
Camera Projection Models

We will introduce different camera projection models

that relate the location of an image point to the

coordinates of the corresponding 3D points. The

projection models include: full perspective projection

model, weak perspective projection model, affine

projection model, and orthographic projection model.
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The Pinhole Camera Model

Based on simply trigonometry (or using 3D line

equations), we can derive

u =
−fxc

zc
v =

−fyc
zc
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The Computer Vision Camera Model
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u =
fxc

zc
v =

fyc
zc

where f

zc
is referred to as isotropic scaling.The full

perspective projection is non-linear.
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Weak Perspective Projection

If the relative distance δzc (scene depth) between two

points of a 3D object along the optical axis is much

smaller than the average distance z̄c to the camera

(δz < z̄
20
), i.e, zc ≈ z̄c

then

u = f
xc

zc
≈

fxc

z̄c

v = f
yc
zc

≈
fyc
z̄c

We have linear equations since all projections have the

same scaling factor.

5



Orthographic Projection

As a special case of the weak perspective projection,

when f

zc
factor equals 1, we have u = xc and v = yc, i.e.,

the lins (rays) of projection are parallel to the optical

axis, i.e., the projection rays meet in the infinite instead

of lens center. This leads to the sizes of image and the

object are the same. This is called orthgraphic

projection.
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Perspective projection geometry

principal

point

perspective

center

frame
row-column

Co

��
��
��
��

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

c

c

image frame

c

r

P
P

C
 i

Cp

optical axis

frame

camera

Cc

i

image plane

focal length

y

x

z

object frame

x
y

z

uv

c

f

Figure 1: Perspective projection geometry
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Notations

Let P = (x y z)t be a 3D point in object frame and

U = (u v)t the corresponding image point in the image

frame before digitization. Let Xc = (xc yc zc)
t be the

coordinates of P in the camera frame and p = (c r)t be

the coordinates of U in the row-column frame after

digitization.
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Relationships between different frames

Between camera frame (Cc) and object frame (Co)

Xc = RX + T (1)

X is the 3D coordinates of P w.r.t the object frame. R is

the rotation matrix and T is the translation vector. R

and T specify the orientation and position of the object

frame relative to the camera frame.

11



R and T can be parameterized as

R =









r11 r12 r13

r21 r22 r23

r31 r32 r33









T =









tx

ty

tz









ri = (ri1, ri2, ri3) be a 1 x 3 row vector, R can be written

as

R =









r1

r2

r3








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Substituting the parameterized T and R into equation 1

yields








xc

yx

zc









=









r11 r12 r13

r21 r22 r23

r31 r32 r33

















x

y

z









+









tx

ty

tz









(2)
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• Between image frame (Ci) and camera frame (Cc)

Perspective Projection:

u =
fxc

zc

v =
fyc
zc

Hence,

Xc =









xc

yc

zc









= λ









u

v

f









(3)
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where λ = zc
f
is a scalar and f is the camera focal

length.
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Relationships between different frames (cont’d)

• Between image frame (Ci) and row-col frame (Cp)

(spatial quantization process)





c

r




 =






sx 0

0 sy











u

v




+






c0

r0




 (4)

where sx and sy are scale factors (pixels/mm) due to

spatial quantization. c0 and r0 are the coordinates of

the principal point in pixels relative to Cp
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Collinearity Equations

Combining equations 1 to 4 yields

c = sxf
r11x+ r12y + r13z + tx
r31x+ r32y + r33z + tz

+ c0

r = syf
r21x+ r22y + r23z + ty
r31x+ r32y + r33z + tz

+ r0
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Homogeneous system: perspective projection

In homogeneous coordinate system, equation 3 may be

rewritten as

λ









u

v

1









=









f 0 0

0 f 0

0 0 1

















xc

yc

zc









(5)

Note λ = zc.

18



Homogeneous System: Spatial Quantization

Similarly, in homogeneous system, equation 4 may be

rewritten as








c

r

1









=









sx 0 c0

0 sy r0

0 0 1

















u

v

1









(6)
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Homogeneous system: quantization + projection

Substituting equation 5 into equation 6 yields

λ









c

r

1









=









sxf 0 c0 0

0 syf r0 0

0 0 1 0




















xc

yc

zc

1












(7)

where λ = zc.
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Homogeneous system: Affine Transformation

In homogeneous coordinate system, equation 2 can be

expressed as












xc

yc

zc

1












=












r11 r12 r13 tx

r21 r22 r23 ty

r31 r32 r33 tz

0 0 0 1























x

y

z

1












(8)
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Homogeneous system: full perspective

Combining equation 8 with equation 7 yields

λ









c

r

1









=









sxfr1 + c0r3 sxftx + c0tz

syfr2 + r0r3 syfty + r0tz

r3 tz









︸ ︷︷ ︸

P












x

y

z

1












(9)

where r1, r2, and r3 are the row vectors of the rotation

matrix R, λ = zc is a scaler and matrix P is called the

homogeneous projection matrix.
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P = WM

where

W =









fsx 0 c0

0 fsy r0

0 0 1









M =
(

R T

)

W is often referred to as the intrinsic matrix and M as

exterior matrix.

Since P = WM = [WR WT ], for P to be a projection

23



matrix, Det(WR) 6= 0, i.e., Det(W ) 6= 0.
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Weak Perspective Camera Model

For weak perspective projection, we have zc ≈ z̄c, i.e.,

z̄c ≈ rt
3
X̄ + tz Hence,

u =
fxc

z̄c

v =
fyc
z̄c

Hence,





u

v




 =

f

z̄c






xc

yc





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Or








u

v

1









=
f

z̄c









xc

yc
z̄c
f









Since








c

r

1









=









sx 0 c0

0 sy r0

0 0 1

















u

v

1








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We have








c

r

1









=
f

z̄c









sx 0 c0

0 sy r0

0 0 1

















xc

yc
z̄c
f









Since






xc

yc




 = [R2 T2]












x

y

z

1












where R2 is the first two rows of R and T2 is the first two
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elements of T. Or









xc

yc
z̄c
f









=






R2 T2

0 0 0 z̄c
f

















x

y

z

1












Hence,









c

r

1









=
f

z̄c









sx 0 c0

0 sy r0

0 0 1














R2 T2

0 0 0 z̄c
f

















x

y

z

1











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=
1

z̄c









sx 0 c0

0 sy r0

0 0 1














fR2 fT2

0 0 0 z̄c

















x

y

z

1












=
1

z̄c









fsx 0 c0

0 fsy r0

0 0 1














R2 T2

0 0 0 z̄c

















x

y

z

1











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Weak Perspective Camera Model

The weak perspective projection matrix is

Pweak =









fsxr1 fsxtx + c0z̄c

fsyr2 fsyty + r0z̄c

01×3 z̄c









(10)

where r1 and r2 are the first two rows of R2 and

z̄c = r3X̄ + tz.

30



Weak Projection Camera Model

Another possible solution is as follows

31
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Affine Camera Model

A further simplification from weak perspective camera

model is the affine camera model, which is often assumed

by computer vision researchers due to its simplicity. The

affine camera model assumes that the object frame is

located on the centroid of the object being observed. As

a result, we have z̄c ≈ tz, the affine perspective projection

matrix is

Paffine =









sxfr1 sxftx + c0tz

syfr2 syfty + r0tz

0 tz









(11)
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Affine camera model represents the first order

approximation of the full perspective projection camera

model. It still only gives an approximation and is no

longer useful when the object is close to the camera or

the camera has a wide angle of view.
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Orthographic Projection Camera Model

Under orthographic projection, projection is parallel to

the camera optical axis.

therefore we have

u = xc

v = yc

which can be approxmiated by f

zc
≈ 1.

The orthographic projection matrix can therefore be

35



obtained as

Porth =









sxr1 sxtx + c0

syr2 syty + r0

0 1









(12)
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Non-full perspective Projection Camera Model

The weak perspective projection, affine, and orthographic

camera model can be collectively classified as

non-perspective projection camera model. In general, the

projection matrix for the non-perspective projection

camera model

λ









c

r

1









=









p11 p12 p13 p14

p21 p22 p23 p24

0 0 0 p34




















x

y

z

1












37



Dividing both sides by p34 (note λ = p34) yields






c

r




 = M2×3









x

y

z









+






vx

vy






where mij = pij/p34 and vx = p14/p34, vy = p24/p34

For any given reference point (cr, rr) in image and

(x0, y0, z0) in space, the relative coordinates (c̄, r̄) in

image and (x̄, ȳ, z̄) in space are

38








c̄

r̄




 =






c− cr

r − rr




 and









x̄

ȳ

z̄









=









x− xr

y − yr

z − zr









It follows that the basic projection equation for the affine

and weak perspective model in terms of relative

coordinates is






c̄

r̄




 = M2×3









x̄

ȳ

z̄









An non-perspective projection camera M2×3 has 3

39



independent parameters. The reference point is often

chosen as the centroid since centroid is preserved under

either affine or weak perspective projection.

Given the weak projection matrix P ,

P =









fsxr1 fsxtx + c0z̄c

fsyr2 fsyty + r0z̄c

0 z̄c









The M matrix is

M =






fsxr1
z̄c

fsyr2
z̄c






40



=
f

z̄c






sxr1

syr2






=
f

z̄c






sx 0

0 sy











r1

r2






For affine projection, z̄c = tz, for orthographic projection,
f

z̄c
= 1. If we assume sx = sy, then

M =
fsx
z̄c






r1

r2






Then, we have only four parameters: three rotation

angles and a scale factor.
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Rotation Matrix Representation: Euler angles

Assume rotation matrix R results from successive Euler

rotations of the camera frame around its X axis by ω, its

once rotated Y axis by φ, and its twice rotated Z axis by

κ, then

R(ω, φ, κ) = RX(ω)RY (φ)RZ(κ)

where ω, φ, and κ are often referred to as pan, tilt, and

swing angles respectively.

42



Rotation Matrix Representation: Euler angles

Z (optical axis)

X

Y

pan angle

tilt angle

swing angle
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Rx(ω) =









1 0 0

0 cosω sinω

0 − sinω cosω









Ry(φ) =









cosφ 0 − sinφ

0 1 0

sinφ 0 cosφ









Rz(κ) =









cosκ sinκ 0

− sinκ cos κ 0

0 0 1









44



Rotation Matrix: Rotation by a general axis

Let the general axis be ω = (ωx, ωy, ωz) and the rotation

angle be θ. The rotation matrix R resulting from

rotating around ω by θ can be expressed as

Rodrigues’ rotation formula gives an efficient method for

computing the rotation matrix.
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Quaternion Representation of R

The relationship between a quaternion q = [q0, q1, q2, q3]

and the equivalent rotation matrix is

Here the quaternion is assumed to have been scaled to

unit length, i.e., |q| = 1.

The axis/angle representation ω/θ is strongly related to a

quaternion, according to the formula
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










cos(θ/2)

ωx sin(θ/2)

ωy sin(θ/2)

ωz sin(θ/2)












where ω = (ωx, ωy, ωz) and |ω| = 1.
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R’s Orthnormality

The rotation matrix is an orthnormal matrix, which

means its rows (columns) are normalized to one and they

are orthonal to each other. The orthnormality property

produces

Rt = R−1
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Interior Camera Parameters

Parameters (c0, r0), sx, sy, and f are collectively referred

to as interior camera parameters. They do not depend on

the position and orientation of the camera. Interior

camera parameters allow us to perform metric

measurements, i.e., to convert pixel measurements to inch

or mm.
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Exterior Camera Parameters

Parameters like Euler angles ω, φ, κ, tx, ty, and tz are

collectively referred to as exterior camera parameters.

They determine the position and orientation of the

camera.

50



Camera Calibration and Pose Estimation

The purpose of camera calibration is to determine

intrinsic camera parameters: c0, r0, sx, sy, and f . Camera

calibration is also referred to as interior orientation

problem in photogrammetry.

The goal of pose estimation is to determine exterior

camera parameters: ω, φ, κ, tx, ty, and tz. In other

words, pose estimation is to determine the position and

orientation of the object coordinate frame relative to the

camera coordinate frame or vice versus.
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Perspective Projection Invariants

Distances and angles are invariant with respect to

Euclidian transformation (rotation and translation). The

most important invariant with respect to perspective

projection is called cross ratio. It is defined as follows:
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τ( A,B,C,D)=

A

B

C

D

ADAC
BC BD

Cross-ratio is preserved under perspective projection.
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Projective Invariant for non-collinear points

Cross ratio of intersection points between a set of pencil

of 4 lines and another line are only function of the angles

among the pencil lines, independent of the intersection

points on the lines. cross-ratio may be used for ground

plane detection from multiple image frames.

Chasles’ theorem:
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Let A, B, C, D be distinct points on a (non-singular)

conic (ellipse, circle, ..). If P is another point on the

conic then the cross-ratio of intersections points on the

pencil PA, PB, PC, PD does not depend on the point P.

This means given A,B,C, and D, all points P on the same

ellipse should satisfy Chasles’s theorem. This theorem

may be used for ellipse detection.

See section 19.3 and 19.4 of Daves book.
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