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Most of the current EEG-based workload classifiers are subject-specific; that is, a new classifier is built and
trained for each human subject. In this paper we introduce a cross-subject workload classifier based on a
hierarchical Bayesmodel. The cross-subject classifier is trained and testedwith data froma group of subjects. In
our work, it was trained and tested on EEG data collected from 8 subjects as they performed theMulti-Attribute
Task Battery across three levels of difficulty. The accuracy of this cross-subject classifier is stable across the three
levels of workload and comparable to a benchmark subject-specific neural network classifier.
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Introduction

As cognitive workload increases, maintaining task performance
within an acceptable range becomes more difficult. Increased cognitive
workloadmay demandmore cognitive resources than the human brain
has available (Norman and Bobrow, 1976a,b) and may also result in
physiological stress (Gaillard, 1993).Both cognitive overload and stress
may result in performance degradation and errors. An objective mea-
sure of workload could be used to evaluate alternative system designs,
allocate workload appropriately to minimize overload and stress, and
intervene in real time before operators become overloaded while
performing safety-critical tasks (Byrne and Parasuraman, 1996).
Current state of workload measures

Traditionally, workload is assessed by questionnaires which are
quantified through statistical techniques such as factor loading,
discriminant analysis, and correlation/covariance analysis (Hart and
Staveland, 1988). Although progress has been made, there are no
globally accepted methods for detecting and measuring cognitive
workload (Lysaght et al., 1989; Noyes and Bruneau, 2007; Rubio et al.,
2004). In addition, subjective measures are invasive and cannot be
obtained in real-time as they require interrupting the task to complete
a questionnaire. As a result, many researchers have investigated
physiological measures such as heart rate variability, galvanic skin
response, pupillometry and electroencephalography (EEG), to predict
workload. EEG promises to provide the applied community with an
objective and relatively unobtrusive means for measuring workload.
However, cashing in on this promise requires the development of new
and innovative quantitative methods for analyzing and interpreting
EEG data.

EEG has been used extensively to examine the changes in the brain's
electrical activity in response to cognitive activity (Gevins et al., 1998;
Gevins and Smith, 2003). The main assumption is that if brain-state
classifiers can be found, they can then be used as a brain-computer
interface (BCI) or input to adaptive automation that detects operator
mental workload in real time (Wilson and Russell, 2007). A number of
different classifiers have already been applied to predict workload with
EEG data, such as linear discriminant analysis, support vector machines
and artificial neural networks. Among these classifiers, artificial neural
networks (NN) have shown success discriminating at least two levels of
cognitive workload (Wilson et al., 2009, 2010; Wilson and Russel,
2003a,b). However, much work still needs to be done in the devel-
opment of quantitative methods for analyzing and interpreting EEG
data.

Challenges to EEG-based workload classifiers

The ‘holy grail’ of workload classifiers would be able to predict the
workload level of any subject performing any task on any given day. The
development of such a classifier would be quite an ambitious feat given
the number of challenges that would need to be overcome. Such a
classifier would need to be robust enough to handle large variations in
input data from a wide variety of sources. Currently, all of the existing
workload classifiers are subject-specific, meaning new classifiers are
trained for each subject. Classifiers trained on data from one subject do
a hierarchical Bayes model, NeuroImage (2011),
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not generalize to other subjects well. Current classifiers also have
difficulty generalizing to performance of the same subject on different
sessions and days (Wilson et al., 2010).

Overview

In the present article, we introduce a cross-subject workload
classifier for a group of subjects based on the hierarchical Bayes
model. This work is a substantial step forward in the development of
EEG-based workload classifiers as it would enable training a classifier
once that could handle multiple subjects. We will compare our
proposedmodel with the dominant technique NN in this field in order
to demonstrate its advantage. In the following sections, we will show
that our hierarchical Bayes model when trained on data frommultiple
subjects is comparable to the subject-specific neural network.We will
also show that the accuracy of our hierarchical Bayes model is stable
across three levels of workload, in comparison with neural networks,
which have not been demonstrated capable of accurately classifying
more than two levels of workload. The novel part of our proposed
model lies in its ability to explicitly model the variations across
subjects at each level of workload and apply the captured variation to
enhance the classification.

Models

In this section we introduce a hierarchical Bayes model for
workload classification. Compared to traditional models such as
neural networks and support vector machines, it has the advantage of
modeling the inner relationships, incorporating the prior knowledge
as well as accounting for uncertainties in data, through probabilistic
theory.

The naive Bayes classifier will be discussed first to illustrate how
the Bayes and probability theories function in the model. Following
this discussionwe describe our cross-subject hierarchical Bayesmodel
that can effectively classify workload levels of multiple subjects.

Naive Bayes classifier

ThenaiveBayes classifier (NB) is a simple classifierbasedon theBayes'
theorem. Its structure is shown in Fig. 1a, where the C node represents
different classes and X1,X2,⋯,Xn represent different components or
features of a sample. The causal directed link from C to Xi is captured by
P(Xi|C), i.e. the probability of Xi given the observation of a certain class C.
For instance, if Xi is a feature of a high workload sample, P(Xi|C=High)
a b

ed

Fig. 1. The evolution from a naive Bayes classifier to the hierarchical Bayes model: (a) a naiv
(b) A simplified graphical model of naive Bayes classifier; (d) a naive Bayes classifier plus
distribution of μ; (c) A visualization of the 2 d Gaussian distribution.
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would be expected to be greater than P(Xi|C=Low). P(Xi|C) is also called
the likelihood, and typically follows the Gaussian distribution N(μ,σ),
where μ is the mean and σ is the standard deviation. NB assumes all the
feature nodes are independent of each other given the class.

For simplicity, X1,X2,⋯,Xn are often represented by only one node
X, as is shown in Fig. 1b. In this case X is a vector consisting of all the
features of a sample and P(X|C) follows the multivariate Gaussian
distribution. Fig. 1c shows P(X|C) when X is a 2 dimensional vector.
We can see that P(X|C) gradually decreases as X goes far away from its
center.

Given a test sample X=(X1,X2,⋯,Xn), the classification result C * is
determined by the posterior probability P(C|X), the probability that a
test sample X belongs to the class C, with Eq. (1).

C � = argmax
C

P C jXð Þ ð1Þ

P(C|X) can be further transformed using the chain rule and Bayes'
theorem into Eq. (2), where α is a normalization constant.

P C jXð Þ = αP X jCð ÞP Cð Þ

= α ∏
n

i=1
P Xi jCð ÞP Cð Þ : ð2Þ

In our case, the class node represents three workload conditions
and the feature nodes (X1,X2,⋯,Xn) represent the magnitude of EEG
frequency bands. Despite its naive design and apparently over-
simplified assumptions, NB has worked quite well in many complex
real-world situations such as alert correlation (Benferhat et al., 2008),
intrusion detection (Axelsson, 2004; Gowadia et al., 2005; P.M. and
Patra, 2007; Puttini et al., 2002), text classification (Kamruzzaman
and Rahman, 2010) and medical diagnosis (Qu et al., 2010). Many of
the properties of NB can be found in Domingos and Pazzani (1997),
Rish (2001), Zhang (2004).

In summary, NB works in two simple stages:

1. In the training stage, the likelihood P(X|C) (the probability of the
training sample X given their class C) is estimated with respect to
the training data;

2. In the testing stage, based on the posterior probability P(C|Xtest), a
decision whether the test sample Xtest belongs to a class C is made,
using Eq. (1).

This basic theory can be easily extended to more complex Bayes
models.
c

e Bayes classifier, where C represents the class node and X represents the feature node;
a hidden node; (e) A Hierarchical Bayesian model where μ0 and σ0 describes the prior
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Hierarchical Bayes model

In an attempt to deal with the large amount of between-subject
variation present in a cross-subject workload classifier we created a
hierarchical Bayes model. Figs. 1b–e illustrate the evolution of the
naive Bayes classifier into the proposed hierarchical Bayes model. In
the following section we will describe step by step, how our proposed
model is designed to work, its mathematical details and the intuition
behind the design.

In the first step, a discrete hidden node H is embedded into NB, as is
shown in Fig. 1d. The value of H ranges from 1 to K, representing K
different hidden states. The basic idea is that the EEG signals associated
with each level of workload are generated from a certain mixture of
hidden states. For example, if H stands for different subjects, EEG
signals can be treated as being generated from different subjects with
different probabilities. Likewise EEG signals are generated from
different trials with different probabilities if H stands for the trial.
Generally speaking, H can represent any factor that is likely to cause
variations and these factors are typically unknown. Mathematically,
the hidden states can be interpreted as transformed features, resulted
from projecting all EEG features in all frequencies to a latent space.
Hence each dimension in the hidden subspace is a function of all EEG
frequencies instead of an individual frequency. Each hidden state does
not relate to any specific frequency feature. By connecting C to H, the
variations are captured for each level of workload and the generation
of the EEG signals can be interpreted as follows:

1. Choose a workload level C with probability P(C);
2. For the chosen workload, choose a hidden state H= i from 1 to K

with probability P(H= i|C);
3. Generate EEG signal/sample X from this hidden state and the

current workload with a probability P(X|H= i,C).

The likelihood P(X|C) is calculated by marginalizing over all the
possible hidden states with Eq. (3).

P X jCð Þ = ∑
K

i=1
P X jH = i;Cð ÞP H = i jCð Þ ð3Þ

We assume that for each hidden state, P(X|H= i) follows the
Gaussian distribution N(μi,σi) and P(H= i|C) follows the multinomial
distribution. Thus P(X|C) is a mixture of Gaussian distribution (Xu and
Jordan, 1996) in this case.

The between-subject and other unknown variations can be well
modeled by decomposing the EEG signal to different hidden states.
Intuitively, more hidden states will lead to stronger power in dealing
with variations. A typical way to decide the number of hidden states is
through cross validation within the training data, which will be
discussed in a later section.

While the model gains stronger ability to deal with variability by
adding a hidden node, such a model is more sensitive to the noise in
the data. In other words, large amounts of noise in the EEG data could
be misinterpreted as hidden states as well. It leads us to move to the
second step, where a constraint will be imposed upon the variations
to alleviate the risk of over-fitting.

The idea is that hidden states should not depart significantly from
their shared characteristics, which can be realized by the model shown
in Fig. 1e. Extending Fig. 1d, the parameters μ and σ that are used to
describe P(X|H,C) are added next to X. Two higher level nodes μ0 and σ0

are then pointed to node μ and make the model hierarchical (Gelman
and Hill, 2006), denoting that the mean values of each hidden source
follows another Gaussian distributionN(μ0,σ0) as shown in Eqs. (4) and
(5). Intuitively speaking, μ0 and σ0 capture the commonalities and the
hidden components (μ's) are thus restricted to a certain area close to μ0.

P X jHð Þ∼N μ;σð Þ ð4Þ
Please cite this article as: Wang, Z., et al., Cross-subject workload cl
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P μ jμ0;σ0ð Þ∼N μ0;σ0ð Þ ð5Þ

Finally, the training procedure of such a hierarchical model will be
performed in two steps:

1. Learning the hyper-parameters μ0 and σ0. In our case, μ0 is
estimated as the mean vector of all the training data within this
workload and the covariance matrix σ0 is set to be the identity;

2. Learning all the other parameters θ={μ,σ,P(H|C),P(C)}. Since we
have unknown hidden nodes, EM algorithm (Dempster et al., 1977;
Xu and Jordan, 1996) is applied here to estimate parameters
instead of the traditional Maximum Likelihood Estimation. EM
algorithm consists of two steps: In the E step, the hidden node is
uncovered by their expected posterior probability P(H|X,θ), given
all the training data X; In the M step, parameters are estimated by
maximizing the expected posterior probability of the parameters
given training data, as shown in Eq. (6), where λ is a constant,
controlling the weight of the constraint, and logN(μ|μ0,σ0) is the
regularization term.

max
θ

log P θ jXð Þ ∝ log P X jθð Þ + λ log N μ jμ0;σ0ð Þ ð6Þ

During testing, given a test sample Xtest the posterior probability
P(C|Xtest) is then calculated with Eq. (7).

P C jXtestð Þ∝ ∑
K

i=1
P Xtest jH = i;Cð ÞP H = i jCð ÞP Cð Þ ð7Þ

Experiment

All of the data used in the present article comes from a previously
published study, Wilson et al. (2010), which is available upon
request.1

Participants and stimuli

Eight participants (3 males; mean age 21.1 years) performed the
Multi-Attribute Task Battery (MATB) (Comstock and Arnegard, 1992).
The MATB is commonly used in laboratory studies of operator
performance and workload (Fairclough et al., 2005; Harris et al., 1995;
Wilson and Russel, 2003b). It incorporates tasks analogous to activities
that pilot perform in flight including a tracking task, monitoring gauges
and warning lights, air traffic control communications, and resource
allocation tasks (fuel pumps) all ofwhich are performed concurrently in
a continually changing task environment (see Fig. 2).

Procedure

Participants performed the MATB on five separate sessions spread
over the course of a month. The five sessions were separated by 1 day,
1 week, 3 weeks and 4 weeks. The demands of each subtask were
varied so that three levels of overall MATB difficulty were available. In
an attempt to reduce learning effects, participants were trained until
performance scores reached asymptote with minimal errors. Each
day's session consisted of three trials where a trial was comprised of a
low, medium and high difficulty block. Each block lasted 5 min and
the order of blocks within each trial was random. Three of the
participants did not fully complete all of the trials on day 3. For this
assification with a hierarchical Bayes model, NeuroImage (2011),
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Fig. 2. An example of the MATB environment. Starting in the top-left corner moving clockwise are the following subtasks: systemmonitoring, tracking scheduling, communications,
resource management, pump status.
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reason, day 3 was excluded resulting in 12 complete trials for each
participant.

EEG

Nineteen EEG channels, using the International 10–20 montage
(Jasper, 1958), were collected using the MICROAMPS system from
SAM Technologies, Inc. MICROAMPS has default high-pass and low-
pass filters at 0.05 Hz and 100 Hz, respectively, and a sampling rate of
256 Hz. The 19 EEG channels were referenced to the left mastoid.
Additional VEOG and HEOG channels were also recorded. VEOG was a
bipolar channel with electrodes placed above and below the left eye.
HEOG was also a bipolar channel with electrodes placed outside the
outer canthus of each eye. Impedances for the EEG channels were all
below 5 kΩ and impedances for the VEOG andHEOG channels were all
below 15 kΩ.

Feature selection

The EEG data was down-sampled to 128 Hz and no artifact
correction or rejection procedures were performed prior to analysis.
Discrete-time short-term Fourier transform (STFT) was performed on
the down-sampled EEG data using 40 second windows with 35 s of
overlap. No taper functionwas applied to thewindows. Themagnitude
of the 5 standard clinical bands (delta [2–4 Hz], theta [5–8 Hz], alpha
[9–13 Hz], beta [14–32 Hz] and gamma [33–43 Hz]) as well as two
expanded gamma bands ([33–57 Hz] and [63–100 Hz]) from the 19
sites were used resulting in 133 input features to the classifiers.

Classifiers

Five different classifiers are compared in our experiment: the
neural net and naive Bayes classifiers trained and tested on individual
subjects (NN1 and NB1), and the neural net, naive Bayes classifier and
the hierarchical Bayes classifier trained on multiple subjects and
tested on individual subjects (NN8, NB8 and HNB8). All themodels are
multi-class classifiers trained on all the three workload levels.

The neural network classifier used for comparison in our
experiment was based on the same setup as the neural network
used inWilson et al. (2009). The neural network had one hidden layer
Please cite this article as: Wang, Z., et al., Cross-subject workload cl
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with the number of hidden nodes equal to the number of features use
as input to the model. The output layer contained three nodes, one for
each workload level. The parameters of neural network were also
tuned so that the results reflected the best performance possible.

Functionally, alpha oscillations are interpreted as an idling rhythm
that diminishes during mental activity and have been found to be
negatively correlated with the BOLD response in the parietal and
frontal cortex regions (Laufs et al., 2003). In other words, alpha mag-
nitude can be thought of as being inversely proportional to workload.

Model training

Models were trained and tested using a fivefold cross-validation
setup. For the purpose of testing the performance of the models with
little training data, only one fifth, instead of four fifths, of the EEG data
from each trial was randomly sampled for training. The data not
selected for training was used for testing. Data was sampled evenly
across workload blocks, and for the models including multiple subject
data, evenly across subjects. This procedure was repeated for each
trial. For the neural network classifiers, one fifth of the training data
was randomly selected as the validation set and Scaled Conjugate
Gradient algorithm (Moller, 1993) was used to train the net.

Results

In the following results, NN1 and NB1 represent the neural net
and naive Bayes classifiers trained and tested on individual subjects.
NN8 and NB8 represent the neural net and naive Bayes classifiers
trained on multiple subjects and tested on individual subjects. HNB8
represent hierarchical Bayes model trained on multiple subjects and
tested on individual subjects.

Hidden states

In order to determine the optimal number of hidden states for the
HNB8model, a validation set was randomly sampled from the training
data. The accuracy rate on the validation set of HNB8 model was then
measured as the number of hidden states was increased from 1 to 40
(see Fig. 3). For the hierarchical Bayes model trained on data from
assification with a hierarchical Bayes model, NeuroImage (2011),
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Fig. 3. The optimal number of hidden states was estimated by testing (cross validation
within the training data) the accuracy of the HNB8 model across a range of hidden
states. For 8 subjects, the HNB8 model performs best with 18 hidden states.
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8 subjects, the best performance was achieved using 18 hidden states.
This value was used for the remainder of the analyses.

Classification accuracy

Classification accuracy means and standard deviations for each
combination of model and workload level can be seen in Table 1. A
one-way ANOVA was performed to compare the effect of model on
classification accuracy. There was a significant effect of model on
classification accuracy, F(4,35)=65.46, pb .001, η2=0.88.

Post hoc comparisons using the Tukey HSD test indicated that the
NB8model has a lower classification accuracy than every other model
and the NN8 model had a lower classification accuracy than the NN1,
NB1 and HNB8 models. There was no significant difference between
then NN1, NB1 and HNB8 models. These comparisons can be seen in
Fig. 4.

NN1 and NB1 perform reasonably well for subject-specific
workload classification. NN8 and NB8, however, perform poorly for
workload classification across subjects. In contrast, HNB8 performs
well on all subjects, demonstrating its ability to effectively model the
between subject variations. Tukey's honestly significant difference test
was performed for all pairwise comparisons. NN1, NB1, and HNB8 had
significantly higher mean classification accuracies than NN8 and NB8.
The mean classification accuracy for the NN1, NB1 and HNB8 models,
for each of the 3workload levels is shown in Fig. 4.We can see that the
performance of HNB8 is consistent across different workloads.

Discussion

The present experiment tested the performance of classifiers on
three levels of workload. Except for the cross-subject naive Bayes
model (NB8), the performance of the remaining classifiers were stable
across all three workload conditions. This result is different from
Table 1
Classification accuracy means and standard deviations for each combination of model
and workload level.

Model Workload

L M H

NN1 0.79 (0.04) 0.77 (0.06) 0.84 (0.06)
NB1 0.79 (0.07) 0.77 (0.09) 0.83 (0.06)
NN8 0.55 (0.09) 0.55 (0.11) 0.65 (0.15)
NB8 0.30 (0.16) 0.27 (0.12) 0.73 (0.16)
HNB8 0.83 (0.05) 0.79 (0.03) 0.79 (0.08)

Please cite this article as: Wang, Z., et al., Cross-subject workload cl
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much of the past research on EEG-basedworkload classificationwhich
only had success classifying 2 levels of workload. There are two
possible explanations for this difference. One possible explanation for
this is that the task manipulations in previous experiments did not
generate more than 2 actual levels of workload. The other explanation
is related to choice of features used as input to the classifiers. Most, if
not all of the previous research has used EEG power as an input to
their workload classifiers. However, in our paper we chose to use
magnitude. While the subjective perception of many psychological
phenomenon (such as hearing) increase non-linearly, there has been
no evidence to support the idea that the amplitude of brain waves
increase non-linearly. For this reason we decided to use EEG
magnitude as our classifier inputs. This choice may have led to a
more stable classifier across workload conditions. On the other hand,
the performance of our classifiers might be improved by using EEG
power. A future comparison of magnitude versus power for classifier
input could answer this question.

The classification accuracy of both the single subject naive Bayes
(NB1) and cross-subject hierarchical naive Bayes classifier (HNB8)
when aggregated across workload levels was 80% and equal to the
performance of our benchmark single subject neural network
classifier (NN1). These results are consistent with previous research
involving classifiers of general cognitiveworkload. Additionally, this is
an important result as this is the first report of a Bayes classifier being
used for workload classification. The comparable performance of the
NB1 and HNB8 models to the NN1 model shows that Bayes classifiers
are a viable alternative to neural networks for EEG based workload
classification.

When both naive Bayes and neural network classifiers were
trained and tested on multiple subjects (NN8 and NB8), their
performance was significantly worse than the subject-specific
classifiers of the same type (i.e., NN8bNN1 and NB8bNB1). The
performance of NB8 was actually no better than chance. This indicates
that when not appropriately dealt with, the large amounts of variation
that exists between different subjects can lead to significant decreases
in performance. However, we were able to restore the accuracy of the
cross-subject naive Bayes classifier by introducing a hidden node
which through the use of hidden states and additional constraints,
was able to account for the between subject variation. Compared to
the NB1 and NN1 classifiers, which can only handle one subject at one
time, the HNB8 classifier could handle data from multiple subjects
without losing any performance.

In order to decide the optimal number of hidden states for the
hierarchical model, its accuracy rates were tested with varying hidden
states by cross-validation within the training data. The performance
increased to a peak at 18 hidden states and gradually falls as more
states are added. As expected, a large improvement in performance is
seen when we increase the number of hidden states at first, which
conforms to our assumption that more hidden states lead to strong
assification with a hierarchical Bayes model, NeuroImage (2011),
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power in dealing with variations. However, adding too many hidden
states becomes detrimental to performance.
Conclusion

We have demonstrated that a cross-subject classifier can achieve
performance comparable to subject-specific classifiers trained on
individual subjects. This was accomplished by a hierarchical Bayes
model that captures the between-subject variation with a latent
variable with imposed constraints. Instead of using multiple subject-
specific classifiers, we built one classifier that can handle multiple
subjects. The novelty of this model is its ability to explicitly model the
variations between subjects which has been a tremendous problem in
EEG-based workload classification. These results take EEG-based
classification one step closer to being able to discriminate workload
for a novel subject which was not trained on.
Future directions

In the current article, we built an EEG-basedworkload classifier for a
group of subjects which achieves performance comparable to subject-
specific classifiers. Thisworkwasdonewith the goal ofworking towards
a completely subject-independent workload classifier. Currently the
data of all the subjects appear in both the training and testing data. We
plan on improving our hierarchical Bayes model to handle novel
subjects.

Since this work focuses on a study of cross-subject workload
classification, the data used for both training and testing came from
the same trial. In the future we plan to extend our method to cross-
trial or even cross-day workload classification. This could be achieved
by introducing new hidden nodes, additional hidden states to current
hidden node, or a combination of both.

Our proposed model was compared with the dominant technique
neural network in EEG-based workload classification in the current
work. In the future, we plan on comparing it with other state of the art
classifiers including SVM.

Different from other models such as NN and SVM, our proposed
model applies the Bayesian approach to workload classification,
which enables us to flexibly incorporate different forms of prior
knowledge that is available but typically overlooked with the data to
further improve the performance. For example, currently, all
samples are treated as independent estimates of a workload level.
However, state transitions between workload levels are slow; data
points closer in time should be more similar than data points farther
in time. We anticipate that adding temporal components into our
models could further improve the classification accuracies. We also
plan on investigating different circumstantial knowledge and
applying them to improve workload classification using Bayes
models.

We also plan on improving the overall classification accuracy of
our hierarchical Bayes model by using better features and adding
temporal information into the model. Currently, all samples are
treated as independent estimates of a workload level. However, state
transitions between workload levels are slow; data points close in
time should be more similar than data points far away in time. We
anticipate that adding temporal components into our models that
classification accuracy will be further improved.
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