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Camera Projection Models

We will introduce different camera projection models that relate

the location of an image point to the coordinates of the

corresponding 3D points. The projection models include: full

perspective projection model, weak perspective projection model,

affine projection model, and orthographic projection model.
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The Pinhole Camera Model

Based on simply trigonometry (or using 3D line equations), we can

derive

u =
−fxc

zc
v =

−fyc
zc
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The Computer Vision Camera Model
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optical center
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u =

fxc

zc
v =

fyc
zc

where f

zc
is referred to as isotropic scaling.The full perspective

projection is non-linear.
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Weak Perspective Projection

If the relative distance δzc (scene depth) between two points of a

3D object along the optical axis is much smaller than the average

distance z̄c to the camera (δz < z̄
20
), i.e, zc ≈ z̄c

then

u = f
xc

zc
≈

fxc

z̄c

v = f
yc
zc

≈
fyc
z̄c

We have linear equations since all projections have the same scaling

factor.
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Orthographic Projection

As a special case of the weak perspective projection, when f

zc
factor

equals 1, we have u = xc and v = yc, i.e., the lins (rays) of

projection are parallel to the optical axis, i.e., the projection rays

meet in the infinite instead of lens center. This leads to the sizes of

image and the object are the same. This is called orthgraphic

projection.
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Perspective projection geometry

principal

point

perspective

center

frame
row-column

Co

��
��
��
��

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������

c

c

image frame

c

r

P
P

C
 i

Cp

optical axis

frame

camera

Cc

i

image plane

focal length

y

x

z

object frame

x
y

z

uv

c

f

Figure 1: Perspective projection geometry
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Notations

Let P = (x y z)t be a 3D point in object frame and U = (u v)t the

corresponding image point in the image frame before digitization.

Let Xc = (xc yc zc)
t be the coordinates of P in the camera frame

and p = (c r)t be the coordinates of U in the row-column frame

after digitization.
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Projection Process

Our goal is to go through the projection process

to understand how an image point (c, r) is

generated from the 3D point (x, y, z).

Perspective
projection

Affine 
transformation

3D point in camera frame

3D point in object frame

Image point in image frame

Image point in row-column frame

Spatial Sampling
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Relationships between different frames

Between camera frame (Cc) and object frame (Co)

Xc = RX + T (1)

X is the 3D coordinates of P w.r.t the object frame. R is the

rotation matrix and T is the translation vector. R and T specify

the orientation and position of the object frame relative to the

camera frame.
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R and T can be parameterized as

R =







r11 r12 r13

r21 r22 r23

r31 r32 r33







T =







tx

ty

tz







ri = (ri1, ri2, ri3) be a 1 x 3 row vector, R can be written as

R =







r1

r2

r3
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Substituting the parameterized T and R into equation 1 yields







xc

yx

zc







=







r11 r12 r13

r21 r22 r23

r31 r32 r33













x

y

z







+







tx

ty

tz







(2)
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• Between image frame (Ci) and camera frame (Cc)

Perspective Projection:

u =
fxc

zc

v =
fyc
zc

Hence,

Xc =







xc

yc

zc







= λ







u

v

f







(3)

where λ = zc
f

is a scalar and f is the camera focal length.
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Relationships between different frames (cont’d)

• Between image frame (Ci) and row-col frame (Cp) (spatial

quantization process)



c

r



 =




sx 0

0 sy








u

v



 +




c0

r0



 (4)

where sx and sy are scale factors (pixels/mm) due to spatial

quantization. c0 and r0 are the coordinates of the principal

point in pixels relative to Cp
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Collinearity Equations

Combining equations 1 to 4 yields

c = sxf
r11x+ r12y + r13z + tx
r31x+ r32y + r33z + tz

+ c0

r = syf
r21x+ r22y + r23z + ty
r31x+ r32y + r33z + tz

+ r0
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Homogeneous system: perspective projection

In homogeneous coordinate system, equation 3 may be rewritten as

λ







u

v

1







=







f 0 0

0 f 0

0 0 1













xc

yc

zc







(5)

Note λ = zc.
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Homogeneous System: Spatial Quantization

Similarly, in homogeneous system, equation 4 may be rewritten as







c

r

1







=







sx 0 c0

0 sy r0

0 0 1













u

v

1







(6)
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Homogeneous system: quantization + projection

Substituting equation 5 into equation 6 yields

λ







c

r

1







=







sxf 0 c0 0

0 syf r0 0

0 0 1 0
















xc

yc

zc

1










(7)

where λ = zc.
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Homogeneous system: Affine Transformation

In homogeneous coordinate system, equation 2 can be expressed as










xc

yc

zc

1










=










r11 r12 r13 tx

r21 r22 r23 ty

r31 r32 r33 tz

0 0 0 1



















x

y

z

1










(8)
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Homogeneous system: full perspective

Combining equation 8 with equation 7 yields

λ







c

r

1







=







sxfr1 + c0r3 sxftx + c0tz

syfr2 + r0r3 syfty + r0tz

r3 tz







︸ ︷︷ ︸

P










x

y

z

1










(9)

where r1, r2, and r3 are the row vectors of the rotation matrix R,

λ = zc is a scaler and matrix P is called the homogeneous

projection matrix.

P = WM
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where

W =







fsx 0 c0

0 fsy r0

0 0 1







M =
(

R T
)

W is often referred to as the intrinsic matrix and M as exterior

matrix.

Since P = WM = [WR WT ], for P to be a projection matrix,

Det(WR) 6= 0, i.e., Det(W ) 6= 0.
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Weak Perspective Camera Model

For weak perspective projection, we have zc ≈ z̄c, i.e.,

z̄c ≈ rt
3
X̄ + tz Hence,

u =
fxc

z̄c

v =
fyc
z̄c

Hence,



u

v



 =
f

z̄c




xc

yc





Or 





u

v

1







=
f

z̄c







xc

yc
z̄c
f
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Since






c

r

1







=







sx 0 c0

0 sy r0

0 0 1













u

v

1







We have






c

r

1







=
f

z̄c







sx 0 c0

0 sy r0

0 0 1













xc

yc
z̄c
f







Since




xc

yc



 = [R2 T2]










x

y

z

1










where R2 is the first two rows of R and T2 is the first two elements
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of T. Or







xc

yc
z̄c
f







=




R2 T2

0 0 0 z̄c
f














x

y

z

1










Hence,







c

r

1







=
f

z̄c







sx 0 c0

0 sy r0

0 0 1










R2 T2

0 0 0 z̄c
f














x

y

z

1
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=
1

z̄c







sx 0 c0

0 sy r0

0 0 1










fR2 fT2

0 0 0 z̄c














x

y

z

1










=
1

z̄c







fsx 0 c0

0 fsy r0

0 0 1










R2 T2

0 0 0 z̄c














x

y

z

1
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Weak Perspective Camera Model

The weak perspective projection matrix is

Pweak =







fsxr1 fsxtx + c0z̄c

fsyr2 fsyty + r0z̄c

01×3 z̄c







(10)

where r1 and r2 are the first two rows of R2 and z̄c = r3X̄ + tz.

Slide 28 Weak Projection Camera Model

Another possible solution is as follows
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Affine Camera Model

A further simplification from weak perspective camera model is the

affine camera model, which is often assumed by computer vision

researchers due to its simplicity. The affine camera model assumes

that the object frame is located on the centroid of the object being

observed. As a result, we have z̄c ≈ tz, the affine perspective

projection matrix is

Paffine =







sxfr1 sxftx + c0tz

syfr2 syfty + r0tz

0 tz







(11)

Affine camera model represents the first order approximation of the

full perspective projection camera model. It still only gives an

approximation and is no longer useful when the object is close to
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the camera or the camera has a wide angle of view.
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Orthographic Projection Camera Model

Under orthographic projection, projection is parallel to the camera

optical axis.

therefore we have

u = xc

v = yc

which can be approxmiated by f
zc

≈ 1.

The orthographic projection matrix can therefore be obtained as

Porth =







sxr1 sxtx + c0

syr2 syty + r0

0 1







(12)
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Non-full perspective Projection Camera Model

The weak perspective projection, affine, and orthographic camera

model can be collectively classified as non-perspective projection

camera model. In general, the projection matrix for the

non-perspective projection camera model

λ







c

r

1







=







p11 p12 p13 p14

p21 p22 p23 p24

0 0 0 p34
















x

y

z

1
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Dividing both sides by p34 (note λ = p34) yields




c

r



 = M2×3







x

y

z







+




vx

vy





where mij = pij/p34 and vx = p14/p34, vy = p24/p34

For any given reference point (cr, rr) in image and (x0, y0, z0) in

space, the relative coordinates (c̄, r̄) in image and (x̄, ȳ, z̄) in space

are




c̄

r̄



 =




c− cr

r − rr



 and







x̄

ȳ

z̄







=







x− xr

y − yr

z − zr







It follows that the basic projection equation for the affine and weak

perspective model in terms of relative coordinates is
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c̄

r̄



 = M2×3







x̄

ȳ

z̄







An non-perspective projection camera M2×3 has 3 independent

parameters. The reference point is often chosen as the centroid

since centroid is preserved under either affine or weak perspective

projection.

Given the weak projection matrix P ,

P =







fsxr1 fsxtx + c0z̄c

fsyr2 fsyty + r0z̄c

0 z̄c







Slide 36

The M matrix is

M =





fsxr1
z̄c

fsyr2
z̄c





=
f

z̄c




sxr1

syr2





=
f

z̄c




sx 0

0 sy








r1

r2





For affine projection, z̄c = tz, for orthographic projection,
f

z̄c
= 1.

If we assume sx = sy, then

M =
fsx
z̄c




r1

r2





Then, we have only four parameters: three rotation angles and a
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scale factor.
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Rotation Matrix Representation: Euler angles

Assume rotation matrix R results from successive Euler rotations of

the camera frame around its X axis by ω, its once rotated Y axis

by φ, and its twice rotated Z axis by κ, then

R(ω, φ, κ) = RX(ω)RY (φ)RZ(κ)

where ω, φ, and κ are often referred to as pan, tilt, and swing

angles respectively.
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Rotation Matrix Representation: Euler angles

Z (optical axis)

X

Y

pan angle

tilt angle

swing angle
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Rx(ω) =







1 0 0

0 cosω sinω

0 − sinω cosω







Ry(φ) =







cosφ 0 − sinφ

0 1 0

sinφ 0 cosφ







Rz(κ) =







cosκ sinκ 0

− sinκ cosκ 0

0 0 1
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Rotation Matrix: Rotation by a general axis

Let the general axis be ω = (ωx, ωy, ωz) and the rotation angle be

θ. The rotation matrix R resulting from rotating around ω by θ

can be expressed as

Rodrigues’ rotation formula gives an efficient method for

computing the rotation matrix.
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Quaternion Representation of R

The relationship between a quaternion q = [q0, q1, q2, q3] and the

equivalent rotation matrix is

Here the quaternion is assumed to have been scaled to unit length,

i.e., |q| = 1.

The axis/angle representation ω/θ is strongly related to a

quaternion, according to the formula










cos(θ/2)

ωx sin(θ/2)

ωy sin(θ/2)

ωz sin(θ/2)
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where ω = (ωx, ωy, ωz) and |ω| = 1.
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R’s Orthnormality

The rotation matrix is an orthnormal matrix, which means its rows

(columns) are normalized to one and they are orthonal to each

other. The orthnormality property produces

Rt = R−1
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Interior Camera Parameters

Parameters (c0, r0), sx, sy, and f are collectively referred to as

interior camera parameters. They do not depend on the position

and orientation of the camera. Interior camera parameters allow us

to perform metric measurements, i.e., to convert pixel

measurements to inch or mm.
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Exterior Camera Parameters

Parameters like Euler angles ω, φ, κ, tx, ty, and tz are collectively

referred to as exterior camera parameters. They determine the

position and orientation of the camera.
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Camera Calibration and Pose Estimation

The purpose of camera calibration is to determine intrinsic camera

parameters: c0, r0, sx, sy, and f . Camera calibration is also

referred to as interior orientation problem in photogrammetry.

The goal of pose estimation is to determine exterior camera

parameters: ω, φ, κ, tx, ty, and tz . In other words, pose estimation

is to determine the position and orientation of the object coordinate

frame relative to the camera coordinate frame or vice versus.

Slide 48

Perspective Projection Invariants

Distances and angles are invariant with respect to Euclidian

transformation (rotation and translation). The most important

invariant with respect to perspective projection is called cross ratio.

It is defined as follows:

τ( A,B,C,D)=

A

B

C

D

ADAC
BC BD
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Cross-ratio is preserved under perspective projection.
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Projective Invariant for non-collinear points

Cross ratio of intersection points between a set of pencil of 4 lines

and another line are only function of the angles among the pencil

lines, independent of the intersection points on the lines. cross-ratio

may be used for ground plane detection from multiple image

frames.

Chasles’ theorem:

Let A, B, C, D be distinct points on a (non-singular) conic (ellipse,

circle, ..). If P is another point on the conic then the cross-ratio of
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intersections points on the pencil PA, PB, PC, PD does not depend

on the point P. This means given A,B,C, and D, all points P on the

same ellipse should satisfy Chasles’s theorem. This theorem may be

used for ellipse detection.

See section 19.3 and 19.4 of Daves book.


