH'S ) s (15)
where G is the gain matrix.
Wes1,itj = Beige,j + Gratifj @i — Hpgy gy ), (16)
Piriij =Py, j — Gigr,ijHPr 111, s (17)
B . Vi,j/))t,jN(OtJrl,i;H,ut+1|[,jast+l,i|j) (18)
41l = ,
Z;{ Vi, B iN Oer1is Hiteqye o Se1,i1)
K
M1, = Z Bigt,ilj 11> (19)
J
K
Pi= Z Brg1,i)jPrs1,ifj
J
+ (Wgr,ij — Hegr,id) Wi — 1)) (20)

Therefore, the hidden state z,1 and the switching state s,
could be estimated as

St+1 = argmax Brs.is @D
L

Zip1 = M1 5 J5r (22)

Since the measurement under the true hypothesis of the
switching state usually shows more regularity and has smaller
variance compared with the other hypothesized measurements,
the true information (the facial component state and feature
point positions) could be enhanced through the propagation in
the SHM filter. Moreover, for a facial component with only one
state, the multi-modal SHM filter degenerates into a unimodal
Kalman filter.

Given the multi-state hierarchical shape model, the facial
feature detection and tracking algorithm performs an iterative
process at time ¢:

(1) Project the mean shapes of global model s, and local shape
models Sg; ;; using the estimated face pose o, from the
previous frame.

(2) Localize the global facial feature points s, individually.

(3) Update the global shape parameters to match s, and apply
the constraints on byg.

(4) Generate the global shape vector s, as Eq. (2), and then
return to Step 2 until convergence.

Enumerate all the possible states of the ith facial compo-
nents. Under the assumption of the jth state:

(5) Localize the local feature points individually.

(6) Update the local shape parameters to match sy, ;
apply the constraints on by, j, ;.

(7) Generate the shape vector sg; ; jas Eq. (4), and then return
to Step 5 until convergence.

(8) Take the feature search results (s, S/; j)T for the ith facial
component under different state assumptions, as the set of
hypothesized measurements o, ;. Estimate the state of the
ith facial component and the positions of its feature points
at time ¢ through the SHM filter as Eqs. (21) and (22).

(9) Estimate the 3D face pose o, by the tracked six rigid facial
feature points.

.- and

i

3.3. Hybrid facial feature representation

For feature detection, a hybrid feature representation, based
on Gabor wavelet jets [40] and gray-level profiles [10], is uti-
lized in this work to model the local information of fiducial
points and contour points, respectively.

(1) Wavelet-based representation: Multi-scale and multi-
orientation Gabor-wavelets [40] are employed to model local
appearances around fiducial points. Gabor-wavelet-based fea-
ture representation has the psychophysical basis of human
vision and achieves robust performance for expression recog-
nition [41,42], face recognition [13], and facial feature repre-
sentation [16,43] under illumination and appearance variations.

For a given pixel x = (x, y)T in a gray scale image I, a set
of Gabor coefficients J;(x) is used to model the local appear-
ance around the point. The coefficients J;(x) are resulted from
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convolutions of image 7 (x) with the 2D Gabor wavelet kernels

x//j, i.e.
Tix) =" 1) ;x —x). (23)

Here kernel ; is a plane wave restricted by a Gaussian enve-
lope function:

K2 k2x?2 o2
l//j (x) = G—é exp <—ﬁ> [exp(ikj - X) — exp <—?):| (24)

with the wave vector

k; ky cos
k]:(”):(”_ "’”), 25)
kijy ky sin ¢,
where k, = 2~*tD with v =0, 1,2 is the radial frequency
in radians per unit length; ¢, = (n/6)u with u =0,1,...,5

is the wavelet orientation in radians, rotated counter-clockwise
around the origin; j = u + 6v; and i = +/—1 in this section. In
this work, o0 =7 is set for a frequency bandwidth of one octave.

Thus the set of Gabor kernels consists of three spatial fre-
quencies and six different orientations, and 18 Gabor coef-
ficients in the complex form are used to represent the pixel
and its vicinity. Specifically, a jet vector J is used to denote
(Jo, J1, ..., J17), where J; = a; exp(iqu), a; and q,')j are the
magnitude and phase of the jth Gabor coefficient. The Gabor
wavelet jet vector is calculated for each marked fiducial point
in training images. Given a new image, the fiducial points are
searched by the sample jets from the training data. The simi-
larity between two jet vectors is measured with the following
phase-sensitive distance function:

> jajd;cos(¢; — ¢ —d-kj)

2 ’2 ’
ONTIAPNTY

where jet vectors J and J' refer to two locations with relative
small displacement d. The basic idea to estimate the displace-
ment d is from the Fourier shift property, i.e. a shift d in the
spatial domain can be detected as a phase shift k - d in the fre-
quency domain. In another word, the phase change A¢ is pro-
portional to the displacement d along the direction of the local
frequency k. The displacement between the two locations can
be approximately estimated by minimizing the phase-sensitive
distance Dy (J, J') in Eq. (26) as in Refs. [44,45]:

dJ.J) = (d> ~ :
' d FxxFyy_nyFyx

y

r,,—r, P
(L) G) @

—I'y Iy D,

if I'yxI'yy — I'xyl'yy # 0, where

D= ajdiki(p; — P,

J

/
Ty =Y ajdikjskjy,
i

Dy V) =1~

(26)

and @y, I'yy, I'yx, and I'yy are defined accordingly.

The phase-sensitive distance defined in Eq. (26) changes
rapidly with location, which helps accurately localize fiducial
points in the image. Compensated by the displacement in Eq.
(27), the search of fiducial points can achieve subpixel sensi-
tivity.

(2) Profile-based representation: Gray-level profiles (gradi-
ents of pixel intensity) along the normal direction of the object
boundary are used to represent contour points [10]. The Maha-
lanobis distance function is used to search these feature points.
For the /th contour point,

Du(g. 8)=(—-8)"C ' (g—8a), (28)

where g is a gray-level profile in the given image; g; is the
mean profile of the /th contour point computed from the training
data; and C; is the corresponding covariance matrix obtained
by training.

The profile-based representation is computationally efficient,
and thus leads to fast convergence in the feature search pro-
cess. However, the gray-level gradients are not sufficient to
identify all the facial feature points. For example, the pro-
file of the mouth bottom point may not be distinctive due
to the shadow or beard below the lower lip. On the other
hand, the magnitudes and phases in wavelet-based representa-
tion provide rich information of local appearances, and there-
fore lead to accurate feature point localization, but with rel-
atively high computation complexity. To balance the search-
ing effectiveness and computational efficiency, in this work
the fiducial points are modeled by Gabor wavelet jets, and
the contour points, which are relatively less important to the
face shape deformation, are represented by gray-level profiles.
Compared to wavelet-based representation for all the feature
points, the hybrid representation achieves similar feature search
accuracy and enhances the computation speed by 60% in our
experiments.

(3) Feature detection: Given the hybrid representation for
each feature point, we can perform feature detection. Feature
detection starts with eye detection. An accurate and robust eye
detector is desirable to help estimate the position, size, and ori-
entation of the face region, and thus improve the shape con-
straints for the feature search. In this work, a boosted eye de-
tection algorithm is employed based on recursive nonparamet-
ric discriminant analysis (RNDA) features proposed in [46,47].
For eye detection, the RNDA features provide better accu-
racy than Harr features [48], since they are not constrained
with rectangle-like shape. The features are sequentially learned
and combined with Adaboost to form an eye detector. To im-
prove speed, a cascade structure is applied. The eye detector
is trained on thousands of eye images and more non-eye im-
ages. The resulting eye detector classifier uses less than 100
features.

The eye localization follows a hierarchical principle: first
a face is detected, then the eyes are located inside the de-
tected face. An overall 94.5% eye detection rate is achieved
with 2.67% average normalized error (the pixel error normal-
ized by the distance between two eyes) on FRGC 1.0 database
[49]. Given the knowledge of eye centers, the face region is
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normalized and scaled into a 64 x 64 image, such that the eyes
are nearly fixed in same positions in each frame.

Given the normalized face region, the other facial feature
points as illustrated in Fig. 2 are detected based on the hybrid
feature representations: the contour points are searched by min-
imizing the Mahalanobis distance defined in Eq. (28); and the
fiducial points are detected by minimizing the phase-sensitive
distance function in Eq. (26).

4. Experimental results

Twenty-six fiducial points and 56 contour points are used in
our facial model (see Fig. 2). The global shape model, multi-
state local shape models, Gabor wavelet jets of fiducial points,
and gray-level profiles of contour points are trained using 500
images containing 200 persons from different races, ages, face
poses, and facial expressions. Both feature point positions and
facial component states are manually labeled in each training
image. For ASM analysis, the principal orthogonal modes in
the shape models stand for 95% of the shape variation. The
test sequences consist of 10 sequences, each of which consists
100 frames. The test sequences contain six subjects, which are
not included in training data. The test sequences are 24-bit
color images collected by a USB web camera under real-world
conditions with 320 x 240 image resolution. The system can
reliably detect and track the face in a range of 0.25-1.0 m from
the camera. Since the face region is normalized and scaled
based on the detected eye positions, the system is invariant to
the scale change. Our C + + program can process about seven
frames per second on a Pentium 4 2.8 GHz PC.

al
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4.1. Experiments on facial feature tracking

Figs. 6-8 exhibit the results of facial feature tracking under
pose variations and face deformations due to varying facial ex-
pressions. To make the results clear, only the fiducial points
are shown, since they are more representative than the contour
points. Fig. 6 shows the results of the proposed method and
the results without using the pose modified mean shapes. Com-
pared to the results in Fig. 6(b), the feature points are more
robustly tracked in Fig. 6(a) under large pose variations, which
demonstrates that the projection of mean shapes through face
pose estimation helps improve shape constraints in the feature
search process. Fig. 7 shows the results of the proposed method
and the results without using the multi-state local shape mod-
els (i.e. a single-state local shape model is used for each fa-
cial component). It can be seen from Fig. 7 that the multi-state
models substantially improve the robustness of facial feature
tracking, especially when eyes and mouth are open or closed
(e.g. mouth in the first and fourth images, and eyes in the sec-
ond and third images). This demonstrates that the state switch-
ing in local shape models helps in dealing with nonlinear shape
deformations of facial components.

Fig. 8 shows the results of the proposed method and the
results without using the hierarchical shape model (i.e. all the
feature points are simultaneously updated in the feature search
process). Compared to the results in Fig. 8(b), the feature points
are more accurately tracked in Fig. 8(a) (e.g. mouth in the first
image, right eye in the second and third images, and left eye-
brow in the fourth image) using the hierarchical shape model,
since the two-level hierarchical facial shape model provides

a

Fig. 6. Feature tracking results: (a) by the proposed method and (b) by the proposed method without using modified mean shapes.

a4 b4

Fig. 7. Feature tracking results: (a) by the proposed method and (b) by the proposed method without using the multi-state local shape models.
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Fig. 9. A set of testing images from an image sequence, where the face undergoes the face pose change and facial expression change simultaneously.

45
—&— Multi-state hierarchical
40 I~
/ \K —m- Multi-state local models
35
/ —A— Single-state models
30

Percentage
n
o
I
|

Pixel displacement

Fig. 10. Error distribution of feature tracking. Diamonds: results of the
proposed method. Triangles: results of the proposed method without the
multi-state local shape models. Squares: results of the proposed method
without the hierarchical shape model.

a relatively sophisticated structure to describe the interactions
among feature points.

4.2. Quantitative evaluation

The results of facial feature tracking are evaluated quantita-
tively besides visual comparison. Fiducial and contour feature
points are manually marked in 1000 images from the 10 test
sequences for comparison under different face pose and facial
expressions. Fig. 9 show a set of testing images from an im-
age sequence, where the face undergoes the face pose change
and facial expression change simultaneously. For each feature

—&— Multi-state hierarchical
13 —m— Multi-state local models
—-=——-Single-state [ —

Pixel displacement

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96
Frame

Fig. 11. Error evolution of feature tracking for an image sequence. Diamonds:
results of the proposed method. Bars: results of the proposed method without
the multi-state local shape models. Squares: results of the proposed method
without the hierarchical shape model.

point, the displacement (in pixels) between the estimated posi-
tion and the corresponding labeled position is computed as the
feature tracking error. Fig. 10 shows error distribution of the
feature tracking results of different methods. Compared to the
feature tracking result using single-state local model and using
multi-state local models without the hierarchical models, the
use of the multi-state hierarchical shape model averagely re-
duces the feature tracking error by 24% and 13%, respectively.
Besides the comparison of the average pixel displacement,
Fig. 11 illustrates the evolution of the error over time for one
image sequence, where the face undergoes both significant
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a2 b2

Fig. 12. Feature tracking results: (a) proposed method and (b) mixture Gaussian model.
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Fig. 13. Error distribution of feature tracking under face pose change. Di-
amonds: results of the proposed method. Squares: results of the mixture
Gaussian method.

facial expression and large face pose change simultaneously
from frames 35 to 56. By employing the multi-state pose-
dependent hierarchical shape model, the proposed method sub-
stantially improves the robustness of facial feature tracking un-
der simultaneous facial expression and face pose variation.

4.3. Comparison with mixture of Gaussian model

Fig. 12 compares the feature tracking results of the pro-
posed method with the results of the mixture Gaussian method
by Cootes et al. [20]. It can be seen that the proposed multi-
state pose-dependent hierarchical method outperforms mixture
Gaussian approach under pose variations (e.g. the left eye and
eyebrow in the first and third images, the mouth in the sec-
ond image, and the right eye, right eyebrow and nose in the
fourth image). Fig. 13 shows the error distribution of the fea-
ture tracking results using the proposed method and the mix-
ture Gaussian method, respectively, under face pose change
only. Furthermore, Fig. 14 compares the facial feature track-
ing results using the proposed method and the mixture Gaus-
sian method under simultaneous facial expression and face
pose change. Compared to the mixture Gaussian method, the

45 -~

% =

30 [

25 X

2 / f/ \\

. / \ \
A

1 2 3 4 5 6 7 8 9 10
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R —&— Multi-state hierarchical model

—- Mixture Gaussian model
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Fig. 14. Error distribution of feature tracking under both of face pose and
facial expression change. Diamonds: results of the proposed method. Squares:
results of the mixture Gaussian method.

proposed method reduces the feature tracking error by 10% and
23%, respectively, under only face pose change and the combi-
nation of facial expression and face pose change. Therefore, the
proposed method is more appropriate to handle the real-world
conditions, where the facial shape change due to both of facial
expression and face pose. In addition, the proposed method is
more efficient than the mixture Gaussian method, which runs
at about 5.8 frame/second under same condition.

5. Conclusion

In this paper, a multi-state pose-dependent hierarchical face
shape model is successfully developed to improve the accu-
racy and robustness of facial feature tracking under simultane-
ous pose variations and face deformations. The model allows
to simultaneously characterize the global shape constraints and
the local structural details of human faces. Shape constraints
for the feature search are significantly improved by modifying
mean shapes through robust face pose estimation. In addition,
Gabor wavelet jets and gray-level profiles are integrated for
effective and efficient feature representation. Feature point po-
sitions are dynamically estimated with multi-state local shape
models using a multi-modal tracking approach. Experimental
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results demonstrate that the proposed method significantly re-
duces the feature tracking error, compared to the classical fea-
ture tracking methods.

In the current work, we ignore the relationships between
different facial components by decoupling the face into dif-
ferent local models, because those relationships are complex,
dynamic, and very uncertain. Moreover, incorrect modeling of
such relationships will lead to the failure in detection of fa-
cial feature. In the future, we would like to combine the re-
lationships between different facial components into the facial
feature tracking by exploiting spatial-temporal relationships
among different action units.
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