

Hierarchical Dynamic Range Coding of Wavelet
Subbands for Fast and Efficient Image Compression

CIPR Technical Report TR-2007-4

Yushin Cho and William A. Pearlman

March 2007

Center for
Image Processing Research

Rensselaer Polytechnic Institute
Troy, New York 12180-3590
http://www.cipr.rpi.edu

1

Hierarchical Dynamic Range Coding of
Wavelet Subbands for Fast and Ef�cient Image

Decompression
Yushin Cho and William A. Pearlman

Abstract

An image coding algorithm, PROGRES (Progressive Resolution Coding), for a high speed resolution
scalable decoding is proposed. The algorithm is designed based on a prediction of the decaying dynamic
ranges of wavelet subbands. Most interestingly, because of the syntactic relationship between two coders,
the proposed method costs very similar amount of bits as used by uncoded (i.e. not entropy coded)
SPIHT. The algorithm bypasses bit-plane coding and complicated list processing of SPIHT in order to
obtain a considerable speed improvement, giving up quality scalability, but without compromising coding
ef�ciency. Since each tree of coef�cients is separately coded, where the root of the tree corresponds to
the coef�cient in LL subband, the algorithm is easily extensible to random access decoding.

The algorithm is designed and implemented for both 2D and 3D wavelet subbands. Experiments show
that the decoding speeds of proposed coding model are four times and nine times faster than uncoded
2D-SPIHT and 3D-SPIHT respectively, with almost the same decoded quality. The higher decoding speed
gain in a larger image source validates the suitability of the proposed method to a very large scale image
encoding and decoding.

In the Appendix, we explain the syntactic relationship of the proposed PROGRES method to uncoded
SPIHT, and demonstrate that in the lossless case the bits sent to the codestream for each algorithm are
identical, except that they are sent in different order.

Y. Cho is with SONY Electronics, Inc., San Jose, CA 95112; E-mail: cho.yushin at gmail.com
W. A. Pearlman is with Rensselaer Polytechnic Institute, Electrical, Computer and Systems Dept., Troy, NY 12180-3590;

E-mail: pearlw@ecse.rpi.edu.
This work was carried out in the Center for Image Processing Research, Rensselaer Polytechnic Institute, Troy, NY, USA

and was supported in part by the Of�ce of Naval Research under Grant No. N00014-05-1-0507.

April 6, 2007 DRAFT

2

I. INTRODUCTION

Modern image coding methods [1], like JPEG2000's EBCOT [2], are able to support simultaneous

sub-image decompression (ROI), and also quality (SNR), resolution, and spectral scalability [3] [4].

Unfortunately, while the loss in compression incurred by supporting these features can be quite small,

they may increase computational complexity signi�cantly.

Quality or rate scalability is commonly done via bit-plane coding, which normally requires several

passes through all the pixels or transform coef�cients and uses adaptive entropy coding with powerful

contexts. However, in many important applications, such as the digital camera, the images need to have

a pre-de�ned quality and any extra effort required for quality scalability is wasted. Furthermore, there

are increasingly common applications where one may not be able to afford the additional time and

computation complexity required for rate scalability.

Image datasets for scienti�c and medical applications are growing to enormous sizes in the multi-

gigabyte and even terabyte range. These datasets are typically gathered by computer tomography and

electron microscopy and are often three-dimensional and even four-dimensional (three-dimensional versus

time). Fast decoding of regions of interest in multiple scales of resolution are essential properties for

the ef�cient utilization and exploitation of these data. These properties are needed for rapid browsing in

remote sensing and GIS applications, for example. In most cases, scienti�c image data must be encoded

losslessly and selected portions of this data must be decoded losslessly, so as to guarantee no loss

of analytic or diagnostic accuracy. In other cases, a designated high quality is often suf�cient for the

application. Therefore, the property of rate scalability is never utilized and is a considerable impediment

to fast decoding.

In this paper, we consider fast, ef�cient coding that supports resolution scalability and ef�cient de-

compression of sub-images by random access decoding. The methods are implemented both for two-

dimensional and three-dimensional images, but for the sake of clarity, we shall explain our algorithm in

the context of two-dimensional images, as the extension to three dimensions then becomes obvious. Our

solution addresses the challenge of avoiding compression loss, while simultaneously reducing complexity

by using neither bit-plane coding (and its contexts) nor subsequent entropy coding.

The original EZW [5] and SPIHT [6] do not support resolution scalability, since they do not code the

resolution boundaries. They also do not support random access decoding [3] [4], i.e., decoding of a given

region-of-interest by random access to the compressed bitstream.

The algorithm to be presented, PROGRES (Progressive Resolution Coding) is a method that exploits

April 6, 2007 DRAFT

3

the same image properties as SPIHT, but is adapted to support resolution scalability and random access

decoding with great encoding and decoding speed. For a pre-de�ned quality, it can ef�ciently decompress

any designated image region at several resolutions.

This paper is organized as follows. Section II provides an overview of the proposed coding method. In

Section III, we illustrate how dynamic ranges of coef�cients are hierarchically and ef�ciently coded in

each wavelet tree, where the decrease of dynamic range is shared among a group of coef�cients. Then a

description of the coding algorithm is given in Section IV. A step-by-step description of the PROGRES

coding scheme is given in Section V. Section VI presents the experimental results for both 2D and 3D

image sources, where the coding ef�ciency and coding speed of PROGRES are compared to the uncoded

SPIHT algorithm. Section VII concludes the paper. In the Appendix, the relationship between PROGRES

and SPIHT is explained in detail.

II. PREVIOUS WORK AND OVERVIEW

Speed improvements were observed in hybrid forms of bit-plane coding, where once an image transform

coef�cient is classi�ed as signi�cant during a bit-plane pass, its sign and all its less signi�cant bits are

encoded together, so that re�nement passes are not needed [7].

A simple hierarchical coder, SWEET, proposed by Andrew [8], codes the coef�cients with multiple

bit planes based on both hierarchical set partitioning and block-coding. This set partitioning scheme does

not achieve the performance of SPIHT [6], but the coef�cient coding scheme (with a bin ofn bits) does

lead to reduction in computations.

The low-complexity, embedded wavelet based coder presented by Ordentlich et. al. [9] uses neither

zerotree nor arithmetic coding and instead encodes bit lanes with faster adaptive Elementary Golomb

codes. This paper shows similar PSNR performance to SPIHT-AC (Arithmetic Coded) and superior to

SPIHT (uncoded). No execution time numbers were reported and the software is no longer available [10].

Berghorn et al. [11] also presented a fast embedded wavelet-based coding algorithm, based on adaptive

arithmetic coding of signi�cance state symbols and distance differences of signi�cant2×2 blocks in scan

modes across scales. Adaptive arithmetic coding is also used for coding the bit planes in the re�nement

passes. Total execution times, including wavelet transform, proved to be smaller than SPIHT-AC. Both

Ordentlich et al. [9] and Berghorn et al. [11] rely on adaptive entropy coding of bit planes in order

to produce embedded codestreams. Both these methods require multiple passes through the wavelet

coef�cients and have no option for bypassing bit plane coding to gain coding and decoding speed.

Oliver and Malumbres [12] presented LTW (Lower-Tree Wavelet), which is another solution for

April 6, 2007 DRAFT

4

resolution scalable wavelet image coding with low complexity, based on non-embedded coding. The

lower-trees are equivalent to the zerotrees of pre-quantized wavelet coef�cients, where the quantization

step size is 2rplane (rplane is the number of the lowest bit-planes to drop). Arithmetic coded symbols

for zerotree, isolated zero, and number of bits to represent the magnitude of coef�cients are used.

Highly scalable SPIHT (HS-SPIHT), presented by Danyali and Mertins [13], enables the SPIHT

algorithm to have spatial scalability. It introduced multiple resolution-dependent lists and a resolution-

dependent sorting pass. Thereby, it can keep the important features of the original SPIHT algorithm such

as compression ef�ciency, full SNR scalability and low complexity. However, the focus of this method

is on the expansion of scalability, instead of reduction of computation. This method also does not allow

random access decoding.

Similar to other wavelet based image coding methods [5] [6] [14] [15] [16] using intra and inter-

band coding contexts, our method is based on two properties of natural images: (a) energy in each

subband normally decreases with spatial frequency [17]; and (b) statistics in a local neighborhood are

similar. Thus, we also use the strategy of coding wavelet coef�cients following the order of expected

importance from most to least signi�cant bits, from low to high-resolution subbands. However, to reduce

the computational burden we do not follow a bit plane-by-bit plane scan. Each coef�cient, represented

by sign and magnitude, is processed only once.

The wavelet transform of an image is partitioned into a number of non-overlapping spatial orientation

trees, each rooted by a coef�cient in the lowest spatial frequency subband. This enables an easy extension

of the proposed coding scheme to random access decoding, because each tree represents a region of the

image geometrically similar to the root in the lowest spatial frequency subband.

The dynamic range of a tree of wavelet coef�cients is represented as adynamic range number, which

gives the number of bits required to represent every magnitude of the coef�cient in the tree. Based on

the assumption of decaying power spectral density, the dynamic ranges of descendant subtrees are highly

likely to be smaller than that of the parent tree. We code the amount of this decrease in dynamic range

number by lossless differential coding.

In addition, since a local neighborhood of wavelet coef�cients has similar statistics, the descendant

subtrees can share the information of decrease in dynamic range. This procedure is hierarchically applied

to each coef�cient resolution by resolution. Because a decrease in dynamic range between parent and

children coef�cients affects not just those children (i.e. the second generation) but all their descendants

also, the presented dynamic range coding method ef�ciently represents the hierarchy of dynamic ranges

over a spatial orientation tree.

April 6, 2007 DRAFT

5

III. HIERARCHICAL DYNAMIC RANGE CODING

A. Dynamic Range of Coef�cients and a Tree of Coef�cients

We use ci,j and si,j to represent, respectively, a wavelet coef�cient at location (i, j), and a tree of

coef�cients with root at location (i, j) (See Fig. 1).

a wavelet coefficient ci,j

HH1HL1

HL1

a tree si,j

Fig. 1. Wavelet coef�cient ci,j and a tree of coef�cients si,j

As mentioned above, to represent the magnitude compactly, the number of required bits should be

known in advance. When the dynamic range of a coef�cient magnitude is represented by the number

of bits, k, the magnitude varies in the range of [0, 1, · · ·, 2k − 1]. We shall call that number of bits the

dynamic range number, which is analogous to the set number in AGP described in [18]. For a non-zero

coef�cient, an additional bit is required to represent its sign.

Each tree (a spatial orientation tree) will contain a different dynamic range of magnitudes, based on

the activity of its coef�cients. We de�ne the dynamic range number ri,j of the tree si,j as:

ri,j = dlog2(max
cp,q∈si,j

|cp,q|+ 1)e ,

which accounts for how many bits are required to represent every coef�cient magnitude in the tree.

April 6, 2007 DRAFT

6

B. Coding of Dynamic Ranges in a Tree: One-Stage Prediction

When a tree is partitioned into its subtrees, each subtree will have a different dynamic range, probably

a decreased one, because the root coef�cient of the tree is likely to have the largest magnitude in the

tree. Thus, subtrees (i.e. child trees) are likely to have smaller dynamic ranges than that of their parent

tree.

si,j

dynamic range
number

ri,j

resolution k

resolution k
rparent

rchildren

four subtrees of si,j

r2i,2j

r2i,2j+1

r2i+1,2j r2i+1,2j+1

dbase

resolution k+1

resolution k+1

resolution

Fig. 2. One-stage dynamic range coding : each subtree sm,n of si,j is coded by using the same dynamic range number of
rchildren, which is reconstructed by : rchildren = rparent − dbase. The information dbase is actually coded to represent the
coef�cients in subtree sm,n.

Therefore, it is a good idea to predict the dynamic range of each subtree based on the dynamic range

of a parent tree, as shown in Fig. 2. Assuming that a parent tree si,j is partitioned into four subtrees,

s2i,2j , s2i,2j+1, s2i+1,2j , and s2i+1,2j+1, then the r2i,2j , r2i,2j+1, r2i+1,2j , and r2i+1,2j+1 are the dynamic

ranges for each subtree, respectively.

Let I(i, j) = {(2i, 2j), (2i, 2j + 1), (2i + 1, 2j), (2i + 1, 2j + 1)} denote the set of position indices of

the four subtrees of tree si,j . Then, the range, rm,n, is de�ned for each subtree sm,n, (m,n) ∈ I(i, j).

Now, for representing the dynamic range number of each subtreesm,n, we encode

dbase = rparent − rchildren ,

where rparent is the dynamic range number ri,j of the parent tree si,j and rchildren is the dynamic range

April 6, 2007 DRAFT

7

number of the subtrees of si,j , i.e.

rchildren = max
(m,n)∈I(i,j)

(rm,n) .

Note that one dynamic range number, rchildren, is used to represent the magnitudes in all subtrees.
Then, in the decoder side, given the information of rparent and dbase, rchildren can be reconstructed

and we use this value as the dynamic range number for the subtreessm,n. Note that the information of

rparent − dbase is common to every subtree sm,n.
Now, the coded information for the tree si,j with two resolution scales will be:

ri,j , ci,j , dbase, c2i,2j , c2i,2j+1, c2i+1,2j , c2i+1,2j+1,

where c2i,2j , c2i,2j+1, c2i+1,2j , c2i+1,2j+1 are root coef�cients of each subtree. Theci,j and cm,n, (m,n) ∈ I(i, j)

contain sign information. The ci,j comprises ri,j + 1 bits of information including a sign. The cm,n,

(m,n) ∈ I(i, j), comprise ri,j − dbase + 1 bits of information including a sign.
There is a reason why we choose dbase rather than rchildren to code, where rchildren = rparent−dbase.

From our experience, it is more probable that dbase ≤ rchildren, in other words, it can be observed that

the probability P (dbase ≤ rchildren) > 0.5 in any wavelet transformed image and P (dbase ≤ rchildren) is

getting closer to 1 for lower bit rates. This explains why codingdbase will cost fewer bits than coding

rchildren.
The above coding scheme of dynamic range is applied to every two adjacent resolution scales,k and

(k+1), k = 0 to M − 2, where M − 1 is the highest resolution. In this case, note that the number of

parent-children relationships increases four times for each additional resolution scale of a 2D transform

image.
By coding the decrease in dynamic range number ordbase for each group of four subtrees, the amount

of bit savings is simply 3 × dbase bits since we would need a different decrease in the dynamic range

number for each subtree if we did not use the common dbase information.

C. Coding of Dynamic Ranges in a Tree: Two-Stage Prediction

The PROGRES image coder is built on an extension of the idea of dynamic range coding (by a one-

stage prediction) described in the previous subsection III-B. Instead of sharing thedbase value among

four children coef�cients, it is shared by sixteen coef�cients in practice, whose parents are at the same

tree level. In other words, these sixteen children have the same grandparent, as shown in Fig. 3. By doing

this, about 1.5% coding gain is achieved in our experiments. However, sharing a `decrease in dynamic

range' with more than sixteen children does not seem to give any improvements in coding gain.

April 6, 2007 DRAFT

8

si,j resolution

dynamic range
number

r2i,2j

r2i,2j+1

r2i+1,2j r2i+1,2j+1

ri,j

dlocal,

resolution k resolution k+1

rk+1

rk+2

resolution k+2

dbase

subtree (s2i,2j)

resolution k+1 resolution k+2resolution k

rk

r

four subtrees of si,j

subtree (s2i,2j)

subtree (s2i,2j)

Fig. 3. Two-stage dynamic range coding : the dynamic range for each tree in subtree(sm,n), is reconstructed by: rk+1 −
dbase− dlocal, subtree(sm,n), where the information of rk+2 = rk+1− dbase is common to every tree subtree(sm,n). (Here, an
example for (m, n) = (2i, 2j) is shown.) The rk, rk+1, rk+2 stand for the dynamic range numbers of trees rooted at resolution
k, k+1, k+2, respectively. The rsubtree(s2i,2j) is the dynamic range number of all subtrees of s2i,2j .

We assume (m,n) ∈ I(i, j) as before. Then, in Fig. 3, subtree(sm,n) at resolution k+2 indicates the

subtrees of each tree sm,n at resolution k+1. Our goal here is to code the coef�cients of subtree(sm,n)

located at resolution k+2, i.e. the grandchildren coef�cients of the tree si,j .

In Fig. 3, the rk, rk+1, rk+2 stand for the dynamic range numbers of trees rooted at resolutionsk, k+1,

k+2, respectively. The information of rk+1 is available to every subtree(sm,n) at resolution k + 2, since

every coef�cient cm,n at the resolution k+1 (which is the root of subtree(sm,n)) is coded with rk+1 bits.

Now, the dynamic range for each subtree(sm,n) at resolution k+2 can be predicted in two stages. First,

the rk+2 is predicted by dbase from rk+1, and then the dlocal,subtree(sm,n) is further used to predict the

dynamic range for each subtree(sm,n).

Thus, all trees in subtree(sm,n) has the dynamic range number, rk+1 − dbase − dlocal, subtree(sm,n) ,

where rk+1 − dbase = rk+2 and rk+2 − dlocal, subtree(sm,n) = rsubtree(sm,n). As a result, subtree(sm,n)'s

sixteen coef�cients at resolution k+2 are sharing the information of dbase, which enables the PROGRES

April 6, 2007 DRAFT

9

algorithm to code the dynamic ranges ef�ciently.

IV. CODING ALGORITHM

A. Algorithm Description

The description of the coding algorithm, which we call PROGRES, is given in Table 4 and the

explanation of the variables used in the algorithm is provided in Fig. I. Assume we haveM resolutions,

0, 1, 2, . . . , M − 1, 0 for the lowest resolution, and M − 1 for the highest resolution. The algorithm is

repeatedly applied to each wavelet tree separately. At the beginning of the algorithm, the listL will

always contain the root coordinate of the tree yet to be coded. The algorithm then encodes each tree of

wavelet coef�cients successivly from low to high spatial resolution. Once the listL is initialized, the root

coef�cient magnitude is coded with MAXR bits, which is a predetermined maximum dynamic range of

coef�cients. Then, each of the three children of a root coef�cient, inHL, LH , and HH subbands, is

coded using the decrease of dynamic range bits.
For each resolution k (Statement 10 of the algorithm), �rst the difference (i.e. thedbase) of two dynamic

range numbers between resolution k+1 and k+2, i.e. rk+1 and rk+2 respectively, is calculated and coded.

And then, based on the dynamic range number for resolution k + 2, i.e. rk+2, the decrease (i.e. the

dlocal, subtree(sm,n)) of dynamic range number to each subtree(sm,n)'s four coef�cients at resolution k+2

is calculated and coded. Finally, each subtree(sm,n)'s four coef�cients at resolution k+2 is coded with

rk+1 − dbase − dlocal, subtree(sm,n) bits.
While dbase represents the difference of dynamic range numbers between resolution k+1 and k+2,

the dlocal subtree(sm,n) represents the decrease of dynamic range numbers between resolution k+2 and

rsubtree(sm,n). The statement dbase ← rk+1− rk+2 at 10.(a).iii and the statement dlocal ← rk+2− rsubtree

at 10.(a).iv.B correspond to these range numbers, respectively.

B. Unary Coding

Unary coding is used for coding the decreases in dynamic ranges over two adjacent resolutions, i.e.

dbase and dlocal. Unary coding is a pre�x code that is nearly1 the optimal Huffman code for the exponential

probability distribution. The unary code for an integer number is that number of 1's followed by a single

0. For example, 0, 10, 110, . . . represent the codewords for the events x0, x1, x2, . . . with the probabilities

p(x0) = 1
2 , p(x1) = 1

4 , p(x2) = 1
23 , . . ., respectively. When the distribution of the source follows the

exponential probability distribution, the average coding rate of unary coding is close to 2 bits/symbol.

1Except for the two least probable symbols, which have the same codeword length and differ by 1 bit for the Huffman code.

April 6, 2007 DRAFT

10

1) Initialize a list L ← a tree rooted at the lowest resolution (i.e. LL subband);

2) Find the maximum dynamic range number r0;

3) if r0 = 0 return; // no coef�cients to encode ?

4) Binary encode the magnitude of root coef�cient withMAXR bits and encode its sign bit

with one bit (MAXR is a prede�ned number);

5) r1 ← a maximum dynamic range number of the subtrees of the root coef�cient;

6) dbase ← r0 − r1;

7) Unary encode dbase;

8) if r1 = 0 exit // means, nothing to encode (i.e. zerotree), thus exit

9) Binary encode the coef�cient magnitudes at resolution 1 using r1 bits and encode their

sign bits;

10) for each resolution level k = 0 to M − 3

a) for each tree j rooted at current resolution level k

i) rk+1 ← a maximum dynamic range number of subtree(tree j);

ii) rk+2 ← a maximum dynamic range number of subtree(subtree(tree j));

iii) dbase ← rk+1 − rk+2;

iv) Unary encode dbase;

v) if rk+1 = 0 continue; // Nothing to encode for tree j? Then, goto a)

vi) for each subtree i (i.e. rooted at resolution k+1)

A) rsubtree ← maximum dynamic range number of subtree(tree i);

B) dlocal ← rk+2 − rsubtree;

C) Unary encode dlocal;

D) if rsubtree = 0 continue; // Nothing to encode for tree i? Then, goto vi)

E) Binary encode the children coef�cients (i.e. at resolution k+2) of subtree i

using rsubtree bits for each and encode their sign bits;

F) Append subtree i to the list L for next resolution coding;

vii) Remove the current tree j from the list L;

Fig. 4. PROGRES Coding Algorithm (Explanation of the variables used in the algorithm is provided in Table I).

April 6, 2007 DRAFT

11

L A list of coordinates of roots of trees yet to be coded.
M Number of spatial resolutions numbered k = 0, 1, 2, . . . , M − 1; k = 0 is LL subband.

r0, r1 Dynamic ranges of a input tree with resolutions M − 1 to 0 and M − 1 to 1, respectively.
MAXR A predetermined number larger than the maximum dynamic range of the input wavelet tree.
dbase Difference of dynamic range between two adjacent resolutions.

rk+1, rk+2 Variables to store the dynamic ranges shown in Fig 3.
subtree(tree j) A set of all subtrees of tree j

rsubtree Dynamic range of all subtrees of a tree rooted at resolution k+1.
dlocal Difference of dynamic range between rk+2 and rsubtree.

TABLE I

VARIABLE DESCRIPTION OF PROGRES CODING ALGORITHM IN FIG. 4.

C. Bitstream structure

b0,0 b0,1 ... b0,M-1 b1,0 b1,1 ... b1,M-1

block 0 block 1

...

the lowest
resolution

the highest
resolution

Fig. 5. A bitstream structure (bi,j notates the resolution j of the subimage i)

For M levels of wavelet decomposition, the number of coef�cients in each tree is2M × 2M , which

are the dimensions of the corresponding subimage of the source image located at the root coordinates.

(We call this `subimage' or `image block' here.) The structure of the output bitstream for a given image

block i is a sequence of code segments b(i, j) for resolutions j = 0 through j = M − 1, as shown

in Fig. 5. Whenever a full bitstream block i is decoded, the full resolution decoded subimage i is

obtained. Decoding only segments b(i, 0) through b(i,K−1) produces a reconstructed subimage reduced

in resolution by 2M−K . Therefore, we see that the PROGRES coder is truly resolution progressive in

encoding and decoding.

Each tree, rooted at each coef�cient in LL subband, is encoded independently of other trees. Random

April 6, 2007 DRAFT

12

access decoding is made possible from this property. At the beginning of the part of the bitstream for

each coded tree (i.e. each bitstream block in Fig. 5), header information of the coded tree size can be

simply added during encoding. In this way, each tree of wavelet coef�cients can be randomly accessed in

the bitstream and decoded individually. In addition, the progressive resolution decoding works together

with random access decoding. This means that once we designate coordinates of the subimage to be

decoded, it can be decoded from lower to higher resolutions progressively. Fig. 6 illustrates this idea.

Encoding

An encoded bitstream

512 x 512 Lenna

block k

Query : "Decode 32x32
block at (256,256)

D
ec

od
e

Progressive resolution
decoding in each block

random access

Fig. 6. Simultaneously progressive resolution and random access decoding

V. AN EXAMPLE OF PROGRES CODING

For the wavelet coef�cients of Fig. 7, the step by step demonstration of PROGRES coding is described

in Tables II and III. Each row of the table shows each coding step sequentially.

The basic processing order of the source wavelet coef�cients is resolution by resolution. And for each

resolution, the coef�cient is visited by the numbering policy shown in Fig. 8. Note that this policy is the

same as the BFS (Breadth First Search) algorithm. The coef�cients in the next higher level resolution

will never be processed until the ones in the current resolution level are all �nished. In the last column

of the Tables II and III, a pair of parenthesized number and a number such as (0) 96 and (1) -6 indicates

the scanning order of current wavelet coef�cient and the wavelet coef�cient itself (i.e. the coef�cient 96

is processed �rst and the coef�cient -6 is processed in the second).

April 6, 2007 DRAFT

13

First, the initial dynamic range number rparents for the 16×16 wavelet coef�cients block (representing

the 16×16 image block) is 7. This means that the maximum coef�cient magnitude can be27−1, which

is 127. The coef�cient range with sign is [−127, 127]. All the coef�cient magnitudes in this block can be

represented by 7 bits, although the dynamic range prediction scheme of PROGRES will further reduce

the dynamic range through increasing resolutions. The information about the number of bits required to

represent the dynamic range can be viewed as the set number in the AGP method discussed in [18]. The

actual maximum coef�cient is 96 as seen in Fig. 7, which is located in the LL subband, i.e. the resolution

level 0. Thus, the magnitude 96 and its sign `+' are coded by 7 + 1 bits.

Now, each of the three coef�cients (1) -6, (2) -25, and (3) -8 at resolution level 1 (See Fig. 7) is coded

with 5 bits to accommodate the range maximum for `(2) -25'. Note that, the root coef�cient (0) has three

children coef�cients, (1), (2), and (3), which is different from other coef�cients that have four children

coef�cients.

In Tables II and III, note that ,if the `current dynamic range number' becomes 0, there is nothing to

code, since all the coef�cients in the group are just zeros.

Fig. 7. 16× 16 quantized wavelet transformed image, four levels of decomposition, truncated to integer.

VI. EXPERIMENTAL RESULTS: 2D AND 3D CODING

Tests were performed using an Intel 2.0 GHz Xeon processor, MS-Windows 2000, and Visual C++ 6.0

Compiler with speed optimization. The compression and decompression times are measured in CPU cycles

for 2D images (since 2D image coding times are very small) and seconds for 3D images (video). The

April 6, 2007 DRAFT

14

Fig. 8. Coef�cients scanning order in PROGRES algorithm for 16× 16 image block

2D version of the proposed PROGRES algorithm is straightforwardly extended to a 3D version using

three-dimensional DWT and IDWT, three-dimensional wavelet coef�cient trees of nominal branching

factor 8, and dynamic range coding of 8 children sets and 64 grandchildren sets.

The binary uncoded versions of 2D-SPIHT [6] and 3D-SPIHT [19] from Rensselaer Polytechnic

Institute (RPI), which do not use arithmetic coding, are chosen for comparison. Wavelet transformation

times are not included, in order to measure speeds of encoding and decoding only. Six and eight levels

of wavelet decomposition with Daubechies 9/7 �lters [20] are used for Lena and Woman, respectively.

The PROGRES scheme performs lossless coding of quantizer bin numbers of the pre-quantized wavelet

transform of the source image. Note that both SPIHT and PROGRES used here do not use subsequent

entropy coding of the code streams.

A. 2D Case

The 2D image coding times for 8 bpp gray scale images, 512× 512 Lena and 2048× 2048 Woman,

at the rate of 0.125, 0.25, 0.5 and 1.0 bpp are shown in Table IV.

0.125 298604638 227449803 0.25 430903525 370313769 0.5 666157506 616700070 1.0 1193089359

1066487919

Because PROGRES uses no context-based, adaptive entropy coding, a fairer comparison in PSNR is

to binary, uncoded SPIHT, instead of entropy coding based methods such as [12] [9] [11]. For time

complexity comparison, we compare with LTW [12] algorithm, providing encoding and decoding times

in millions of CPU cycles.

Table IV shows that the encoding speed gains of PROGRES over SPIHT are, 1.02 to 1.95 times for

April 6, 2007 DRAFT

15

TABLE II
STEP BY STEP DEMONSTRATION OF PROGRES CODING

(RESOLUTION 0 THROUGH 3. THE PARENTHESIZED NUMBERS INDICATE THE ORDER OF COEFFICIENT ENCODING.)

Resolution rparents dbase rchildren dlocal Current dynamic Coded information
level range number diff (scan order) coef�cient value

0 7 7 7 (0) 96

1 7 2 5 5 2 (1) -6 (2) -25 (3) -8

2 5 1 4 4 1
2 0 4 0 (4) 1 (5) -7 (6) 2 (7) -10
2 1 3 1 (8) -3 (9) -2 (10) 3 (11) -2
2 1 3 1 (12) 0 (13) 3 (14) -3 (15) -4

3 4 1 3 3 1
3 2 1 2 (16) 1 (17) 0 (18) 0 (19) 0
3 1 2 1 (20) 2 (21) -3 (22) 0 (23) 0
3 1 2 2 (24) 0 (25) 3 (26) 3 (27) 1
3 0 3 0 (28) -1 (29) -7 (30) 0 (31) -6
3 3 0 3 3 1
3 2 1 2 (32) -1 (33) 0 (34) 0 (35) 0
3 2 1 2 (36) -1 (37) 1 (38) 1 (39) -1
3 2 1 2 (40) 0 (41) 1 (42) -1 (43) 0
3 0 3 0 (44) -1 (45) 1 (46) -5 (47) -4
3 3 1 2 2 1
3 2 0 2
3 1 1 1 (52) 0 (53) 1 (54) 1 (55) 0
3 0 2 0 (56) -1 (57) 2 (58) 0 (59) -2
3 0 2 0 (60) -2 (61) -1 (62) 0 (63) 3

Lena and 1.06 to 2.59 times for Woman. The speed improvement over SPIHT in decoding is four times

on average, 2.79 to 4.0 times for Lena and 3.07 to 5.25 times for Woman over the four bit rates in the

Table. The difference between encoding and decoding times of PROGRES coder is mostly due to the

tree analysis step in the encoder side, which recursively shifts up the maximum coef�cient magnitude

from bottom to top across the wavelet coef�cient trees. Also, it is seen in the Table that PROGRES

outperforms the coding speed of LTW in [12], up to two times in encoding and up to seven times in

decoding. LTW exploits entropy coding of symbols and gives better coding ef�ciency than SPIHT and

PROGRES (LTW is 0.1 to 0.2 dB better than SPIHT-AC and 0.6 dB better than uncoded SPIHT for the

bit rates 0.125, 0.25, 0.5, and 0.1 bpp).

For the bitrates 0.25 to 1.0 bpp of Lena, the encoding algorithm of Berghornet al. [11] is approximately

1.6 to 1.5 times faster than SPIHT-AC encoding; and decoding is 1.8 to 0.9 times faster than SPIHT-AC

April 6, 2007 DRAFT

16

TABLE III
STEP BY STEP DEMONSTRATION OF PROGRES CODING (RESOLUTION 4)

(CONTINUED FROM TABLE II. THE PARENTHESIZED NUMBERS INDICATE THE ORDER OF COEFFICIENT ENCODING)

Resolution rparents dbase rchildren dlocal Current dynamic Coded information
level range number diff (scan order) coef�cient value

4 1 1 0 0 1
4 2 1 1 1 1
4 1 0 1
4 1 0 1
4 1 0 1
4 0 1 0 (92) 0 (93) 0 (94) 0 (95) -1
4 2 1 1 1 1
4 0 1 0 (96) 0 (97) -1 (98) 0 (99) -1
4 0 1 0 (100) 0 (101) 0 (102) 1 (103) 0
4 1 0 1
4 1 0 1
4 3 1 2 2 1
4 1 1 1 (112) 0 (113) 1 (114) 0 (115) -1
4 0 2 0 (116) -1 (117) 0 (118) 0 (119) -2
4 2 0 2
4 2 0 2

4 1 0 1 1 0
4 0 1 0 (128) -1 (129) 0 (130) 0 (131) 0
4 1 0 1
4 1 0 1
4 1 0 1
4 1 0 1 1 0
4 1 0 1
4 1 0 1
4 1 0 1
4 0 1 0 (156) 0 (157) 0 (158) 0 (159) 1
4 1 0 1 1 0
4 3 2 1 1 2
4 1 0 1
4 0 1 0 (180) -1 (181) -1 (182) 1 (183) 0
4 0 1 0 (184) 1 (185) 0 (186) 0 (187) -1
4 0 1 0 (188) -1 (189) 0 (190) 0 (191) 0

4 1 1 0 0 1
4 2 2 0 0 2
4 2 2 0 0 2

April 6, 2007 DRAFT

17

TABLE IV
THE COMPARISON OF CODING TIMES BETWEEN PRESENTED METHOD AND OTHER METHODS

(2D IMAGE SOURCES : LENA 8 BPP 512×512, WOMAN 8 BPP 2048×2048), WAVELET TRANSFORM TIMES ARE NOT

INCLUDED

Encoding Decoding

Bitrate (cycles ×106) (cycles ×106)
(bpp) SPIHT LTW PROGRES SPIHT LTW PROGRES

Lena
0.125 24.25 34.7 23.66 4.46 12.3 1.60
0.25 30.87 38.9 26.12 7.78 17.4 2.61
0.5 46.18 46.7 29.01 16.04 27.1 4.55
1.0 67.86 62.4 34.80 33.31 47.1 8.32

Woman
0.125 400.66 298.60 378.43 73.90 227.44 24.09
0.25 524.05 430.90 404.34 150.11 370.31 41.92
0.5 788.30 666.15 450.13 307.33 616.70 74.71
1.0 1370.54 1193.08 528.42 675.15 1066.48 128.42

TABLE V

DECODED QUALITY IN PSNR: PROGRES VS UNCODED SPIHT, LENA 512 × 512, 8 BPP

Bit rate 2D PROGRES 2D SPIHT

0.125 30.6742 30.7198
0.25 33.7492 33.7245
0.5 36.8877 36.8714
1.0 39.9145 40.0284

decoding. Note that their results include wavelet transform and I/O time, so it is uncertain whether their

coding algorithm by itself is faster. (Their PSNR results for Lena are slighter below those of SPIHT-AC.)

The relative speed of uncoded SPIHT is known to be up to two times faster than SPIHT-AC, depending

on rate [6]. Thus, we estimate that the speed of Berghorn algorithm in [11] is similar to uncoded SPIHT,

so must be considerably slower than the proposed PROGRES algorithm.

The main reason that PROGRES decodes (and encodes) faster than SPIHT is that it avoids bitplane

April 6, 2007 DRAFT

18

TABLE VI

DECODED QUALITY IN PSNR: PROGRES VS UNCODED SPIHT, WOMAN 2048 × 2048, 8 BPP

Bit rate 2D PROGRES 2D SPIHT

0.125 26.8938 26.9300
0.25 29.4182 29.4253
0.5 33.0248 32.9183
1.0 37.7560 37.7471

coding. In PROGRES, each coef�cient is completely reconstructed by accessing the coef�cient only once.

However, each coef�cient in SPIHT (and many bit-plane coding algorithms) needs multiple passes to fully

reconstruct itself. The signi�cant coef�cients stored in the LSP are processed by the re�nement pass,

adding one bit at each bitplane pass below its most signi�cant bitplane. Furthermore, the set partitioning

information managed by the LIS list in SPIHT is growing two-dimensionally, i.e. along resolutions and

bitplanes. The same is happening to theLIP list, until a coef�cient is classi�ed as signi�cant and moved

to the LSP . These three list processings account for much heavier computations than the simple BFS

(Breadth First Search) traversal used in PROGRES for hierarchical reconstruction of coef�cients.

The decoded qualities for Lena and Woman measured in PSNR are shown in Tables V and VI,

respectively. For Lena, PROGRES is slightly better at 0.25 and 0.5 bpp, and SPIHT is slightly better

at 0.125 and 1.0 bpp. Meanwhile, for Woman, PROGRES is slightly better at 0.5 and 1.0 bpp, and

SPIHT is slightly better at 0.125 and 0.25 bpp. Note that the SPIHT algorithm can stop decoding at

an arbitrary point within a bitplane when a target bitrate is met. However, PROGRES always decodes

the last available bit on the last bitplane. This property seems to explain the slight difference in coding

ef�ciencies between the two coders.

Figs. 9 and 10 show the reconstructed Lena images and Woman images for four different bit rates by

PROGRES and 2D-SPIHT. As stated in the beginning, the two coders decode with very similar quality

at the same bit rate.

B. 3D Case

The 3D coding times for 8 bpp gray scale video, Football 8 bpp, 352 × 240 × 32 (SIF format) and

Susie 8 bpp 720× 480× 128 (ITU 601 format) are shown in Table VII.

The speed gain factor is larger in 3D coding since the amount on the lists being processed in 3D SPIHT

April 6, 2007 DRAFT

19

TABLE VII

THE COMPARISON OF CODING TIMES BETWEEN UNCODED3D-SPIHT AND THE PRESENTED 3D-PROGRES (3D IMAGE

SOURCES : FOOTBALL 8 BPP, 352× 240× 32 (SIF FORMAT), SUSIE 8 BPP 720× 480× 128 (ITU 601 FORMAT))

Bitrate Encoding Decoding
(bpp) (in seconds) (in seconds)

3D-SPIHT 3D-PROGRES 3D-DWT 3D-SPIHT 3D-PROGRES 3D-IDWT

Football
0.125 0.80 0.46 0.50 0.05 0.01 0.49
0.25 0.89 0.47 0.50 0.10 0.02 0.49
0.5 1.11 0.49 0.50 0.21 0.03 0.49
1.0 1.54 0.51 0.50 0.43 0.04 0.50

Susie
0.125 13.10 7.27 8.62 0.91 0.13 8.55
0.25 14.87 7.34 8.50 1.82 0.23 8.55
0.5 19.00 7.55 8.56 3.85 0.42 8.55
1.0 26.64 8.03 8.51 7.71 0.80 8.56

TABLE VIII

DECODED QUALITY IN PSNR: 3D PROGRES VS UNCODED 3D SPIHT, CUPRITE SC1 8B 512 × 512 × 224, 8 BPP

Bit rate 3D PROGRES 3D SPIHT

0.125 26.8938 26.9300
0.25 29.4182 29.4253
0.5 33.0248 32.9183
1.0 37.7560 37.7471

is growing exponentially by dimension. The decoding speed gains are 5 to 10.75 times for Football and

7 to 9.63 times for Susie, as seen in Table VII. The encoding gains are seen as 1.74 to 3.01 times for

Football and 1.80 to 3.31 times for Susie.

The decoded qualities for the hyperspectral image, cuprite sc1 8b2 512 × 512 × 224, 8 bpp, at four

2Upper left 512× 512 corner extracted and rewritten to 8 bits per sample from the original614× 512, 16 bits per sample,
for each band.

April 6, 2007 DRAFT

20

TABLE IX

DECODED QUALITIES AND NUMBER OF BITS FOR512× 512 LENA IMAGE BY PROGRES AT PROGRESSIVE RESOLUTIONS

Resolution

Full Half Quarter
(512×512) (256×256) (128×128)

bit rate decoded decoded decoded decoded decoded decoded
quality size quality size quality size

(bpp) (dB) (bits) (dB) (bits) (dB) (bits)

0.125 30.67 32,768 35.05 31,328 36.4877 22,848
0.25 33.75 65,536 36.02 55,896 36.5062 34,264
0.5 36.89 131,072 36.42 94,016 36.5129 48,792
1.0 39.91 262,144 36.54 149,936 36.5114 65,400

bit rates are also shown in Table VIII. At lower rates, 0.125 and 0.25 bpp, uncoded 3D SPIHT is around

0.01 dB better but at higher rates, 0.5 and 1.0 bpp, 3D PROGRES is around 0.01 dB better. This result

tells that both coders give very similar coding ef�ciency for hyperspectral images.

C. Progressive Decompression

One of the bene�ts of progressive resolution encoding/decoding is that a reduced number of bits can

be decoded to reconstruct a reduced scale. In PROGRES, as shown in Table IX, less number of bits are

required to decode at lower resolutions, especially at higher bit rates.

Table X shows that the decoding times of Lena and Woman at 0.5 bpp are increasing for progressively

increasing resolutions. In the Lena image, the decoding time increases less than 1.5 times whenever the

resolution increases. Meanwhile, the decoding time increases two times for the next higher resolution in

the Woman image.

VII. CONCLUSION

The presented coding method, PROGRES (Progressive Resolution Coding), makes extremely fast

decoding possible by giving up the quality scalability. Comparing to uncoded 3D SPIHT, it decodes

nine times faster, but does not sacri�ce the coding ef�ciency. As shown in the experiments, higher

decoding speed gain is expected for larger size images.

April 6, 2007 DRAFT

21

TABLE X
DECODING TIME OF PROGRESSIVE RESOLUTIONS, CODED AT 0.5 BPP

(INVERSE WAVELET TRANSFORM TIMES ARE NOT INCLUDED)

Lena (512×512) Woman (2048×2048)

Resolution Decoding time Resolution Decoding time
(cycles ×106) (cycles ×106)

16×16 0.4997 64×64 2.1385
32×32 0.5851 128×128 2.9157
64×64 0.8160 256×256 5.5415

128×128 1.5392 512×512 13.2441
256×256 3.0343 1024×1024 35.2448
512×512 4.6403 2048×2048 75.2314

The decision bits during set partitioning of SPIHT are rede�ned across the bitplanes to give the

novel idea of `hierarchical dynamic range coding', which mainly realizes fast decompression. Using

the property of decaying spectral density in wavelet subbands, information of energy decrease across

frequency subbands is shared by neighboring coef�cients, thereby leading to compact coding of the

dynamic ranges.

The given method would be most suitable for applications that need high speed decoding, such as

intra-frame decoding in video playback. In addition, due to its inherent simplicity, lower implementation

costs both in hardware and software forms are possible.

APPENDIX

THE RELATIONSHIP BETWEEN PROGRES AND SPIHT

There are some similarities and differences between the PROGRES and uncoded SPIHT algorithms.

However, remarkably enough, if SPIHT is also given prequantized wavelet coef�cients and encodes all

bitplanes, every code bit of one algorithm has a corresponding bit in the other algorithm. Consequently,

both coders demonstrate very similar coding ef�ciencies. One may try to understand PROGRES as the

coder designed by having a different view than SPIHT, i.e. non-bitplane coding plus dynamic range

coding. The differences and similarities between PROGRES and SPIHT are described in the following

two sections, with further detailed syntactic compatibility is explained in Section C.

April 6, 2007 DRAFT

22

A. Differences from SPIHT

The biggest difference which characterizes the PROGRES from SPIHT algorithm is the selection

of `non-bitplane coding' and `dynamic range coding'. In PROGRES, each coef�cient magnitude is

represented by two parts : the number of bits to represent it and the magnitude. The `number of bits' is

understood as the `dynamic range'. The tree consists of its root value (a wavelet coef�cient) and subtrees.

Each subtree is recursively de�ned in the same way as its parent tree. The dynamic range of a tree is

represented by the difference dbase, from that of its parent tree. Without entropy coding, this difference

information is coded as a unary number ending with 0. The end mark `0' can be understood as the

`signi�cance testing bit' in SPIHT. Because, for example, a decrease of dynamic range 3 in PROGRES

which is 1110 in unary form can be viewed in SPIHT's context that there are no signi�cant bits for

succeeding three bitplanes and the �rst signi�cant bit will be found at the fourth bitplane from the

current bitplane.
Meanwhile, in SPIHT, a signi�cant coef�cient is �rst coded by its position in the signi�cance map,

i.e. the bitplane corresponding to current threshold. The position is represented by a sequence of binary

decisions of partitions. And then, for the signi�cance bit information in remaining bitplanes at the same

position, only the signi�cance for the corresponding threshold is coded without position.
In SPIHT without entropy coding, the magnitude of a signi�cant coef�cient can be coded usingm

bits in m bit-planes. Assume a certain signi�cant coef�cient ci,j . If the �rst signi�cant bit of coef�cient

ci,j is at bit-plane k, where m bit-planes are de�ned from 0 (LSB) to m− 1 (MSB), the sorting passes

will output (m − 1 − k) of `0's for bit-plane m − 1 down to k + 1 and one of `1' for bit-plane k and

the re�nement passes will output k of either `0's or `1's for bit-plane k − 1 through 0 depending on the

magnitude of the coef�cient. The total number of bits is : (m− k − 1) + 1 + k = m. We don't include

the set partitioning information to locate the coef�cient ci,j since it represents the location information,

not the coef�cient value itself.

B. Similarities to SPIHT

While there are apparent differences in bitplane management and coef�cient magnitude coding schemes

between PROGRES and SPIHT, similarities also can be found if we interpret the meanings of each bit

used in PROGRES syntax, especially for dbase and dlocal. As stated earlier, we assume both PROGRES

and SPIHT encode all the bitplanes of prequantized wavelet coef�cients.
First, the similarity between dynamic range coding of PROGRES and sorting pass of SPIHT is stated.

The unary value of dbase and dlocal is very similar to the sequence of coef�cient signi�cance testings

April 6, 2007 DRAFT

23

in SPIHT. That is, each additional `1' of unary value in PROGRES indicates the dynamic range of

coef�cient is dropped by half, which corresponds to `0' in SPIHT representing `insigni�cance' for the

given threshold. As an example, ifdbase = 1110 in PROGRES, it means that the coef�cient is insigni�cant

for following three less signi�cant bitplanes in SPIHT.

Secondly, the similarity between actual coding of coef�cient values in PROGRES and re�nement pass

of SPIHT is stated as follows. In SPIHT, once the �rst signi�cant bit of a coef�cient appears in certain

bitplane, the re�nement pass starts for all the next bits of the coef�cient. Each bit coded in the re�nement

pass of SPIHT exactly corresponds to each bit of coef�cient in binary form, just starting from the next

bit of the �rst nonzero bit of the coef�cient, which is similar to actual coef�cient value coding steps in

PROGRES.

And the last similarity, which is quite complicated and explained further in Section C , is the zerotree

coding scheme in SPIHT and hierarchical dynamic range coding scheme in PROGRES. In SPIHT, two

kinds of signi�cance testing exist. One is for coef�cients and the other is for sets. The signi�cance

testing mentioned in the �rst similarity above is a signi�cance testing for a coef�cient. The `0' in SPIHT

indicates `do not split the set' since the set does not have any signi�cant coef�cient in it. And the `1'

indicates `split the set' since the set has at least one signi�cant coef�cient in it. Thus, many coef�cients

grouped in a set are represented together for their signi�cance regarding a current threshold or bitplane,

causing savings of many signi�cant bits.

Analogous processing is also done in PROGRES by way of a hierarchical dynamic range coding.

Brie�y, the decrease in dynamic range between two adjacent resolution levels means that the bits on the

bitplanes corresponding to the decreased dynamic range do not need to be coded in the higher resolution

levels because they are all zeros implicitly.

C. Syntactic Compatibility between PROGRES and SPIHT

One of the interesting coincidences discovered between two coders is that the two steps of prediction

in PROGRES and the two steps of decision in SPIHT have an exact correspondence.

1) The `dynamic range number' (in PROGRES) of a coef�cient (or a tree of coef�cients) corresponds

to the position (0 for LSB) of the �rst signi�cant bit (in SPIHT) of the coef�cient (or the largest

coef�cient magnitude in a set of coef�cients).

2) The unary coded bits informationdbase and dlocal in PROGRES have roles similar to the signi�cance

test bits for the type-A set and type-B set in SPIHT.

April 6, 2007 DRAFT

24

3) The one signi�cance test bit of a coef�cient plus re�nement bits in SPIHT correspond to the bit

values packed in dynamic range number bits of a coef�cient in PROGRES.

In SPIHT, each set in LIS (List of Insigni�cant Sets), which will be partitioned, is represented by

two types: type-A for D(i, j) and type-B for L(i, j) [6]. The de�nitions of D(i, j), O(i, j), and L(i, j)

follow the article [6].

1) O(i, j) : Set of offspring of the coef�cient (i, j),

2) D(i, j) : Set of all descendants of the coef�cient (i, j),

3) L(i, j) : D(i, j)−O(i, j)

The partitioning of a set is represented with binary decisions. If type-A set has any signi�cant coef�cient

for a given threshold, the coder output `1' meaning there is at least one nonzero bit inD(i, j) of current

bitplane. And then, the type-A set is partitioned into subsets and the signi�cance of each child coef�cient

(k, l) ∈ O(i, j) is coded [6]. If type-A set outputs `0', it means there is no nonzero bit in D(i, j) of

current bitplane and thus the set will not be considered for the current bitplane. In fact, the signi�cance

testing of a set in the order of type-A and then type-B can be well understood as the trial for �nding a

`wide-sense zerotree', so that a group of many zero bits can be compactly represented. A detailed study

on the classi�cation of wide-sense zerotrees such as type-A or type-B of SPIHT has been performed by

Cho and Pearlman [21].

A `set' in SPIHT corresponds to a `tree' in PROGRES. A setsi,j rooted at (i, j) stays insigni�cant up

to the threshold for which at least one of its coef�cients tested as signi�cant. To represent the `staying

insigni�cant' of the set for several (say,k) bitplanes, SPIHT outputsk `0's. Once the set become signi�cant

at certain bitplane, the coder outputs a `1'. At this bitplane, the set is tested for partitioning. If there

exists a signi�cant coef�cient in any of its subsets, the set is partitioned into subsets that are immediately

appended to the end of LIS. From the next bitplane, no bit information is coded for the setsi,j since the set

does not exist anymore. Instead, its subsets or children sets in the LIS,s2i,2j , s2i,2j+1, s2i+1,2j , s2i+1,2j+1

if they exist, are tested for the signi�cance at that bitplane.

Assume we have a 4-ary tree (quadtree) with height two, i.e. there are three levels in the tree, where the

top is level 0 and the bottom is level 2. And letci,j be the root coef�cient and cm,n, (m,n) ∈ I(i, j) be its

four children coef�cients at level 1 of the tree (I(i, j) is de�ned in Section III-B). Then, the magnitudes

of all cm,n (i.e. at level 1) is coded with rparents bits in PROGRES. The rparents is represented by the

difference information dbase. For SPIHT, a type-A set (i.e. D(i, j)) is insigni�cant for dbase bitplane

passes, and at the next bitplane the set becomes signi�cant and is partitioned so that the bits of its

April 6, 2007 DRAFT

25

children coef�cients cm,n on the bitplane is coded. Now, a type-A set is converted into a type-B set if

there exist any signi�cant coef�cient in L(i, j) (i.e. coef�cients from level 2 and below). Note that this

conversion step is done at the same bitplane where the type-A set become signi�cant.

To code the coef�cients at level 2, the PROGRES uses both dbase and dlocal information. In this

case, there are four different dlocal,subtree(sm,n), each for predicting the dynamic range number of of

subtree(sm,n) as described in Subsection III-C. Thus, each coef�cient magnitude at level 2 insubtree(sm,n)

is coded with rchildren - dbase - dlocal,subtree(sm,n) bits in PROGRES. For SPIHT, a type-B set (i.e.

L(i, j)) is insigni�cant for dbase bitplane passes, and at the next bitplane the set becomes signi�cant

and is partitioned into four type-A sets which are appended to the end of LIS. And then, each type-A

set sm,n is insigni�cant for dlocal,subtree(sm,n) bitplane passes, and at the next bitplane the set becomes

signi�cant and the same tasks are repeated as above

In the re�nement passes of SPIHT, each remaining bit (i.e. below the �rst signi�cant bit) of every

coef�cient in LSP (List of Signi�cant Pixels) [6] is coded. One bit for the signi�cance test of a coef�cient

and re�nement bits of the coef�cient in SPIHT correspond to the bit values packed in dynamic range

number bits of a coef�cient in PROGRES. Thus, the number of bits spent to code the magnitude of

coef�cients is exactly the same.

In this way, we can �nd the syntactic relations between: 1) the the unary coded bits informationdbase

and dlocal in PROGRES and the signi�cance test bits for the type-A set and type-B set in SPIHT, and

2) bit values packed in dynamic range number bits in PROGRES and signi�cance test plus re�nement

bits in SPIHT.

REFERENCES

[1] B. E. Usevitch, �A tutorial on modern lossy wavelet image compression: Foundations of JPEG 2000,� IEEE Signal
Processing Magazine, pp. 22�35, Sep 2001.

[2] D. Taubman, �High performance scable image compression with EBCOT,�IEEE Transactions on Image Processing, vol. 9,
no. 7, pp. 1158�1170, July 2000.

[3] M. Marcellin, M. Gormish, A. Bilgin, and M. Boliek, �An overview of JPEG-2000,� inProc. 2000 IEEE Data Compression
Conference, J. A. Storer and M. Cohn, Eds., 2000, pp. 523�541.

[4] D. Santa-Cruz and T. Ebrahimi, �An analytical study of JPEG 2000 functionalities,� inProc. of the IEEE International
Conference on Image Processing, vol. 2, 2000, pp. 49�52.

[5] J. M. Shapiro, �Embedded image coding using zerotrees of wavelet coef�cients,�IEEE Transactions on Signal Processing,
vol. 41, pp. 3445�3462, 1993.

[6] A. Said and W. A. Pearlman, �A new fast and ef�cient image codec based on set partitioning in hierarchical trees,�IEEE
Transactions on Circuits and Systems for Video Technology, vol. 6, pp. 243�250, June 1996.

April 6, 2007 DRAFT

26

[7] W. A. Pearlman, �Trends of tree-based, set partitioning compression techniques in still and moving image systems,� in
Proceedings Picture Coding Symposium 2001 (PCS-2001), vol. 5, April 2001, pp. 1�8, invited, keynote paper.

[8] J. Andrew, �A simple and ef�cient hierarchical image coder,� inIEEE International Conference on Image Processing (ICIP
'97), 1997.

[9] E. Ordentlich, M. Weinberger, and G. Seroussi, �A low-complexity modeling approach for embedded coding of wavelet
coef�cients,� in Proc. 1998 IEEE Data Compression Conference, Mar 1998, pp. 408 � 417.

[10] E. Ordentlich, Private communication, March 20, 2007.
[11] W. Berghorn, T. Boskamp, M. Lang, and H. O. Peitgen, �Fast variable run-length coding for embedded progressive

wavelet-based image compression,� IEEE Transactions on Image Processing, vol. 10, no. 12, pp. 1781�1790, Dec 2001.
[12] J. Oliver and M. P. Malumbres, �Fast and ef�cient spatial scalable image compression using wavelet lower trees,� inProc.

2003 IEEE Data Compression Conference, Mar 2003, pp. 133�142.
[13] H. Danyali and A. Mertins, �Flexible, highly scalable, object-based wavelet image compression algorithm for network

applications,� in IEE Proceedings - Vision, Image, and Signal Processing, Dec 2004, pp. 498 � 510.
[14] W. A. Pearlman, A. Islam, N. Nagaraj, and A. Said, �Ef�cient, low-complexity image coding with a set-partitioning

embedded block coder,� IEEE Transactions on Circuits and Systems for Video Technology, vol. 14, no. 11, pp. 1219�1235,
Nov 2004.

[15] S.-T. Hsiang, �Embedded image coding using zeroblocks of subband/wavelet coeffcients and context modeling,� inProc.
2001 IEEE Data Compression Conference, Mar 2001, pp. 83�92.

[16] J. E. Fowler, �Embedded wavelet-based image compression: State of the art,�Information Technology, vol. 45, no. 5, pp.
256�262, May 2003.

[17] S. G. Mallat, �A theory for multiresolution signal decomposition: The wavelet representation,�IEEE Transactions on Patern
Analysis and Machine Intelligence, vol. 11, no. 7, pp. 674�693, July 1989.

[18] A. Said and W. A. Pearlman, �Low-complexity waveform coding via alphabet and sample-set partitioning,�SPIE Visual
Communications and Image Processing, pp. 25�37, Feb 1997.

[19] B.-J. Kim, Z. Xiong, and W. A. Pearlman, �Low bit-rate scalable video coding with 3-D set partitioning in hierarchical
trees (3-D SPIHT),� IEEE Transactions on Circuits and Systems for Video Technology, pp. 1374�1387, 2000.

[20] J. D. Villasenor, B. Belzer, and J. Liao, �Wavelet �lter evaluation for image compression,�IEEE Transactions on Image
Processing, vol. 4, no. 8, pp. 1053�1060, Aug 1995.

[21] Y. Cho and W. A. Pearlman, �Quantifying the coding power of zerotrees of wavelet coef�cients: a degree-k zerotree
model,� in 2005 IEEE International Conference on Image Processing (ICIP '05), Sep 2005, to appear.

April 6, 2007 DRAFT

27

Fig. 9. Reconstructed Lena by PROGRES,
(a) 0.125 bpp, 30.67 dB (b) 0.25 bpp, 33.75 dB
(c) 0.5 bpp, 36.89 dB (d) 1.0 bpp, 39.91 dB

April 6, 2007 DRAFT

28

Fig. 10. Reconstructed Woman by PROGRES, 512× 512 patch at (x,y)=(500,300),
(a) 0.125 bpp, 26.89 dB (b) 0.25 bpp, 29.42 dB
(c) 0.5 bpp, 33.02 dB (d) 1.0 bpp, 37.76 dB

April 6, 2007 DRAFT

