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Abstract

Multi-view face detection plays an important role in many applications. This paper presents a statistical learning method to extract
features and construct classifiers for multi-view face detection. Specifically, a recursive nonparametric discriminant analysis (RNDA)
method is presented. The RNDA relaxes Gaussian assumptions of Fisher discriminant analysis (FDA), and it can handle more general
class distributions. RNDA also improves the traditional nonparametric discriminant analysis (NDA) by alleviating its computational
complexity. The resulting RNDA features provide better accuracy than the commonly used Haar features in detecting objects of complex
shapes. Histograms of extracted features are learned to represent class distributions and to construct probabilistic classifiers. RNDA fea-
tures are subsequently learned and combined with AdaBoost to form a multi-view face detector. The method is applied to both multi-
view face and eye detection, and experimental results demonstrate improved performance over existing methods.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Faces in images have various poses. In this paper, a face
pose is defined as a set of similar face orientations, which is
caused by out-of-plane head rotation. Fig. 1 shows some
typical mean faces of different poses. Multi-view face pro-
cessing has recently received more attentions, since more
than 75% faces in real images are non-frontal [15]. Multi-
view face detection plays important roles in many applica-
tions, such as surveillance, human computer interaction
and entertainment.

During the last several years, the frontal face detection
has obtained promising progress with the use of Haar fea-
tures and the AdaBoost algorithm [34]. For the purpose of
detecting both frontal and profile faces, a multi-view face
detector is needed since faces of different poses show quite

different appearance. For example, two eyes are the most
distinguishing features for frontal face detection [34,2],
while there are no such clear features in profile faces. Some
other facial features, such as noses and mouth, are also
blurred in profile faces. When including more pose varia-
tion in training, the resulting multi-view face detector will
have high complexity to compensate the absence of clear
features, therefore its generalization capability and compu-
tational efficiency will decrease in detection.

Currently most often used features for face detection are
selected from a large set of local geometric features, such as
Haar wavelets [34]. Although Haar features are easy to
compute, they also suffer from limited discriminant capa-
bility. Especially at the later training stages in AdaBoost,
the error rate of a classifier, which is based on a single Haar
feature, is near 50%. Usually, it needs nearly 2000–5000
classifiers for frontal face detection while most of them
only deal with less than 1.0% of non-face data [34,15].

In this paper, we provide a general feature extraction
method for multi-view face detection. We present a recur-
sive nonparametric discriminant analysis, based on tradi-
tional Fisher discriminant analysis and nonparametric
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pydiscriminant analysis, to extract features for more general
distributions with moderate requirement of training sam-
ples and running time. Probabilistic classifiers are then
learned from feature distributions. Multiple classifiers are
combined together using AdaBoost to form a multi-view
face classifier. The feature extraction and classification
methods are also applied to eye detection in this paper.

The rest of this paper is organized as following. Related
work is reviewed in Section 2. In Section 3, we present a
recursive nonparametric discriminant analysis (RNDA)
method to extract features for multi-view face and eye
detection. The AdaBoost algorithm to combine multiple
probabilistic classifiers using RNDA features is introduced
in Section 4. Experimental results of multi-view face detec-
tion and eye detection are presented in Section 5. We con-
clude the paper in Section 6.

2. Related work

In this section, we review some typical face detection and
eye detection methods, with the emphasis on the multi-view
face detection. From the perspective of pattern recognition,
all the frontal and multi-view face detection methods can be
roughly categorized based on features or classifiers they use.
The features used in face detection include intensity, color,
texture, edge and facial components [21,9,39,43,8]. Some
features show good performance at specific conditions, but
have limitations for general cases. For example, skin color
can be an effective feature to segment face regions. However,
it needs heuristic postprocessing to extract faces from the
segmentation results. Also, skin color is sensitive to illumina-
tion changes. Another type of features, wavelets, may handle
moderate illumination variation [29,34]. When considering
both accuracy and efficiency, the methods based on partial
or holistic intensity usually have the best performance in dif-
ferent application environments [21,29,25,34]. As to classifi-
ers, many types of classifiers have been applied in face
detection, such as neural networks [25,7], Bayesian classifier
[30,29], Support Vector Machine (SVM) [21], SNoW archi-
tecture [24] and AdaBoost [34].

A neural network-based face detector has been devel-
oped in [25]. In this method, normalized pixel intensity is
sent to a neural network to test if the patch contains a face.
The detection rate is between 74.9% and 90.3% for different
tests. With a convolutional neural network architecture [7],
the speed of neural network based methods is increased to
4 frames per second (fps). Only frontal face detection
results are reported for this type of methods.

Support Vector Machine (SVM) has been successfully
applied to frontal face detection [21], and multi-view face
detection [16] due to its excellent generalization capability.
In [16], a pose SVM is trained to discriminate different pos-
es, and one SVM is trained for each typical pose. In detec-
tion, the face pose is first estimated for each testing patch
with the pose SVM, then the testing patch is sent to the
SVM of the corresponding pose to remove the non-face.
Li et al. extract face features with the use of kernel PCA
(KPCA), then apply the KPCA features in SVMs to detect
faces [14]. Wang et al. combine multiple SVMs through
bagging to improve detection robustness under real envi-
ronments [38]. A common drawback of SVM-based meth-
ods is that their detection speed is usually slow when the
number of support vectors (SVs) increases dramatically
due to large pose variation.

In Naive Bayesian classifier based methods, class distri-
butions of the face and non-face are learned from training
samples, then a likelihood ratio classifier is constructed to
separate the face from the non-face. In the work of
[20,32], the face and non-face class distributions are mod-
eled using mixture-of-Gaussian models, whose parameters
are learned from EM [20] or K-means algorithms [32].
All these methods are only applied to the frontal face detec-
tion. Schneiderman et al. develop the first practical multi-
view face detection system [30,29]. In their method, the face
appearance is decomposed into some visual attributes, with
each attribute represented by quantized wavelet coeffi-
cients. Assuming independence among these attributes,
empirical class distributions are represented by the product
of all the attributes’ histograms. Based on class likelihood
ratio, probabilistic detectors are constructed for both fron-
tal and profile faces. The early implementation of their
method took about a minute to detect faces in a 320 by
240 image, and its speed is increased to about 2 frames
per second in the latest implementation [28]. This method
needs a large number of training data to learn class distri-
bution. It is shown in [31] that the interpolation of multi-
view faces can be used to represent persons under limited
face samples. Based on Schneiderman’s method, Verma
et al. detect faces in a video sequence, which is essentially
a combination of face detection and tracking [33].

Currently, AdaBoost-based methods are popular for
fast object detection since they can achieve excellent bal-
ance between detection accuracy and computational effi-
ciency [34,41,2,15]. Viola and Jones first apply Discrete
AdaBoost in frontal face detection [34]. In their method,
critical features are selected from an over-complete feature

Fig. 1. Mean faces of different poses. From left to right: full left profile, half left profile, frontal, half right profile and full right profile.
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set, which may contain more than 45,000 different Haar
wavelet features. Threshold classifiers are then learned
from the selected features, and are combined by AdaBoost.
With a cascade structure, AdaBoost-based frontal face
detection methods can achieve real-time speed (i.e., above
15 frames per second) with accuracy comparable to other
methods. Many efforts have been made to extend the Ada-
Boost method to the multi-view face detection. Some meth-
ods directly apply the same Haar features as in frontal
detection for profile face detection [15,42,41], while other
methods use extended Haar feature sets for profile face
detection [12].

The methods directly applying the rectangle Haar fea-
tures focus on improving the efficiency of AdaBoost algo-
rithm itself. Li et al. present a FloatBoost algorithm to
backtrack all the learned features and remove the redun-
dant ones [15]. Some methods connect all the layers in a
cascade together to form a nesting chain [42,41]. The chain
structure allows directly utilizing training results of previ-
ous layers in the later stages, thus fewer features are needed
to achieve the same performance. Some other efforts are
made to extend the original rectangle Haar features to
improve their limited discriminant capability for profile
face and eye detection. The extended Haar sets include tilt
features [17], center-surrounded features [2] and diagonal
filters [12]. Current multi-view face detection can achieve
a speed of 5–8 frames per second with detection rate lower
than frontal face detection [15,12].

Besides the commonly used local features, it is also
claimed that global features can provide better accuracy
for detection. The PCA feature is applied for frontal face
detection as a complementary of local Haar features [44].
However, PCA is usually used to reduce feature dimension
for representing a class of objects, not for discriminating
different classes. Liu et al. select features from a wavelet
bank by minimizing the Kullback–Leibler divergence [18].
The method applied a 1D sequential optimization method
to approximate a KL feature from a subset of local fea-
tures. However, all the global features are only applied to
the frontal face detection.

Current eye detection methods can be divided into two
categories: active and passive eye detection [11]. The active
detection methods use special illumination and IR cameras
to quickly locate pupil centers. The disadvantages are that
they need special lighting sources and have more false detec-
tions within an outdoor environment. Passive methods
directly detect eyes from images within visual spectrum
and normal illumination condition. Some early work localiz-
es eyes based on distinct eye features, such as image gradients
[13] and projection [45]. However, these features are sensitive
to image noise. Huang and Wechsler select optimal Wavelet
packets and classify the eye and non-eye with Radial Basis
Functions (RBFs) [10]. In [3], a two-layer Gabor wavelet net-
work (GWN) is used to localize facial points from coarse to
fine. In [2,19], AdaBoost method is used to train for both face
and eye detector with Haar features. After a face is detected,
eyes are then located inside the face region.

3. Discriminant feature extraction for object detection

In this paper, we use pixel intensity of gray-scale images
to detect faces. Although the pixel intensity is simple to use,
one drawback is the high dimensionality of a face vector.
For example, a face image is usually normalized to a fixed
size of 20 by 20, therefore the extracted face vector has 400
elements. Based on pixel intensity, our method statistically
extracts important features that can separate the face class
from the non-face class.

Statistical feature extraction methods learn features
from training samples without assuming any geometric
shapes as Haar features do. When considering computa-
tional complexity, we only discuss linear feature extraction
in this paper. Fisher discriminant analysis (FDA) provides
the optimal feature for Gaussian class distributions. Non-
parametric discriminant analysis (NDA) can avoid the
Gaussian assumption. However, some practical problems
prevent it from being directly applied in face detection.
Based on FDA and NDA, we present a novel recursive
nonparametric discriminant analysis (RNDA) for multi-
view face detection [37]. The RNDA feature is a global fea-
ture, which is directly learned from training samples as a
whole, instead of as a combination of local features [18].

In this section, we first introduce Fisher and nonpara-
metric discriminant feature analysis, then present a
recursive nonparametric discriminant analysis. Before pre-
senting our algorithm, the notations used in this paper are
introduced. A training sample is denoted as (x,gx), where x

is the data, actually a vector of image intensity in this
paper. gx 2 {�1,+1} is the sample label. The class
X1 = {xjgx = 1} represents the object (face or eye) while
the class X2 = {xjgx = �1} represents the non-object. Each
training sample (x,gx) is associated with a weight wx, andP

xwx ¼ 1.

3.1. Fisher discriminant analysis and nonparametric

discriminant analysis

3.1.1. Fisher discriminant analysis

Linear feature extraction maps original data x to a fea-
ture space y by a linear transformation F, i.e., y = F(x) =
UTx, where U is a transformation matrix or vector. A cri-
teria to evaluate the feature y is its Bayes error EF:

EF ¼
Z
ð1�max

i
pðXijF ðxÞÞÞpðxÞdx ð1Þ

It has been shown that Fisher discriminant analysis
(FDA) minimizes the Bayes error assuming that each class
is a single Gaussian distribution, and all classes have equal
priors and equal covariance matrices [40]. FDA method
extracts discriminant features by maximizing the ratio of
between- and within-class variance. The ratio is denoted
as JðUÞ ¼ kUTSbUk

kUTSwUk, where Sb is the between-class scatter
matrix, and Sw is the within-class scatter matrix. When
each sample x is associated with a weight wx, the scatter
matrices are calculated as
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Sw ¼
X

i

X
x2Xi

wxðx� liÞðx� liÞ
T

Sb ¼
X

i

P ðXiÞðli � lÞðli � lÞT ð2Þ

where l is the mean of all samples, and li is the mean of
class Xi. P(Xi) is the weight of class Xi, i.e.,
P ðXiÞ ¼

P
x2Xi

wx. The FDA features can be extracted by
solving a generalized eigenvectors problem, as in Eq. (3).

ðS�1
w SbÞUk ¼ kkUk ð3Þ
The column vector Uk in the transformation matrix U is

the eigenvector of ðS�1
w SbÞ corresponding to eigenvalue kk.

A problem of applying FDA feature to multi-view face
detection is that the single Gaussian assumption in FDA
is not valid for multi-view faces. For example, the frontal
face needs to be modeled with a mixture-of-Gaussians
[32,20]. It is even more difficult to parametrically model
the non-face since the non-face is the ‘‘rest of the world’’
compared with the face class. The non-face class is much
larger than the face class so that another assumption in
FDA, equal priors for different classes, is also violated.
Furthermore, for a two-class problem, the rank of Sb in
FDA is 1, which means that only one effective feature
can be extracted from FDA.

3.1.2. Nonparametric discriminant analysis

Nonparametric discriminant analysis (NDA) has been
proposed to avoid the Gaussian assumptions in FDA
and to obtain fully ranked scatter matrices from nearest
neighbors (NNs) instead of from the entire class [6]. The
neighborhood of a sample x is defined as NNx =
{x

0 j ix
0 � xi < cx}, where cx is the distance defining the

neighborhood. In NDA, each sample also has extra-class
and intra-class nearest neighbors, which are denoted as
xE

NN and xI
NN respectively in Eq. (4).

xE
NN ¼fx0jgx0 6¼ gx; x

0 2 NNxg
xI

NN ¼fx0jgx0 ¼ gx; x
0 2 NNxg ð4Þ

In calculation, NNs are usually represented by their
averaged means, i.e., lE

x ¼ E½xE
NN� and lI

x ¼ E½xI
NN�. E [Æ] rep-

resents the average on the sample weights. For example,
lE

x ¼ E½xE
NN� ¼ 1

C

P
x02xE

NN
wx0x0, where C ¼

P
x02xE

NN
wx0

From the NNs, the nonparametric between-class scatter
matrix S0b is defined as Eq. (5).

S0b ¼ Ex½cxðx� lE
x Þðx� lE

x Þ
T� ð5Þ

The NDA weight cx is defined as Eq. (6) where a is a
control parameter.

cx ¼
minðkx� lE

x k
a
; kx� lI

xk
aÞ

kx� lE
x k

a þ kx� lI
xk

a ð6Þ

cx is close to 0.5 if a sample x is near a class boundary, and
close to 0 otherwise. The NDA weight can remove the
affects of the samples far away from the class boundary,
so the resulting NDA features will focus on separating
the samples near the class boundary. Based on NNs and

nonparametric scatter matrices defined as above, the
NDA feature can also be extracted by solving a generalized
eigenvector problem [6,1].

Some practical difficulties prevent the nonparametric
discriminant analysis from prevailing as FDA. A face vec-
tor has about 400 elements, so it needs many training sam-
ples to accurately locate nearest neighbors in such a high
dimension space. Therefore, to search NNs and to compute
scatter matrices in NDA is very time-consuming since there
are usually more than ten thousands of face samples and
many more non-face samples.

3.2. Recursive nonparametric discriminant analysis

To address the difficulties in FDA and NDA, we present
a recursive scheme for nonparametric discriminant analy-
sis. There are two innovations in the RNDA. First, NNs
are searched in a transformed feature space, which has low-
er dimensionality than the original data space. This saves
searching time and needs fewer training samples to locate
NNs. Second, a recursive strategy is proposed to refine
the estimation of NNs and to compute RNDA features.
The algorithm is summarized in Table 1 and is explained
in detail as below.

3.2.1. Searching nearest neighbors

In NDA, the nonparametric scatter matrices are calcu-
lated from NNs, so the performance of NDA depends on
how accurately the nearest neighbors are located. Howev-
er, as stated before, the original data space is of high
dimensionality because a face vector has about 400 ele-
ments. Many training samples are needed to estimate class
distributions, and the large size of training samples requires
a lot of computation to locate NNs for each data. To
address these difficulties, our method searches NNs in a
transformed feature space instead of the original data
space.

Assuming that a feature, y = UTx, is used to identify
NNs, the neighborhood of a sample x is defined as

NNx ¼ fx0jUTx0 2 NNUTxg ð7Þ
Compared with Eq. (4), the neighborhood NNx is

defined in a lower dimensional space since the linear trans-
formation U usually has fewer columns than rows. In our
method, class distributions are represented by feature his-
tograms, so the neighborhood of a sample x is defined as

Table 1
Recursive nonparametric discriminant algorithm

• Initialize RNDA using FDA, and obtain the initial transformation U0

• Repeat the following steps until the error rate converges
(1) Search NNs at y ¼ UT

0 x
(2) Compute nonparametric scatter matrices S0b and S0w based on

updated NNs, as Eqs. (5), (8) and (10)
(3) Update optimal RNDA projection U0 from S0b and S0w, as Eq. (9)
(4) Measure the error rate EF ðxÞ¼UT

0 x, as Eq. (1)
• Output features UTx, where columns of U are the eigenvectors of S�1

w S0b
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the bin in which UTx is located. If we set U as a transfor-
mation vector, NNs can be searched in an 1D feature space
to reduce the required number of training samples, and
cx ¼ Q

2
where Q is the quantization step of discriminant fea-

tures. The NNs are also divided into intra- and extra-class
neighbors based on their class labels, which is illustrated in
Fig. 2.

Based on the identified NNs, a nonparametric within-
class scatter matrix S0w is defined as

S0w ¼
X

i

PðXiÞEx2Xi

h
cxðx� lI

xÞðx� lI
xÞ

T
i

¼
X

i

PðXiÞ
X

x2Xi

h wxcx

P ðXiÞ
ðx� lI

xÞðx� lI
xÞ

T
i

¼
X

x

wxcxðx� lI
xÞðx� lI

xÞ
T ð8Þ

where P ðXiÞ ¼
P

x2Xi
wx is the class weight.

To separate different classes, we want to maximize the
extra-class variance while minimizing the intra-class vari-
ance. Similar to FDA, the RNDA features are extracted
by solving the following generalized eigenvector problem:

ðS0�1
w S0bÞUk ¼ kkUk ð9Þ
In Eq. (9), scatter matrices S0w and S0b are computed as

Eq. (8) and (5). Since nonparametric scatter matrices S0w
and S0b have full rank, RNDA can provide multiple fea-
tures. Usually the eigenvectors U0 of S0�1

w S0b corresponding
to larger eigenvalues provide better discriminant capability.

3.2.2. Recursive feature extraction

As observed from Eq. (7), an initial feature y = UTx is
needed to locate NNs in one dimensional space. In the
RNDA, we initialize RNDA feature with Fisher discrimi-
nant analysis which are based on parametric scatter matri-
ces Sw and Sb as in Eq. (2). Then a recursive strategy is
applied to refine the estimation of NNs and to re-compute
RNDA features.

In RNDA, the NNs and scatter matrices are updated
with the previous results until the estimated misclassifi-
cation error converges. At each iteration in the recursive

procedure, the NNs are first updated by searching at the
previous RNDA feature space. Based on the updated
NNs, the scatter matrices S0w and S0b are re-calculated. A
new optimal RNDA projection U0 is extracted from the
new scatter matrices S0w and S0b by solving the generalized
eigenvector problem, as in Eq. (9). The new RNDA feature
UT

0 x will then be used to update NNs at the next iteration.
Also at each iteration, a misclassification error is estimated
based on the feature y ¼ UT

0 x. The iteration continues until
the estimated Bayes error converges to a minimum. The
whole recursive procedure is summarized in Table 1.

Furthermore, to relate the above iterations to reducing
misclassification error, we define the RNDA weight cx in
a new way, as Eq. (10):

cx ¼
minðW E

x ;W
I
xÞ

W E
x þ W I

x

ð10Þ

where W E
x and W I

x are the sum of extra- and intra-class
sample weights in the neighborhood, i.e.,

W E
x ¼

P
x02X E

NN
wx0 and W I

x ¼
P

x02X I
NN

wx0 .

The RNDA weight cx in Eq. (10) actually represents the

local misclassification error of current RNDA feature UT
0 x.

Since wx represents the data distribution, we have W I
x ¼

P ðx0 2 X I
NNÞ and W E

x ¼ Pðx0 2 X E
NNÞ. When using the NNs

to estimate data density, cx is actually the local misclassifi-
cation error at the bin where UTx is located based on Eqs.

(1) and (10), i.e.,
minðW E

x ;W
I
xÞ

W E
x þW I

x

¼ 1�maxiP ðXijUTxÞ. The total

Bayes error can be approximated by weighted summation
of local misclassification error, i.e., C �

P
xwxcx. In the

recursive procedure, if RNDA converges after several itera-
tions, which means NNs are stabilized, we have $C � 0. As a
result, the misclassification error also reaches its minimum.
It is possible that the result corresponds to a local minimum
since a global optimal solution is extremely difficult to
achieve for the transformation vector with about 400
elements.

The performance of FDA and RNDA is compared
using three real face data sets composed of different poses,
as shown in Fig. 3. Each data set contains 5000 face sam-

Fig. 2. Representing nearest neighbors using 1D feature histograms. Histograms of the face and non-face classes are calculated from the feature y = UTx.
NNs are defined as the samples whose features are located in the same bin of the histograms.
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ples and 5000 non-face samples. For each test set, the sam-
ple weights are uniformly initialized. RNDA is initialized
with FDA, hence the first points in the curves represent
the FDA results. For all the three data sets, only after 2
or 3 iterations, the RNDA converges with a smaller mis-
classification error than FDA. The RNDA is more efficient
for a high dimensional space and a large training set, which
is the case for face detection. An example comparing neces-
sary running time of RNDA and NDA on a real face data
set is given in Table 2. Usually, the training set contains
more than ten thousand face and non-face samples, thus
RNDA significantly reduces the computational
complexity.

4. Constructing classifiers using RNDA features and

Adaboost

Generally speaking, RNDA features can be applied to
any type of classifiers. Considering both accuracy and
speed, AdaBoost is used to train a face classifier. In our
method, probabilistic classifiers are constructed from
sequentially learned RNDA features, and then multiple
probabilistic classifiers are combined together using Ada-
Boost to build a multi-view face detector.

4.1. AdaBoost algorithm

AdaBoost learning method is an iterative procedure to
select features and combine classifiers [26]. At each itera-
tion, it selects a feature with minimum misclassification
error, and trains a weak classifiers based on the selected
feature. Sample weights are updated according to current
learning results, and the future learning will focus on the

misclassified samples. AdaBoost learning method keeps
combining new weak classifiers into a stronger one until
it achieves satisfying performance.

The Real AdaBoost algorithms have been proposed in
[27,5]. The weak classifiers in Real AdaBoost can output
continuous confidence values, therefore has better accuracy
compared with the Discrete AdaBoost [4]. Our method is
based on the Real AdaBoost algorithm, which is summa-
rized in Table 3. The weak classifier ht(x) has the form:

htðxÞ ¼
1

2
log

P ðX1jxÞ
P ðX2jxÞ

� �

¼ 1

2
log

P ðxjX1Þ
P ðxjX2Þ

� �
þ 1

2
log

P ðX1Þ
P ðX2Þ

� �
ð11Þ

The weak classifier in Eq. (11) is actually the log ratio of
posterior probabilities. It can be written as a combination
of likelihood ratio and prior ratio. Usually the likelihood
model is approximated by feature distributions. The prior
ratio P ðX1Þ

P ðX2Þ is unknown so that it needs to be determined dur-
ing learning.

4.2. Applying adaboost to combine RNDA features

Both RNDA and AdaBoost algorithms utilize sample
weights wx during training. Since wx refers to the same dis-
tribution of training samples, the RNDA feature extraction
method can be naturally incorporated in AdaBoost learn-
ing algorithm. The first step of applying RNDA features
in AdaBoost is to construct a probabilistic weak classifier
from a learned RNDA feature. RNDA provides multiple
feature candidates, yi ¼ UT

i x; i ¼ 1; . . . ;M , where Ui’s are
the eigenvectors corresponding to the M largest eigen-
values of S0�1

w S0b. From these eigenvectors, a vector U corre-
sponding to the minimum classification error is selected.
Then class distributions, P(xjX1) and P(xjX2), are estimat-
ed from the distribution of feature y = UTx, i.e.,
P(xjX) � P(yjX). The weak classifier in Eq. (11) can be
written as

htðxÞ ¼
1

2
log

P ðX1jxÞ
P ðX2jxÞ

� �
� 1

2
log

PðUTxjX1Þ
PðUTxjX2Þ

� �
þ ht ð12Þ

The parameter ht actually represents the log ratio of pri-
ors 1

2
log½PðX1Þ

PðX2Þ
�, which is determined during training to min-

imize the misclassification error.

Fig. 3. Comparison of Fisher and recursive nonparametric discriminant
analysis.

Table 2
Running time (in seconds) of RNDA and NDA

Sample number

8000 12,000 16,000 20,000

RNDA 184.13 285.38 395.77 519.33
NDA 723.80 1456.94 2470.66 3691.11

Table 3
Real AdaBoost Algorithm

• Uniformly initialize sample weights wx

• For t = 1, 2, . . .,T (T is the maximum number of weak classifiers or
when the accuracy satisfies expectation):
(1) Select or extract a feature Ft which can minimize misclassification

error, with the use of sample weights wx

(2) Fit a weak classifier ht(x) based on Ft

(3) Update sample weights wx ‹ wxexp[�gxht(x)] and re-normalize wx

so that
P

xwx ¼ 1
• Output the combined classifier HT ¼ sgn½

PT
t¼1htðxÞ�
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In our method, the feature histogram is used to repre-
sent class distributions P(xjX1) and P(xjX2). The ideas
are illustrated in Fig. 4, where 5000 left full profile faces
and 10,000 non-faces are used in the experiment.
Fig. 4(a) shows face and non-face class distributions of
the first RNDA feature. The feature value is quantized into
discrete bins, as in Fig. 4(b). In real training, usually there
are about 10,000 face samples and more non-face samples,
therefore the feature values are quantized to about 500 bins
to guarantee that there are average 20 face samples in each
bin.

In the next step, AdaBoost algorithm will increase
weights of the samples that are wrongly classified, and
new RNDA features will focus on the wrongly classified
samples. This is illustrated in Fig. 4(c), where the samples
wrongly classified by the first weak classifier are located
inside or near region A. Specifically, face samples in the
regions B and C have increased weights after the first iter-
ation in AdaBoost. Due to re-weighting, the face class does
not hold single Gaussian distribution anymore. As shown
in Fig. 4(d), the face class distribution of the second feature
is more like a mixture of Gaussian distributions, where the
samples in region B and C form 2 clusters.

As the above iteration continues, AdaBoost keeps
updating sample weights and selecting new RNDA features
to construct more weak classifiers. The iteration will con-
tinue until the combined classifier achieves satisfying accu-
racy. The algorithm of applying RNDA in AdaBoost is
summarized in Table 4.

To compare the performance of RNDA features with
Haar and FDA features, a classifier is trained with Ada-
Boost using real profile face data. The Haar features used
here include both original and tilt sets [17]. Two sets are
used in this experiment, one set from half left faces and
another from full left profile faces. Each set contains
5000 faces and 5000 non-faces. In the experiment, the
detection rate of the face class is fixed at 99.0%, so the false
positive rates of using different features are compared. The
algorithm continues until the false positive rate is lower
than 2.0%. The results are shown in Fig. 5. In both sets,
the false positive rates decrease for all the three features.
As observed from the curves, Haar features, however, have
limited discriminant capability. After the first several itera-
tions, the false positive rates only drop slightly, and end at
33.5% for half profile faces and at 40.7% for full profile
faces with 50 iterations, requiring many more features to

Fig. 4. Feature distribution on left full profile face data and non-face data. (a) Distribution of the first RNDA feature. (b) Histograms of the first RNDA
feature. (c) Joint distribution of the first two RNDA features. (d) Distribution of the second RNDA feature.
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remove the remaining non-faces. In contrast, Fisher and
RNDA features have better discriminant capability than
Haar features. For half profile faces, FDA with 45 itera-
tions achieves a 3.5% false positive rate while RNDA fea-
tures can achieve a 3.0% false positive rate with only 22
iterations. For full profile faces, with 24 iterations, FDA
features achieve a 14.3% false positive rate while RNDA
features can achieve a 2.5% false positive rate. It is clear
from the above experiments that Fisher features are more
powerful than Haar features, and that RNDA features fur-
ther improve accuracy of FDA features.

4.3. Feature pool and greedy selection

The difference between FDA and RNDA is that RNDA
can provide multiple features, which form a feature pool.
At tth iteration in AdaBoost, the feature pool is denoted
as F pool ¼ fUðtÞ1 ; . . . ;UðtÞM g. Usually the feature pool is com-
pact, M = 5, while the commonly used Haar feature sets
contain above 45,000 over-complete features. A feature F

is selected out of the feature pool to construct a weak

classifier. Traditional AdaBoost forwardly selects the fea-
ture that can minimize misclassification error based on cur-
rent data weights. A greedy method is applied here to
minimize the overall misclassification error instead of cur-
rent misclassification error.

The overall error of combining jth weak classifier
candidate, hj

t ¼ fF j
t ; h

j
tg, is defined as EðF j

t ; h
j
tÞ ¼

1
2

P
xjgx � sgnðHj

tðxÞÞjwx, where H j
t ¼ H t�1 þ hj

t . The feature
and parameters are learned as

ht ¼ arg min
fF j

t ;h
j
t g
fEðF j

t ; h
j
tÞg ð13Þ

As in Eq. (13), the greedy method simultaneously selects
the best feature set Ft and learns the parameter ht to mini-
mize the overall error.

The comparison of forward selection and greedy train-
ing is shown in Fig. 6. In this experiment, 500 eyes data
and 2000 non-eyes are used, and the overall accuracy is
compared. The greedy method performs much better than
the forward selection method at second stage, 95% vs. 83%.
With more features added, the benefit of greedy training
begins to diminish because AdaBoost algorithm itself can
compensate the difference in weight updating of failure
samples. This shows that the greedy learning method offers
a good performance at the initial stages, which is useful to
train the first several layers in a cascade.

5. Experiments

In this section, we evaluate the RNDA features and
AdaBoost classifiers on the multi-view face detection as
well as on the eye detection.

5.1. Training

In our method, the multi-view faces are roughly divided
into five poses: frontal, half left, half right, full left and full
right, as shown in Fig. 1. To train a multi-view face detec-
tor, face data of multiple poses is collected from various
sources, including standard databases, such as FERET

Table 4
Applying discriminant features in Real AdaBoost

• A sample is denoted as (x,gx), where x is the training data, and
gx 2 {�1,1} is its label. Sample weights wx are uniformly initialized at
the beginning

• Set M as the maximum number of weak classifiers. Set an expectation of
classification accuracy rate R, t = 0, and R0 = 0

• Repeat while t < M and Rt < R

(1) t ‹ t + 1
(2) Extract RNDA feature y = UTx using sample weights wx.

Approximate class distributions with the feature y, i.e.,
P(xjX1) � P(yjX1) and P(xjX2) � P(yjX2)

(3) Learn a weak classifier ht(x):

htðxÞ ¼ 1
2 log½PðX1 jxÞ

PðX2 jxÞ� ¼
1
2 log½PðxjX1Þ

PðxjX2Þ� þ ht

where ht is a threshold minimizing the misclassification error
(4) Set wx ‹ wxexp[�gxht(x)] and re-normalize sample weights so thatP

xwx ¼ 1
(5) Obtain the current combined classifier Ht ¼ sgn½

Pt
i¼1hiðxÞ� and

estimate classification accuracy Rt

• Output the classifier HðxÞ ¼ sgn½
P

thtðxÞ�

Fig. 5. Comparison of Haar features, Fisher features and RNDA features in AdaBoost. (a) Training results with half profile face data. (b) Training results
with full profile face data.
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[23], and images collected from the web. All the training
data are cropped from images, hand-labeled with pose
and slightly perturbed by scaling, shifting and rotation.
There are about 10,000 face training samples for each face
pose. Some typical face and non-face images used for train-
ing are shown in Fig. 7. The non-face images are generated

from about 1000 background image. Five hundred pairs of
eyes are collected from FERET images [23] and web images
to train an eye detector. Some typical eye and non-eye
images are shown in Fig. 8.

During training, all collected image patches are normal-
ized to a fixed size, 20 by 20. The intensity of each patch is
subtracted by its mean and divided by its standard devia-
tion. The use of integral image allows quickly normalizing
the pixel intensity [35]. Then RNDA features are learned
from the normalized data. Fig. 9 shows the first several dis-
criminant features for multi-view faces and eyes, where the
projection vectors are aligned and equalized for display. All
these features describe global characteristics of objects.
Some of the characteristics are difficult to be represented
with rectangle shapes, such as the pupil, outline of eyes
and eyebrows in eyes.

5.2. Frontal and profile face detection

The multi-view face detector has a pyramid structure,
which is composed of multiple face detectors under differ-
ent poses, as shown in Fig. 10. The multi-view face detector
contains a frontal face detector and several profile face

Fig. 6. Greedy training vs. forward selection.

Fig. 7. Some face and non-face images used in training. The first two rows show some face images of different poses. The third row shows some non-face
images.

Fig. 8. Some eye and non-eye images used in training. (a) Some eye images. (b) Non-eye training images cropped from face regions.

Fig. 9. Good features for multi-view face and eye detection. (a–c) The mean face and first three features for frontal faces, left half and left full profile faces
respectively. (d) Mean eye and first three features for eyes.
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detectors. Due to face symmetry, only left profile face
detectors are trained. To find right profile faces, image
patches are flipped in detection. There are actually three
profile face detectors in the pyramid structure, since the left
half and left full profile faces are merged to first train a left
profile face detector. To improve the speed in detection, the
cascade structure is adopted in each of the face detectors,
to quickly discarded the easy-to-classify non-faces [34].
The left profile face detector has 8 layers which can remove
about 99.0% of non-face patches in detection. Then, the
remaining pathes are sent to the half and full profile face
detectors to further remove the non-faces. In detection,
image patches at different locations and scales are exhaus-
tively searched since we assume no prior knowledge of face
positions in images. Around one real face in an image, each
face detector may output overlapped detection results. In
our method, we select the detector providing the most
detection results, and then average all its overlapped detec-
tion results (i.e., the size and positions) to provide a simpli-
fied face detection result.

The frontal face detection method is tested on the
CMU + MIT test set, which totally has 130 images with
507 frontal faces [25]. The comparison results of Haar fea-
tures and RNDA features are given in Table 5. The RNDA
feature based method can achieve comparable accuracy
while with much fewer weak classifiers. Some of the detec-
tion results are shown in Fig. 12. With only RNDA fea-
tures, our frontal face detector runs at 5 frames per

second on a P4 2.6G processor. To further improve the
speed, Haar features are used to train the first several layers
as the frontal end. As a result, the frontal face detector
based on such combination also achieve the real time speed
(above 15 fps). The related computational issue is discussed
at Section 5.4.

The multi-view face detection method is applied to the
CMU profile face test set. The CMU profile face set con-
tains 208 images and 347 profile faces. Compared with
frontal face detection result, profile face detection has
slightly lower detection rate with a few more false detec-
tions. Some detection results are shown in Fig. 12. The
ROC curves of Haar features [12] and our RNDA features
for profile face detection are shown in Fig. 11. The Haar
features implemented by Jones and Viola include both ori-
ginal and extended feature sets. Schneiderman and
Kanade’s multi-view face detection method achieves better
but comparable detection accuracy, with the sacrifice of
running speed [30]. Their detector runs at 640 ms per image
while our multi-view face detector runs at about 200 ms for
each frame.

Fig. 10. The pyramid structure of multi-view face detector.

Table 5
Comparison results on CMU-MIT set for frontal face detection

Method Detection
rate (%)

# of false # of weak classifiers

Haar feature 76.1 10 6060 (38 layers)
(Viola and Jones’ [34]) 91.4 50

89.8 65 4297 (32 layers)
RNDA 84.5 13 369
Feature 90.2 64 (nesting structure)

Fig. 11. ROC of profile face detection result on CMU test set. The results
of Haar feature are from [12].
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5.3. Eye detection

In our method, after a frontal face is detected, eyes are
located inside the face region. Some eye detection results
are shown in Fig. 13. The eye detection algorithm is vali-
dated on about 5600 images in FRGC database V1.0
[22]. The frontal face detection accuracy is around 95.0%.
From the detected faces, above 99.0% eyes are successfully
detected so that the overall eye detection rate is 94.5%. The
absolute pixel errors between the eye center and the ground
truth of pupil are given in Table 6 (in pixels). Please note

that FRGC images are of high resolution. The average dis-
tance between two eyes is about 260 pixels. The compari-
son of eye localization using Haar features and RNDA

Fig. 12. Multi-view face detection results. (a) Frontal face detection results. (b) Multi-view face detection results.

Fig. 13. Eye detection results. First row shows the face and eye detection results. The second row shows enlarged eyes.

Table 6
Eye localization error on FRGC V1.0

Error Horizontal Vertical Euclidean
distance (mean)(mean) (std) (mean) (std)

Pixel 4.9914 4.5808 3.1652 2.6927 6.4016
Normalized (%) 2.04 1.96 1.31 1.35 2.67
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features is shown in Fig. 14. In this figure, the horizontal
axis is the normalized localization error, and the vertical
axis is the accumulated distribution, which represents the
percentage of detected eyes with smaller normalized local-
ization error than the corresponding value at the horizontal
axis. From Fig. 14, it is observed that the eye localization
based on RNDA features has much smaller localization
error than those based on Haar features.

In [36], we further validate the automatic eye localiza-
tions by applying them to the face recognition experiments
using FRGC V1.0 database sets and PCA and LDA base-
line algorithms [22]. Experimental results demonstrate that
the face recognition algorithms based on our automatic eye
localizations can provide comparable accuracy with those
based on manual eye localizations.

5.4. Discussion on computational complexity

Besides accuracy, speed is a very important factor in
face detection. Computing discriminant features is more
time-consuming than Haar features since it involves dot
production. The computational problem is addressed by
using Haar features as the front end. The first several cas-
cades are trained with Haar features, and can remove most
of non-face patches. The later cascades trained on RNDA
features further eliminate the remaining difficult patches.
This combination of powerful RNDA features with effi-
cient Haar features leads to improved efficiency for com-
plex object detection (e.g., multi-view faces and eyes)
without significantly sacrificing the overall accuracy. As a
result, the frontal face detection achieves the real time,
and the multi-view face detection runs at 5 frame per sec-
ond on the 320 · 240 images on a P4 2.6G processor.

6. Conclusion and future work

This paper presents a novel feature extraction method
for multi-view face and eye detection. The RNDA fea-
ture extraction method can handle more general class

distributions than Fisher discriminant analysis, and can
reduce the computational complexity of nonparametric
discriminant analysis, so it performs well for the profile
face and eye detection. Compared with commonly used
Haar features, RNDA features provide better accuracy.
Histograms of RNDA features are learned to represent
class distributions, then are used to construct probabilis-
tic classifiers. The probabilistic classifiers are further
combined with AdaBoost to form a face detector. Exper-
imental results both on the multi-view face detection and
on the eye detection demonstrate RNDA feature’s suc-
cess in handling various patterns. Although the discrimi-
nant features are more computationally expensive than
Haar features, the speed problem can be tackled by using
Haar features as frontal end of a cascade. The future
work will focus on further improving the speed.
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