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ABSTRACT

A very fast, low complexity algorithm for resolution scal-
able and random access decoding is presented. The algo-
rithm avoids the multiple passes of bit-plane coding for speed
improvement. The decrease in dynamic ranges of wavelet
coefficients magnitudes is efficiently coded. The hierarchi-
cal dynamic range coding naturally enables resolution scal-
able representation of a wavelet transformed image.

1. INTRODUCTION

Modern image coding methods, likeJPEG2000’s EBCOT,
are able to support simultaneously sub-image decompres-
sion (ROI), and also quality (SNR), resolution, and spectral
scalability. Unfortunately, while the loss in compression in-
curred by supporting these features can be quite small, they
may increase computational complexity significantly.

Quality scalability is commonly done via bit-plane cod-
ing, which also helps to improve compression, since neigh-
boring bits provide convenient and powerful contexts for en-
tropy coding. However, on many important applications the
images always need to have a pre-defined high quality, and
any extra effort required for quality scalability is wasted.

In this paper we consider fast coding methods that sup-
port only resolution scalability and efficient decompression
of sub-images. We focus on the entropy coding effort, which
becomes the most important on high-quality images since
its complexity grows with bit rate. Our solution addresses
the challenge of avoiding compression loss and at the same
time reducing complexity by not using bit-plane coding (and
its contexts), nor standard entropy coding.

The proposed algorithm,PROGRES(Progressive Reso-
lution Decompression) is a method that exploits the same
image properties asSPIHT, but adapted to support resolu-
tion scalability with great speed. For a pre-defined quality,
it can very efficiently decompress any image region at sev-
eral resolutions. It is an excellent choice for remote sensing
andGIS applications, where rapid browsing of large images
is necessary.

2. PREVIOUS WORK AND OVERVIEW

Speed improvements were observed in hybrid forms of bit-
plane coding, where once an image transform coefficient
is classified as significant during a bit-plane pass, its sign
and all its less significant bits are encoded together, so that
refinement passes are not needed [3]. Oliver and Malum-
bres [4] presentedLTW (Lower-Tree Wavelet), which is an-
other solution for resolution scalable wavelet image coding
with low complexity, based on non-embedded coding.

Similar to other wavelet based image coding methods
using intra and inter-band coding contexts, our method is
based on two properties of natural images: (a) energy in
each subband normally decreases with frequency; (b) statis-
tics in a local neighborhood are similar. Thus, we also use
the strategy of coding wavelet coefficients following the or-
der of expected importance, i.e., from low to high-resolution
subbands, and from most significant bits. However, to re-
duce the computational burden we do not follow a plane-
by-plane scan. Each coefficient, represented by sign and
magnitude, is processed only once.

Since we want to avoid using standard entropy coding
methods like arithmetic or Huffman codes, we can code
only the sign bit, and the bits below the most significant
non-zero bit, so the position of that bit (dynamic range)
must be known in advance. We code that value by coding its
difference from similar values at same position in the corre-
sponding subband with lower resolution. Coefficients in a
spatial-orientation tree are coded independently. This way
we sacrificeSNR scalability for faster coding, but preserve
both resolution scalability and ability to decode sub-images.

3. COEFFICIENT DYNAMIC RANGES

3.1. Representing the Dynamic Range of Coefficients

We useci,j andsi,j to represent, respectively, a wavelet co-
efficient at location(i, j), and the spatial orientation tree
(set of coefficients) with root at location(i, j).

As mentioned above, to represent the magnitude com-
pactly, the number of required bits should be known in ad-
vance. When the dynamic range of a coefficient magnitude



Table 1. Dynamic range of coefficients

Dynamic Dynamic range # bits for # bits
range bits of coefficient symbol index for sign

0 [0] 0 0
1 [-1, 0, 1] 1 1
2 [-3, · · · , 3] 2 1
... · · ·

...
...

10 [-1023,· · · , 1023] 10 1

is represented by the number of bits,k, the magnitude varies
in the range of [0, 1, · · ·, 2k−1]. Thus we call the number of
bits to represent the dynamic range asdynamic range bits.
For example, if the dynamic range bits of a coefficient is 3,
it can have the values varying from -7 to +7 with additional
one bit for sign information.

Each set (a spatial orientation tree) will have different
dynamic range of magnitudes in it, based on the activity of
its coefficients. We define thedynamic range bitsri,j of the
setsi,j as:

ri,j = dlog2( max
cp,q∈si,j

|cp,q|+ 1)e ,

which accounts for how many bits are required to represent
every coefficient magnitude in the set.

Table 1 shows the dynamic range bits, their correspond-
ing dynamic ranges, the number of bits for symbol index in
each range, and the corresponding sign information.

3.2. Coding of Energy Ranges in a Partitioned Set

When a parent set is partitioned into its children subsets
rooted in the next higher resolution band, each subset will
have a different dynamic range. Also, most of the energies
in children subsets are usually smaller than their parent set.
Therfore, child subsets are likely to have smaller dynamic
ranges of magnitudes than their parent set.

Thus, it is a good idea to predict the dynamic range of
energy in each subset based on the dynamic range of energy
of a parent set, as shown in Fig. 1. Assuming that a par-
ent setsi,j is partitioned into four subsets,s2i,2j , s2i,2j+1

, s2i+1,2j , s2i+1,2j+1, then ther2i,2j , r2i,2j+1 , r2i+1,2j ,
r2i+1,2j+1 are ranges for each subset, respectively.

Let I(i, j) = {(2i, 2j), (2i, 2j + 1), (2i + 1, 2j), (2i +
1, 2j + 1)} denote the set of position indices of the children
of setsi,j . Then, the range,rm,n, is defined for each subset
sm,n, (m,n) ∈ I(i, j).

Now, for representing the dynamic range bits of each
subsetsm,n, we encode

dbase = rparent − rchildren ,

whererparent is the dynamic rangeri,j of the parent setsi,j

andrchildren is the dynamic range of the children subsets of
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Fig. 1. Coding of Dynamic Ranges : the dynamic range
bits for each subsetsm,n, is reconstructed by :rchildren =
rparent − dbase, where the information ofrchildren is com-
mon to every subsetsm,n.

si,j , i.e.
rchildren = max

(m,n)∈I(i,j)
(rm,n) .

The encoding algorithm is described in Section 4.
Then, in the decoder side, given the information ofrparent

anddbase, rchildren can be reconstructed and we use this
value as the dynamic range bits for the children subsets
sm,n. Note that the information ofrparent − dbase is com-
mon to every subsetsm,n.

Now, the coded information for the treesi,j with two
resolution scales will be:

ri,j , ci,j , dbase, c2i,2j , c2i,2j+1, c2i+1,2j , c2i+1,2j+1,

wherec2i,2j , c2i,2j+1, c2i+1,2j , c2i+1,2j+1 are root coefficients
of each child subset. Theci,j and cm,n, (m,n) ∈ I(i, j)
contain sign information.

There is a reason why we choosedbase rather thanrchildren.
From our experience, it is more probable thatdbase ≤ rchildren,
i.e. P (dbase ≤ rchildren) > 0.5 in any wavelet transformed
image. AndP (dbase ≤ rchildren) is getting closer to 1 for
lower bit rates. This explains that codingdbase will cost less
bits than codingrchildren.

The above coding scheme of dynamic range bits is ap-
plied to every two adjacent resolution scales,k and (k+1),
k = 0 to M − 1, whereM is the highest resolution. In this
case, note that the number of parent-children relationships
is increased four times for each additional resolution scale.

4. CODING ALGORITHM

The encoding algorithm ofPROGRESis described here. For
simplicity, we assume thatLL subband has one wavelet
coefficient. Thus, the algorithm works on size2M × 2M
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Fig. 3. The Extended Idea of Dynamic Range Coding : the
dynamic range bits for each setC(sm,n), is reconstructed
by: rparents−dbase−dlocal,C(sm,n), where the information
of rchildren is common to every setC(sm,n).

wavelet coefficients ifM levels of wavelet decomposition
is performed. The listL contains the sets to be coded.

The sets0,0 rooted inLL subband has three subsets
s0,1, s1,0, s1,1, corresponding to subbandsHLM , LHM ,
HHM . Except root and leaf sets, every setsi,j has four
subsets,s2i,2j , s2i,2j+1 , s2i+1,2j , s2i+1,2j+1.

Fig. 2 shows the encoding algorithm. Note that ‘//’ in-
dicates the comments in corresponding statement.

As seen in Statement 5. in the algorithm, the PROGRES
coder encodes the transformed wavelet information resolu-
tion by resolution, from lower to higher. This enables the
progressive resolution decoding. Also, when a block of
wavelet coefficients corresponding to the same sub-image is
coded together, each sub-image is both random access de-
codable and progressive resolution decodable. In this way,
the target sub-image can be decoded by random access with
progressive resolution.

If the LL subband has more than one coefficient, each
of those coefficients becomes a root of a spatial orientation
tree. Each tree is coded by above algorithm, independently
to other tree coefficients.

5. THE EXTENDED IDEA OF DYNAMIC RANGE
CODING

ThePROGRESimage coder is built on the extended idea of
dynamic range coding. Instead of sharing thedbase value
among four children, it is shared by sixteen children, whose
parents are in the same tree level. In other words, these
sixteen children have the same grand-parent, as shown in
Fig. 3.

We assume(m,n) ∈ I(i, j) as before. Then, in Fig. 3,
C(sm,n) at resolutionk+1 indicates the children sets of
each setsm,n at resolutionk. Our goal here is to code the

Table 2. The comparison of coding time between original
RPI 2D-SPIHT, LTW, and the presented PROGRES (Lenna
8 bpp 512×512, Woman 8 bpp 2048×2048

Bitrate Encoding Decoding
(bpp) (cycles×106) (cycles×106)

SPIHT LTW PRO. SPIHT LTW PRO.
Lena
0.125 24.25 34.7 23.66 4.46 12.3 1.60
0.25 30.87 38.9 26.12 7.78 17.4 2.61
0.5 46.18 46.7 29.01 16.04 27.1 4.55
1.0 67.86 62.4 34.80 33.31 47.1 8.32
Woman
0.125 400.66 378.43 73.90 24.09
0.25 524.05 N/A 404.34 150.11 N/A 41.92
0.5 788.30 450.13 307.33 74.71
1.0 1370.54 528.42 675.15 128.42

root coefficients inC(sm,n) at resolutionk+1, i.e. the grand
children coefficients of the setsi,j .

The information ofrparents is available to every child
sm,n at resolutionk, since every root coefficientcm,n is
coded by usingrparents bits. Now, the dynamic range bits
for eachC(sm,n) at resolutionk+1 can be predicted in two
stages. First, therchildren is predicted bydbase, and then,
second, thedlocal,C(sm,n) is further used to predict the dy-
namic range bits for eachC(sm,n).

Thus, each setC(sm,n) has the dynamic range bits,
rparents−dbase−dlocal,C(sm,n) , whererparents−dbase =
rchildren. As a result, the sixteen root coefficients from
C(sm,n) are sharing the information ofdbase, which leads
to efficient coding of dynamic ranges.

6. EXPERIMENTAL RESULTS

Tests were performed using a Intel 2.0 GHz Xeon proces-
sor, MS-Windows 2000, and Visual C++ 6.0 Compiler with
speed optimization. The coding time of two 8 bpp gray scale
images,512 × 512 Lena and2048 × 2048 Woman, at the
rate of 0.125, 0.25, 0.5 and 1.0 bpp are shown in Table 2.
The coding time is measured in CPU cycles of the Pentium
processor.

The binary uncoded version of 2D-SPIHT fromRPI is
chosen for comparison. Note that wavelet transformation
times are not included. Six and eight levels of wavelet de-
composition with Daubechies 9/7 filters are used for Lena
and Woman, respectively. The PROGRES scheme performs
lossless coding of quantizer bin numbers on pre-quantized
wavelet transformed image. Note that both SPIHT and PRO-
GRES do not use subsequent entropy coding of the code
streams.

In Table 2, it shows that the encoding time of PROGRES
increases very slowly along the increasing bit rate and re-
veals greater speed improvement over SPIHT for higher bit



1. Find the maximum dynamic range bitsrparent and binary encode it;
2. if rparent = 0 return ; // no coefficients to encode ?
3. Initialize a listL← a set in the lowest resolution (i.e.LL subband);
4. Binary encode a root coefficient in the listL usingrparent bits;
5. for each resolution level (from the lowest to the highest)

(a) for each set in current resolution level

i. Enumerate subsets of the current set;
ii. rparent ← maximum dynamic range bits of current set;

iii. rchildren ← maximum dynamic range bits of subsets in current set;
iv. dbase ← rparent − rchildren;
v. Unary encodedbase;

vi. if rchildren = 0, goto (a)
vii. for each subseti

A. Binary encode the the root coefficient of the subseti usingrchildren bits and
encode its sign information using one bit;

B. if subseti has its descendants,
then append subseti to the end of the listL for next resolution coding;

viii. Remove the current set from the listL;

Fig. 2. Encoding algorithm.

Table 3. Decoding time of progressive resolutions

Lena (512×512) Woman (2048×2048)
Resolution Decoding time Resolution Decoding time

(cycles×106) (cycles×106)
16×16 0.4997 64×64 2.1385
32×32 0.5851 128×128 2.9157
64×64 0.8160 256×256 5.5415

128×128 1.5392 512×512 13.2441
256×256 3.0343 1024×1024 35.2448
512×512 4.6403 2048×2048 75.2314

rate, two times at 1.0 bpp. The speed improvement in de-
coding is achieved over all bit ranges, four times on average.
The loss of decoding quality (in PSNR) is almost ignorable
as shown in Table 4. For 0.5 bpp Woman, the decoded qual-
ity of PROGRES is slightly better than SPIHT. Also, PRO-
GRES outperforms LTW in [4], upto two times in encoding
and upto seven times in decoding, LTW uses arithmetic cod-
ing of bit ranges of coefficients in subbands.

Table 3 shows that the decoding times of Lena and Woman
at 0.5 bpp are increasing for progressively increasing reso-
lutions. .

7. CONCLUSION

The low time complexity 2D-image coding algorithm, PRO-
GRES (Progressive Resolution Decompression), is presented.
Non bit-plane coding scheme is applied to reduce the coding
time. The dynamic ranges of wavelet coefficients are effi-
ciently coded by sharing information of decrease in energy
along subbands with increasing frequencies. The proposed
method is faster than original 2D SPIHT, two times in en-

Table 4. Quality of decoded images by 2D-SPIHT and
PROGRES in PSNR

Bitrate (bpp) SPIHT (dB) PROGRES (dB)
Lena
0.125 30.7189 30.4187
0.25 33.7231 33.6211
0.5 36.8703 36.8095
1.0 40.0276 39.8659
Woman
0.125 26.9272 26.8769
0.25 29.4227 29.3993
0.5 32.9156 33.0040
1.0 37.7515 37.7434

coding and four times in decoding at 1.0 bpp. With only
small loss of quality, this scheme achieves a very low time-
complexity with resolution scalable and random access de-
codable features.
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