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Camera Projection Models

We will introduce different camera projection models that relate
the location of an image point to the coordinates of the
corresponding 3D points. The projection models include: full
perspective projection model, weak perspective projection model,
affine projection model, and orthographic projection model.

H The Pinhole Camera Model ||
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Based on simply trigonometry (or using 3D line equations), we can

derive
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The Computer Vision Camera Model

optical axis

Image plane

optical center

fIc fyc
u = v =
Ze Ze

where ZL is referred to as isotropic scaling.The full perspective

projection is non-linear.
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‘Weak Perspective Projection

If the relative distance §z. (scene depth) between two points of a
3D object along the optical axis is much smaller than the average

distance z. to the camera (0z < %)7 ie, z. & Z

then
Tc JZc
u = f—r=
Ze  Ze
Y  Jye
vo= /R =
Ze  Ze

We have linear equations since all projections have the same scaling

factor.

Orthographic Projection ‘

As a special case of the weak perspective projection, when Zi factor
equals 1, we have u = z. and v = y., i.e., the lins (rays) of
projection are parallel to the optical axis, i.e., the projection rays
meet in the infinite instead of lens center. This leads to the sizes of
image and the object are the same. This is called orthgraphic

projection.
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Perspective projection geometry
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Figure 1: Perspective projection geometry
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Notations

Let P = (x y 2)" be a 3D point in object frame and U = (u v)* the
corresponding image point in the image frame before digitization.

Let X. = (z¢ ye zc)t be the coordinates of P in the camera frame
and p = (c r)? be the coordinates of U in the row-column frame
after digitization.
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‘ Projection Process ‘

Our goal is to go through the projection process
to understand how an image point (¢, ) is
generated from the 3D point (z,y, 2).

L 3D point in object frame

Affine
transfor mation

3D point in camera frame

Per spective
projection

Image point in image frame

Spatial Sampl{ng

Image point in row-column frame
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Relationships between different frames

Between camera frame (C.) and object frame (C,)
X.=RX +T (1)

X is the 3D coordinates of P w.r.t the object frame. R is the
rotation matrix and T is the translation vector. R and T specify
the orientation and position of the object frame relative to the

camera frame.

R and T can be parameterized as

11 Ti2 T13 ty
R=1 ro1 roa ro =1t
31 T32 T33 12

r; = (ri1,72,73) be a 1 x 3 row vector, R can be written as
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Substituting the parameterized T and R into equation 1 yields

Te 11 T12 713 x 2%
Yo | = | 121 T22 7123 y | T | ty
Ze 31 132 T33 z 12

e Between image frame (C;) and camera frame (C.)

Perspective Projection:

_ Jae
u =
Zc
¥
v o=
Zc
Hence,
Te U
X. = Ye =A v
e f

where A = % is a scalar and f is the camera focal length.
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Relationships between different frames (cont’d)

e Between image frame (C;) and row-col frame (Cp) (spatial
quantization process)

c s, 0 u ¢
= +1 7 (4)
T 0 sy v 70

where s, and s, are scale factors (pizels/mm) due to spatial
quantization. ¢g and ry are the coordinates of the principal
point in pixels relative to C),

Collinearity Equations

Combining equations 1 to 4 yields

s fT11$+Tl2y+T13Z+tm+cO
U rsim + raoy + a3z + L,

To1X + 7’22y + 232 + ty
r= Syf + To
r31% + 132y +r3zz + 1,
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Homogeneous system: perspective projection

In homogeneous coordinate system, equation 3 may be rewritten as

U f 0 0 T
Al v |[=] 0 f 0 Ye (5)
1 0 0 1 Ze

Note A = z..

Homogeneous System: Spatial Quantization

Similarly, in homogeneous system, equation 4 may be rewritten as

c s 0 ¢ u
r | = 0 sy 70 v (6)
1 0 0 1 1
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Homogeneous system: quantization + projection

Substituting equation 5 into equation 6 yields

Zc
c sef 0 ¢ O
Ye
Al r | = 0 syf rm O (7)
Zec
1 0 0 1 0
1

where \ = z..

Homogeneous system: Affine Transformation

In homogeneous coordinate system, equation 2 can be expressed as

Te ri1 Tz T3 iy T

Ye To1 T2 T2z 1ty Y
= (8)

Ze r31 T3z T3z it z

1 0 0 0 1 1
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Homogeneous system: full perspective

Combining equation 8 with equation 7 yields

c spfri+cors sz fty +cot:
Yy
Al r | = | syfra+rors syfty+rots 9)
z
1 r3 tz
1
P

where rq, r2, and r3 are the row vectors of the rotation matrix R,
A = z. is a scaler and matrix P is called the homogeneous

projection matrix.

P=WM
where
sz 0«
W= 0 fsy 10
0 0 1
M = (rT)

W is often referred to as the intrinsic matrix and M as exterior
matrix.

Since P=WM = [WR WT], for P to be a projection matrix,
Det(WR) # 0, i.e., Det(W) # 0.
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Weak Perspective Camera Model

For weak perspective projection, we have z. ~ Z, i.e.,
Ze = 15X + t, Hence,

S
u = =
Zc
Sy
vo= =
Zc
Hence,
U f T
v Ze \ ye
Or
U Te
-t
2 | e
! %
Since
c sz 0 «¢o U
r | = 0 sy 10 v
1 0 0 1 1
We have
c s 0 ¢ Te
I
r = Z_c 0 sy 10 g{c
1 0 0 1 *
Since
T
T Y
© | =Ry T
Ye z
1

where R is the first two rows of R and T5 is the first two elements
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Weak Perspective Camera Model

The weak perspective projection matrix is

fswrl fswtw + coZc
Pyear = fSyT'Z fsyty + roZc (10)

1x3 -
0 Ze

where 7, and ry are the first two rows of Ry and z, = r3 X + t,.

Weak Projection Camera Model

Another possible solution is as follows
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|| Affine Camera Model H

A further simplification from weak perspective camera model is the
affine camera model, which is often assumed by computer vision
researchers due to its simplicity. The affine camera model assumes
that the object frame is located on the centroid of the object being
observed. As a result, we have Z. ~ t,, the affine perspective
projection matrix is

Sz fr1 S fts + cols
Paffine = SyfT‘z Syfty + Totz (11)
0 t,
Affine camera model represents the first order approximation of the

full perspective projection camera model. It still only gives an
approximation and is no longer useful when the object is close to
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the camera or the camera has a wide angle of view.

Orthographic Projection Camera Model

Under orthographic projection, projection is parallel to the camera

optical axis.
therefore we have
U = I
v = Y
which can be approxmiated by z% ~ 1.

The orthographic projection matrix can therefore be obtained as

Szl Satx +Co
Porth = | syra syty +10 (12)
0 1
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Non-full perspective Projection Camera Model

The weak perspective projection, affine, and orthographic camera
model can be collectively classified as non-perspective projection
camera model. In general, the projection matrix for the

non-perspective projection camera model

x
c P11 P12 P13 DPi4
Y
A r = P21 P22 P23 P24
z
1 0 0 0 P34 1

Dividing both sides by p34 (note A = ps4) yields

x
c Vg
= May3 Yy +
T Uy
z

where m;; = p;j/psa and v, = p1a/p3a, vy = P2a/P34
For any given reference point (¢, r,) in image and (xo, yo, z0) in
space, the relative coordinates (¢,7) in image and (Z, 7, Z) in space

are
B T T — T,
c c—cp B
| = and | g | =| y—y
T =T B
z Z— 2z

It follows that the basic projection equation for the affine and weak

perspective model in terms of relative coordinates is
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Ql
I

= Mox3

=i
ST

An non-perspective projection camera Msy3 has 3 independent
parameters. The reference point is often chosen as the centroid
since centroid is preserved under either affine or weak perspective
projection.

Given the weak projection matrix P,

fsazr1  fsate + coZe

P = fsyra  fsyty + 102
0 Ze
The M matrix is
fszr1
_ Zc
M = Forrs
26
_ [ sem
EC SyT‘Q
f [ s« O 1
Zc 0 sy To

For affine projection, zZ, = t,, for orthographic projection, zi =1.

If we assume s, = sy, then

JSx 1
M = —
Zec 9

Then, we have only four parameters: three rotation angles and a
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scale factor.

‘Rotation Matrix Representation: Euler angles

Assume rotation matrix R results from successive Euler rotations of
the camera frame around its X axis by w, its once rotated Y axis
by ¢, and its twice rotated Z axis by &, then

R(w, ¢, k) = Rx(w)Ry () Rz (k)

where w, ¢, and k are often referred to as pan, tilt, and swing

angles respectively.
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Rotation Matrix Representation: Euler angles

X
pan angle
swing angle
z (optical axis)
tilt angle
Y
1 0 0
Ry(w) = 0 cosw sinw
0 —sinw cosw
cos¢p 0 —sing
Ry(¢) = 0 1 0
sing 0 cos¢
cosk sink O
R.(k) = —sink cosk 0

0 0 1
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Rotation Matrix: Rotation by a general axis

Let the general axis be w = (wy, wy,w,) and the rotation angle be
f. The rotation matrix R resulting from rotating around w by 6

can be expressed as

cos 6+ w} (1 —cos 6) Wy Wy (1 =cos ) -w, sinf  w, sinf + w, w, (1 -cos )
W, sinf + w; wy (1 —cos &) cus!‘?+wf(l -cos ) —ty Sin B + wy w, (1 —cos )
~w, sinf+w, w, (1 -—cos ) w,sinf+w, w, (1 -cosf) cos 0+ w (1 -cosf)

Rodrigues’ rotation formula gives an efficient method for

computing the rotation matrix.

‘ Quaternion Representation of R ‘

The relationship between a quaternion ¢ = [qo, g1, g2, g3] and the

equivalent rotation matrix is

Qoo + Q11 — G202 — 4ags 2(q1q2 — quas) 2(qgs + qog2)
R= 2(goq1 + qugs) 9040 — i1 + G292 — Gags 2(g2g3 = qog1)
2(gsq1 — qog2) 2(gsq2 + qoan) Qo0 = G141 — G202 + §ags

Here the quaternion is assumed to have been scaled to unit length,

ie., |q| =1.

The axis/angle representation w/6 is strongly related to a

quaternion, according to the formula

cos(0/2)
w, sin(6/2)
wy sin(0/2)
w,sin(6/2)
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where w = (wy, wy,w,) and |w| = 1.

R’s Orthnormality

The rotation matrix is an orthnormal matrix, which means its rows
(columns) are normalized to one and they are orthonal to each
other. The orthnormality property produces

R' =R
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|| Interior Camera Parameters H

Parameters (co, 70), Sz, Sy, and f are collectively referred to as
interior camera parameters. They do not depend on the position
and orientation of the camera. Interior camera parameters allow us
to perform metric measurements, i.e., to convert pixel

measurements to inch or mm.

H Exterior Camera Parameters ||

Parameters like Euler angles w, ¢, s, tg, t,, and t, are collectively
referred to as exterior camera parameters. They determine the

position and orientation of the camera.
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|| Camera Calibration and Pose Estimation ||

The purpose of camera calibration is to determine intrinsic camera
parameters: co, 70, Sz, Sy, and f. Camera calibration is also

referred to as interior orientation problem in photogrammetry.

The goal of pose estimation is to determine exterior camera
parameters: w, ¢, K, tz, ty, and t,. In other words, pose estimation
is to determine the position and orientation of the object coordinate

frame relative to the camera coordinate frame or vice versus.

Perspective Projection Invariants

Distances and angles are invariant with respect to Euclidian
transformation (rotation and translation). The most important
invariant with respect to perspective projection is called cross ratio.

It is defined as follows:

c
B
A
(A,B,C,D)= gg / ABB
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Cross-ratio is preserved under perspective projection.

Projective Invariant for non-collinear points

Cross ratio of intersection points between a set of pencil of 4 lines
and another line are only function of the angles among the pencil
lines, independent of the intersection points on the lines. cross-ratio
may be used for ground plane detection from multiple image

frames.

me eil

Chasles’ theorem:
Let A, B, C, D be distinct points on a (non-singular) conic (ellipse,
circle, ..). If P is another point on the conic then the cross-ratio of
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intersections points on the pencil PA, PB, PC, PD does not depend
on the point P. This means given A ,B,C, and D, all points P on the
same ellipse should satisfy Chasles’s theorem. This theorem may be
used for ellipse detection.

A )

See section 19.3 and 19.4 of Daves book.




