Camera Projection Models

We will introduce different camera projection models that relate the location of an image point to the coordinates of the corresponding 3D points. The projection models include: full perspective projection model, weak perspective projection model, affine projection model, and orthographic projection model.

 $u = \frac{-fx_c}{z_c} \qquad v = \frac{-fy_c}{z_c}$

 $u = \frac{fx_c}{z_c} \qquad v = \frac{fy_c}{z_c}$ where $\frac{f}{z_c}$ is referred to as isotropic scaling. The full perspective projection is non-linear.

Slide 4

derive

Slide 2

Slide 1

Weak Perspective Projection

If the relative distance δz_c (scene depth) between two points of a 3D object along the optical axis is much smaller than the average distance \bar{z}_c to the camera ($\delta z < \frac{\bar{z}}{20}$), i.e., $z_c \approx \bar{z}_c$

Slide 5

then

$$u = f \frac{x_c}{z_c} \approx \frac{f x_c}{\bar{z}_c}$$
$$v = f \frac{y_c}{z_c} \approx \frac{f y_c}{\bar{z}_c}$$

We have linear equations since all projections have the same scaling factor.

Notations

Slide 9

Let $P = (x \ y \ z)^t$ be a 3D point in object frame and $U = (u \ v)^t$ the corresponding image point in the image frame before digitization. Let $X_c = (x_c \ y_c \ z_c)^t$ be the coordinates of P in the camera frame and $p = (c \ r)^t$ be the coordinates of U in the row-column frame after digitization.

Relationships between different frames

Between camera frame (C_c) and object frame (C_o)

Slide 11

Slide 12

X is the 3D coordinates of P w.r.t the object frame. R is the rotation matrix and T is the translation vector. R and T specify the orientation and position of the object frame relative to the camera frame.

 $X_c = RX + T$

Substituting the parameterized T and R into equation 1 yields

$$\begin{pmatrix} x_c \\ y_x \\ z_c \end{pmatrix} = \begin{pmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} + \begin{pmatrix} t_x \\ t_y \\ t_z \end{pmatrix}$$
(2)

$$R \text{ and } T \text{ can be parameterized as}$$

$$R = \begin{pmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{pmatrix} \qquad T = \begin{pmatrix} t_x \\ t_y \\ t_z \end{pmatrix}$$

$$r_i = (r_{i1}, r_{i2}, r_{i3}) \text{ be a 1 x 3 row vector, } R \text{ can be written as}$$

$$R = \begin{pmatrix} r_1 \\ r_2 \\ r_3 \end{pmatrix}$$

• Between image frame (C_i) and camera frame (C_c) Perspective Projection:

$$u = \frac{fx_c}{z_c}$$
$$v = \frac{fy_c}{z_c}$$

Slide 14

Hence,

Slide 13

$$X_{c} = \begin{pmatrix} x_{c} \\ y_{c} \\ z_{c} \end{pmatrix} = \lambda \begin{pmatrix} u \\ v \\ f \end{pmatrix}$$
(3)

where $\lambda = \frac{z_c}{f}$ is a scalar and f is the camera focal length.

Relationships between different frames (cont'd)

• Between image frame (C_i) and row-col frame (C_p) (spatial quantization process)

Slide 15

$$\begin{pmatrix} c \\ r \end{pmatrix} = \begin{pmatrix} s_x & 0 \\ 0 & s_y \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} + \begin{pmatrix} c_0 \\ r_0 \end{pmatrix}$$
(4)

where s_x and s_y are scale factors (pixels/mm) due to spatial quantization. c_0 and r_0 are the coordinates of the principal point in pixels relative to C_p

Homogeneous system: quantization + projection

Substituting equation 5 into equation 6 yields

Slide 19

Slide 20

$$\lambda \begin{pmatrix} c \\ r \\ 1 \end{pmatrix} = \begin{pmatrix} s_x f & 0 & c_0 & 0 \\ 0 & s_y f & r_0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} x_c \\ y_c \\ z_c \\ 1 \end{pmatrix}$$
(7)

where $\lambda = z_c$.

Slide 21 Where r_1, r_2 , and r_3 are the row vectors of the rotation matrix R, $\lambda = z_c$ is a scalar and matrix P is called the homogeneous P = WM

Homogeneous system: Affine Transformation In homogeneous coordinate system, equation 2 can be expressed as $\begin{pmatrix} x_c \\ y_c \\ z_c \\ 1 \end{pmatrix} = \begin{pmatrix} r_{11} & r_{12} & r_{13} & t_x \\ r_{21} & r_{22} & r_{23} & t_y \\ r_{31} & r_{32} & r_{33} & t_z \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$ (8)

where

$$W = \begin{pmatrix} fs_x & 0 & c_0 \\ 0 & fs_y & r_0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$M = \begin{pmatrix} R & T \end{pmatrix}$$

Slide 22

W is often referred to as the intrinsic matrix and M as exterior matrix.

Since $P = WM = [WR \ WT]$, for P to be a projection matrix, $Det(WR) \neq 0$, i.e., $Det(W) \neq 0$.

Weak Perspective Camera Model

For weak perspective projection, we have $z_c \approx \bar{z}_c$, i.e., $\bar{z}_c \approx r_3^t \bar{X} + t_z$ Hence,

$$u = \frac{fx_c}{\bar{z}_c}$$
$$v = \frac{fy_c}{\bar{z}_c}$$

Slide 23

Or

Hence,

$$\begin{pmatrix} u \\ v \end{pmatrix} = \frac{f}{\bar{z}_c} \begin{pmatrix} x_c \\ y_c \end{pmatrix}$$
Or
$$\begin{pmatrix} u \\ v \\ 1 \end{pmatrix} = \frac{f}{\bar{z}_c} \begin{pmatrix} x_c \\ y_c \\ \frac{\bar{z}_c}{\bar{f}} \end{pmatrix}$$

Slide 25
of T. Or
$$\begin{pmatrix} x_c \\ y_c \\ \frac{\bar{x}_c}{\bar{f}} \end{pmatrix} = \begin{pmatrix} R_2 & T_2 \\ 0 & 0 & 0 & \frac{\bar{x}_c}{\bar{f}} \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$
Hence,
$$\begin{pmatrix} c \\ r \\ 1 \end{pmatrix} = \frac{f}{\bar{z}_c} \begin{pmatrix} s_x & 0 & c_0 \\ 0 & s_y & r_0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} R_2 & T_2 \\ 0 & 0 & 0 & \frac{\bar{z}_c}{\bar{f}} \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$

Since $\begin{pmatrix} c \\ r \\ 1 \end{pmatrix} = \begin{pmatrix} s_x & 0 & c_0 \\ 0 & s_y & r_0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} u \\ v \\ 1 \end{pmatrix}$ We have $\begin{pmatrix} c \\ r \\ 1 \end{pmatrix} = \frac{f}{\bar{z}_c} \begin{pmatrix} s_x & 0 & c_0 \\ 0 & s_y & r_0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_c \\ y_c \\ \frac{\bar{z}_c}{\bar{z}} \end{pmatrix}$ Slide 24 Since $\begin{pmatrix} x_c \\ y_c \end{pmatrix} = \begin{bmatrix} R_2 & T_2 \end{bmatrix} \begin{pmatrix} x \\ y \\ z \\ \vdots \end{bmatrix}$ where R_2 is the first two rows of R and T_2 is the first two elements

The weak perspective projection matrix is

Slide 27

$$P_{weak} = \begin{pmatrix} fs_x r_1 & fs_x t_x + c_0 \bar{z}_c \\ fs_y r_2 & fs_y t_y + r_0 \bar{z}_c \\ 0^{1 \times 3} & \bar{z}_c \end{pmatrix}$$
(10)

where r_1 and r_2 are the first two rows of R_2 and $\bar{z}_c = r_3 \bar{X} + t_z$.

Slide 31 the camera or the camera has a wide angle of view.

Slide 33

Slide 34

Non-full perspective Projection Camera Model

The weak perspective projection, affine, and orthographic camera model can be collectively classified as *non-perspective projection* camera model. In general, the projection matrix for the non-perspective projection camera model

$$\lambda \begin{pmatrix} c \\ r \\ 1 \end{pmatrix} = \begin{pmatrix} p_{11} & p_{12} & p_{13} & p_{14} \\ p_{21} & p_{22} & p_{23} & p_{24} \\ 0 & 0 & 0 & p_{34} \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$

Orthographic Projection Camera Model

Under orthographic projection, projection is parallel to the camera optical axis.

therefore we have

$$u =$$

Slide 32

 $v = y_c$

 x_c

which can be approximated by $\frac{f}{z_c} \approx 1$. The orthographic projection matrix can therefore be obtained as

$$P_{orth} = \begin{pmatrix} s_x r_1 & s_x t_x + c_0 \\ s_y r_2 & s_y t_y + r_0 \\ 0 & 1 \end{pmatrix}$$
(12)

Dividing both sides by p_{34} (note $\lambda = p_{34}$) yields

$$\begin{pmatrix} c \\ r \end{pmatrix} = M_{2\times 3} \begin{pmatrix} x \\ y \\ z \end{pmatrix} + \begin{pmatrix} v_x \\ v_y \end{pmatrix}$$

where $m_{ij} = p_{ij}/p_{34}$ and $v_x = p_{14}/p_{34}$, $v_y = p_{24}/p_{34}$

For any given reference point (c_r, r_r) in image and (x_0, y_0, z_0) in space, the relative coordinates (\bar{c}, \bar{r}) in image and $(\bar{x}, \bar{y}, \bar{z})$ in space are

$$\begin{pmatrix} \bar{c} \\ \bar{r} \end{pmatrix} = \begin{pmatrix} c - c_r \\ r - r_r \end{pmatrix} \text{ and } \begin{pmatrix} \bar{x} \\ \bar{y} \\ \bar{z} \end{pmatrix} = \begin{pmatrix} x - x_r \\ y - y_r \\ z - z_r \end{pmatrix}$$

It follows that the basic projection equation for the affine and weak perspective model in terms of relative coordinates is

$$\begin{pmatrix} \bar{c} \\ \bar{r} \end{pmatrix} = M_{2\times 3} \begin{pmatrix} \bar{x} \\ \bar{y} \\ \bar{z} \end{pmatrix}$$

Slide 35

An non-perspective projection camera $M_{2\times 3}$ has 3 independent parameters. The reference point is often chosen as the centroid since centroid is preserved under either affine or weak perspective projection.

Given the weak projection matrix P,

$$P = \begin{pmatrix} fs_x r_1 & fs_x t_x + c_0 \bar{z}_c \\ fs_y r_2 & fs_y t_y + r_0 \bar{z}_c \\ 0 & \bar{z}_c \end{pmatrix}$$

Then, we have only four parameters: three rotation angles and a

Rotation Matrix Representation: Euler angles

Assume rotation matrix R results from successive Euler rotations of the camera frame around its X axis by ω , its once rotated Y axis by ϕ , and its twice rotated Z axis by κ , then

$$R(\omega, \phi, \kappa) = R_X(\omega)R_Y(\phi)R_Z(\kappa)$$

Slide 38

where ω , ϕ , and κ are often referred to as pan, tilt, and swing angles respectively.

$$R_x(\omega) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \omega & \sin \omega \\ 0 & -\sin \omega & \cos \omega \end{pmatrix}$$
$$R_y(\phi) = \begin{pmatrix} \cos \phi & 0 & -\sin \phi \\ 0 & 1 & 0 \\ \sin \phi & 0 & \cos \phi \end{pmatrix}$$
$$R_z(\kappa) = \begin{pmatrix} \cos \kappa & \sin \kappa & 0 \\ -\sin \kappa & \cos \kappa & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Slide 40

Quaternion Representation of R
The relationship between a quaternion $q = [q_0, q_1, q_2, q_3]$ and the
equivalent rotation matrix is
$R = \begin{pmatrix} q_0q_0 + q_1q_1 - q_2q_2 - q_3q_3 & 2(q_1q_2 - q_0q_3) & 2(q_1q_3 + q_0q_2) \\ 2(q_2q_1 + q_0q_3) & q_0q_0 - q_1q_1 + q_2q_2 - q_3q_3 & 2(q_2q_3 - q_0q_1) \\ 2(q_3q_1 - q_0q_2) & 2(q_3q_2 + q_0q_1) & q_0q_0 - q_1q_1 - q_2q_2 + q_3q_3 \end{pmatrix}.$
Here the quaternion is assumed to have been scaled to unit length,
i.e., $ q = 1$.
The axis/angle representation ω/θ is strongly related to a
quaternion, according to the formula
$ \begin{pmatrix} \cos(\theta/2) \\ \omega_x \sin(\theta/2) \\ \omega_y \sin(\theta/2) \\ \omega_z \sin(\theta/2) \end{pmatrix} $

Slide 42

where $\omega = (\omega_x, \omega_y, \omega_z)$ and $|\omega| = 1$.

Camera Calibration and Pose Estimation

The purpose of camera calibration is to determine intrinsic camera parameters: c_0, r_0, s_x, s_y , and f. Camera calibration is also referred to as interior orientation problem in photogrammetry.

The goal of pose estimation is to determine exterior camera parameters: ω , ϕ , κ , t_x , t_y , and t_z . In other words, pose estimation is to determine the position and orientation of the object coordinate frame relative to the camera coordinate frame or vice versus. Slide 49

Cross-ratio is preserved under perspective projection.

Perspective Projection Invariants

Distances and angles are invariant with respect to Euclidian transformation (rotation and translation). The most important invariant with respect to perspective projection is called *cross ratio*. It is defined as follows:

Projective Invariant for non-collinear points

Cross ratio of intersection points between a set of pencil of 4 lines and another line are only function of the angles among the pencil lines, independent of the intersection points on the lines. cross-ratio may be used for ground plane detection from multiple image frames.

Slide 50

Chasles' theorem:

Let A, B, C, D be distinct points on a (non-singular) conic (ellipse, circle, ..). If P is another point on the conic then the cross-ratio of

Slide 47

intersections points on the pencil PA, PB, PC, PD does not depend on the point P. This means given A,B,C, and D, all points P on the same ellipse should satisfy Chasles's theorem. This theorem may be used for ellipse detection.

