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Abstract

A low-complexity three-dimensional image compression al-
gorithm based on wavelet transforms and set-partitioning
strategy is presented. The Subband Block Hierarchial Par-
titioning (SBHP) algorithm is modified and extended to
three dimensions, and applied to every code block inde-
pendently. The resultant algorithm, 3D-SBHP, efficiently
encodes 3D image data by the exploitation of the depen-
dencies in all dimensions, while enabling progressive SNR
and resolution decompression and Region-of-Interest (ROI)
access from the same bit stream. The code-block selection
method by which random access decoding can be achieved
is outlined.The resolution scalable and random access per-
formances are empirically investigated. The results show
3D-SBHP is a good candidate to compress 3D image data
sets for multimedia applications.

1. Introduction

Three dimensional (3-D) data sets, such as hyperspectral
images and medical volumetric data generated by com-
puter tomography (CT) or magnetic resonance (MR) typi-
cally contains many image slices that requires huge amount
of storage. For modern multimedia applications, partic-
ularly in the Internet environment, efficient compression
techniques are necessary to reduce storage and transmis-
sion bandwidth. Furthermore, it is highly desirable to have
properties of SNR and resolution scalability and ROI re-
trievability with a single embedded bitstream per data set in
many applications. SNR scalability gives the user an op-
tion of lossless decoding, which is important for analysis
and diagnosis, and also allows the user to reconstruct image
data at lower rate or quality to get rapid browsing through
a large image data set. Resolution scalability means that a
portion of the bit stream can be decoded to reconstruct the
image data to the desired level of resolution. It provides
image browsing with low memory cost and computational
resources. For some applications, only a subsection of the

image sequence is selected for analysis or diagnosis. There-
fore, it is very important to have region of interest retriev-
ability, which can greatly save decoding time and transmis-
sion bandwidth.

Although 3-D image data can be compressed by ap-
plying two-dimensional compression algorithm to each
slice independently, the high correlation between slices
makes an algorithm based on three-dimensional coding
a better choice. To provide scalability and compression
efficiency , many volumetric image compression algo-
rithms based on wavelet transform were proposed recently,
such as Three-Dimensional Context-Based Embedded Ze-
rotree of Wavelet coefficient(3D-CB-EZW) [1] and Three-
Dimensional Set Partitioning In Hierarchical Trees(3D-
SPIHT)[2], Asymmetric Tree 3D-SPIHT (AT-3D-SPIHT)
[11], Three-Dimensional Set Partitioned Embedded bloCK
(3D-SPECK)[8], Three-dimensional Tarp [9], and Annex of
Part II of JPEG2000[10] standard for multi-component im-
agery compression. Most of those algorithms are unable to
naturally provide random access functionality or resolution
scalability due to their data structure across different sub-
bands.

SBHP is a low complexity alternative to JPEG2000. It
can support all the features planned for JPEG2000, such
as progressive transmission by resolution, quality, location;
random access and lossy-to-lossless compression. Its en-
coder runs about 4 times faster, and the decoder is about 6
to 8 times faster than JPEG 2000 with only a small loss in
compression performance. Here, in this paper, we extend
SBHP to three dimensions. The 3D-SBHP is based on cod-
ing 3-D subblocks of 3-D wavelet subbands and can provide
the aforementioned functionality and fast encoding and de-
coding.

JPEG2000 uses three ROI coding methods: tiling, coef-
ficient scaling and code-block selection. Since code-block
selection does not require the ROI be determined and seg-
mented before encoding, the image sequence is encoded
only once and the decoder can extract a subset of the bit
stream to reconstruct the image region of required spatial
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location and quality. This gives the user the flexibility at
decode time, which is vital to some applications, such as
client/server applications.

In this paper, we investigate the scalability and the ROI
access performance of 3D-SBHP in detail.

The rest of this paper is organized as follows. We present
the scalable 3D-SBHP algorithm and code-block selection
ROI access scheme in Section 2. Experimental results of
scalable coding, ROI decoding and computational complex-
ity are given in Section 3. Section 4 will conclude this study.

2 Scalable 3D-SBHP

2.1 Coding Algorithm

The 2-D SBHP algorithm is a SPECK[4] variant which
was originally designed as a low complexity alternative to
JPEG2000. 3-D SBHP is a modification and extension of
2-D SBHP to three-dimensions. In 3-D SBHP, each sub-
band is partitioned into code-blocks. All code-blocks have
the same size. 3-D SBHP is applied to every code-block in-
dependently and generates a highly scalable bit-stream for
each code-block by using the same form of progressive bit-
plane coding as in SPIHT[5].

Consider a 3D image data set that has been transformed
using a discrete wavelet transform. The image sequence is
represented by an indexed set of wavelet transformed coef-
ficients ci,j,k located at the position(i, j, k) in the trans-
formed image sequence. Following the idea in[6], for a
given bit planen and a given setB of coefficients, we define
the significance function:

Sn(B) =

{
1, if ( max

(i,j,k)∈B
|ci,j,k|) ≥ 2n,

0, otherwise.
(1)

Following this definition, we say that set B is significant
with respect to bit planen if Sn(B) = 1. Otherwise, we
say that setB is insignificant.

3-D SBHP is based on a set-partitioning strategy. The
set-partitioning process used by 3-D SBHP is almost the
same as that used by 2-D SBHP. Below we explain in detail
the partition rules by using a16× 16× 4 code-block as an
example.

The algorithm starts with two sets, as shown in Figure
1(a). One is composed of the2 × 2 × 1 top-left wavelet
coefficient in the first frame, and the other contains the re-
maining coefficients. In the first set partitioning stage, the
first set can be decomposed into 4 individual coefficients
and the second set can be decomposed into three2× 2× 1
groups and the remaining coefficients, as shown in Figure
1(b). Figure 1(c) shows the second stage of set partitioning,
each2×2×1 group can be decomposed into 4 coefficients,

(a) (b)

(c)

8*8*2

(d)

(e)

Figure 1: Set partitioning rules used by 3-D SBHP.

and the remaining set can be split into seven4 × 4 groups
and a remaining set. In the third stage, as shown in Figure
1(d), each4×4×1 group is split into 42×2×1 groups, and
the remaining set is partitioned in seven8 × 8 × 2 groups.
Figure1(e) shows each2× 2× 1 group can be decomposed
into 4 coefficients, and each8 × 8 × 2 group can be split
into eight4× 4 groups. This process continues until all sets
are partitioned to individual coefficients.

During the coding process a set is partitioned following
the above rules when at least one of its subsets is significant.
To minimize the number of significant tests for a given bit-
plane, 3-D SBHP maintains three lists:

• LIS(List of Insignificant Sets) - all the sets(with more
than one coefficient) that are insignificant but do not
belong to a larger insignificant set.

• LIP(List of Insignificant Pixels) - pixels that are in-
significant and do not belong to insignificant set.
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• LSP(List of Significant Pixels) - all pixels found to be
significant in previous passes.

Instead of using a single large LIS that has sets of vary-
ing sizes, we use an array of smaller lists of type LIS, each
containing sets of a fixed size. All the lists and list arrays
are updated in the most efficient list management method -
FIFO. Since the total number of sets that are formed during
the coding process remain the same, using an array of lists
does not increase the memory requirement for the coder.
Use of multiple lists completely eliminates the the need for
any sorting mechanism for processing sets in increasing or-
der of their size and speeds up the encoding/decoding pro-
cess. For each new bit plane, significance of coefficients in
the LIP are tested first, then the sets in the LIS in increasing
order of their sizes, and lastly the code refinement bits for
coefficients in LSP. The idea behind processing LIP and LIS
in increasing size can be seen as a way to achieve the same
effect as the fractional bitplane coding used in JPEG2000
without having to go through several passes through the bit-
plane.

The way 3D-SBHP entropy codes the comparison results
is an important factor that reduces the coding complexity.
Instead of using adaptive arithmetic or Huffman coding,
3D-SBHP uses three 15-symbol Huffman codes to code the
set partitioning results of the significantS sets. Fixed Huff-
man coding avoids identifying the current context model,
updating models and calculating frequency. These 15-
symbol Huffman codes have the longest codeword to be 6
bits, and we can use lookup tables instead of binary trees
for speeding up decoding. For comparison results of coeffi-
cients, raw bits are written to the compressed stream.

2.2 Scalable Coding

3D-SBHP is applied independently to every code-block in-
side a subband . An embedded bit stream is generated by
bitplane coding and the method has the same effect as frac-
tional bitplane coding. To enable SNR scalability, bit stream
boundaries are maintained for every bit plane, as shown in
Figure 2. To get SNR scalability, bits belonging to the same
fraction of the same bit planes in the the different code-
blocks are extracted for decoding.

In wavelet coding systems, resolution scalability enables
step increases of resolution when bits in higher frequency
subbands are decoded. AfterN levels of wavelet decompo-
sition, the image hasN resolution scales. As shown in Fig-
ure 2, 3D-SBHP codes code-blocks from lowest subband to
the highest subband. The algorithm generates progressive
bit stream for each code-block, and the whole bit stream is
resolution scalable. If a user wants to decode up to reso-
lution n, bits belonging to the same fraction of the same
bit planes in the code-blocks related to resolutionn can be
extracted for decoding.

b(n_0,0)

b(n_0-1,0)

b(0,0)

block 0

the highest
 bitplane

the lowest
bitplane

b(0,i)

b(n_j,j)

b(0,j)

b(n_L,L)

b(0,L)

b(n_i,i)

b(n_i-1,i) b(n_j-1,j)

b(n_L-1,L)

block L

LLLLLL Subband
resolution 0

HHHHHH Subband
resolution k

Resolution scalable

SNR
scalable

Figure 2: An example of 3D-SBHP SNR and resolution
scalable coding. Each bitplaneα in block β is denoted as
bα,β . Code-blocks are encoded and indexed from the lowest
subband to the highest subband.

2.3 Random Access Decoding

This section describes how to apply 3-D SBHP to achieve
ROI access. Consider an image sequence which has been
transformed using a discrete wavelet transform. The trans-
formed image sequence exhibits a hierarchical pyramid
structure. The wavelet coefficients in the pyramid subband
system are spatially correlated to some region of the image
sequence. In 3-D SBHP, code-blocks are of a fixed size,
and represent an increasing spatial extent at lower frequency
subband. Figure 3 gives an example of the parent-offspring
dependencies in the 3D spatial orientation tree after 2-level
wavelet packet decomposition( 2D spatial+ 1D temporal).
Except those coefficients in the lowest spatial and temporal
subband, every coefficient located at(i, j, k) has its unique
parent at(b i

2c, b j
2c, bk

2 c) in the lower subband. All coeffi-
cients are organized by trees with roots located in the lowest
subband.

 t

x

y

LLt

LHt

Ht

Figure 3: Parent-offspring dependencies in the 3D orienta-
tion tree.
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In this paper, we consider retrieving a cubic region in a
image sequence, where A denotes the upper-left corner in
the first frame of the cubic region and B denotes the lower-
right corner in the last frame of the cubic region. Since the
wavelet transform is separable, we first consider the random
access problem in one dimension.

Let [xA, xB) denote the range of the cubic region in the
X direction. Let[xF

k,l, x
R
k,l) denote the X-direction interval

that is related to the cubic region at DWT levelk in low-
pass or high-pass subbands. Letl = {0, 1} represent the
low-pass and high-pass subband respectively. Suppose the
volume size of the image sequence isW ×H×D. If we do
not consider the filter length, the boundaries of each interval
can be found recursively using

xF
k,l = b

xF
(k−1),0

2
c+ l× W

2k
, xR

k,l = d
xR

(k−1),0

2
e+ l× W

2k

xF
0,0 = xA, xR

0,0 = xB

The spatial error penetration of the filter length effect
around edges can be calculated from the wavelet filter
length and level of wavelet decomposition. Topiwala[7]
gives an approximate equation of the error penetration, by
which the spread of the errorD (in pixels) as a function of
the wavelet filter lengthL and the number of wavelet de-
composition levelsK is given by

D(K, L) =
{

(2K − 1)(2L−3
2 + 1), L even

(2K − 1)(2L−2
2 + 1), L odd

(2)

Suppose we have a synthesis filter with filter lenghtL =
M + N + 1,

gn =
N∑

i=−M

ai × fn+i

the boundaries of each interval can become

xF
k,l = max{0, b

xF
(k−1),0 −M

2
c}+ l × W

2k
,

xR
k,l = min{d

xR
(k−1),0 + N

2
e, W

2k
− 1}+ l × W

2k

xF
0,0 = xA, xR

0,0 = xB

Similarly, the boundaries of each interval in Y direc-
tion, [yF

k,l, y
R
k,l), and in temporal direction,[zF

k,l, z
R
k,l), can

be found following the same principle.
Suppose that an image sequence is decomposed at level

K in spatial domain and levelT in temporal domain with
synthesis filter lengthL and coded with code-block sizeO×
P ×Q. To reconstruct aX × Y × Z (Z ≤ GOPsize) 3D
region, where

X = xR
0,0 − xF

0,0, Y = yR
0,0 − yF

0,0, Z = zR
0,0 − zF

0,0.

The number of decoded code-blocks, denoted asNB , is
given below.

NB =
K∑

j=1

(
S∑

l=1

s×
(
dx

R
j,l

O
e−bx

F
j,l

O
c+1

)
×

(
dy

R
j,l

P
e−by

F
j,l

P
c+1

)

×
T∑

i=1

t∑
n=1

(
dz

R
i,n

Q
e−bz

F
i,n

Q
c+1

))

where,

t =
{

1, i < T
0, i = T

S =
{

1, j < K
0, j = K

s =
{

3, S = 1
1, S = 0

(3)
For example, a32 × 32 × 4 3D region is positioned at

row 64, column 90, in frame number 5 of a image sequence
which is decomposed at level 2 with synthesis filter length
3 and coded with code-block size16× 16× 2. If we do not
consider filter length, 96 code-blocks are needed for recon-
struction the ROI region. Here we call these code-blocks
nonfilter-length related ROI code-blocks. To losslessly re-
construct this region, 156 code-blocks are needed. Here, 60
more code-blocks are used for lossless reconstruction. In
this paper, we call these extra code-blocksfilter-length re-
lated code-blocks. Since subband transforms are not shift
invariant, the same 3D region positioned at different loca-
tions may need different numbers of code-blocks for recon-
struction.

In 3D SBHP, a 3D region can be independently recon-
structed with blur at the boundaries of that region if we
only select nonfilter-length related ROI code-blocks and the
synthesis filter length is larger than two. In addition, the
decoder can also extract filter-length related code-blocks in
order to correctly perform the inverse discrete wavelet trans-
form and construct the 3D region losslessly.

3 Numerical Results

We conduct our experiments on 4 8-bit CT medical image
volumes, 4 8-bit MR medical image volumes, and 4 16-bit
Airborne Visible InfraRed Imaging Spectrometer (AVIRIS)
hyperspectral image volumes. AVIRIS has 224 bands and
614 × 512 pixel resolution . For our experiments, we
cropped the scene to512×512×224 pixels. Table 1 shows
the description of these sequences.

In this section, we provide simulation results and com-
pare the proposed 3-D volumetric codec with other algo-
rithms.

3.1 Comparison of Lossless Performance
with Different Algorithms

Table 2 compares the lossless compression performance
JPEG2000 on medical image sequences of the following
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File Name Image Type Volume Size Bit Depth
(bit/pixel)

Skull CT 256× 256× 192 8
Wrist CT 256× 256× 176 8

Carotid CT 256× 256× 64 8
Aperts CT 256× 256× 96 8

Liver t1 MR 256× 256× 48 8
Liver t2e1 MR 256× 256× 48 8
Saghead MR 256× 256× 48 8
Pedchest MR 256× 256× 64 8

moffett scence 1 AVIRIS 512× 512× 224 16
moffett scence 2 AVIRIS 512× 512× 224 16
moffett scence 3 AVIRIS 512× 512× 224 16
jasper scence 1 AVIRIS 512× 512× 224 16

Table 1: Description of the image volumes

compression algorithms: AT-3D-SPIHT, 3D-SPECK, 3D-
CB-EZW, 3D-SBHP, JPEG2000 multi-component and (2D
lossless) JPEG2000.

To get these results, 3D-SBHP and AT-3D-SPIHT use
GOS = 16, while other 3D algorithms treat the entire im-
age sequence as one coding unit. The code-block size used
by 3D-SBHP is64×64×4. For all 3D algorithms, the three
level wavelet transform was applied on all three dimensions
using the I(2+2,2) filter. JPEG2000 multi-component first
applied the I(2+2,2) filter on axial domain, then coded every
resultant spectral slice as separate file by Kakadu JPEG2000
[12] which uses integer 5/3 filter.

Comparing the average compression performance listed
in the last row of the table, JPEG2000 multi-component
gives the best coding efficiency. As an extension of SBHP,
a low-complexity alternative to JPEG2000, 3D-SBHP on
average yields 23% higher compression performance than
2D JPEG2000, and is 13% worse than JPEG2000 multi-
component. Compared with the average compression re-
sults of other 3D algorithms, 3D-SBHP is 2%, 5% and
13% worse than 3D-SPECK, AT-3D-SPIHT and 3D-CS-
EZW, in compression efficiency, respectively. On the other
hand, 3D-SBHP outperforms most algorithms on some se-
quences. If we consider the fact that 3D-SBHP is applied
with GOS = 16, while other 3D algorithms use the whole
sequence as coding unit, a smaller performance gap will be
expected.

Table 3 presents the lossless performances of 3D-SBHP,
3D-SPIHT, 3D-SPECK, JP2K-Multi, 2D-SPIHT and JPEG
2000 on hyperspectral image sequences. 3D-SBHP uses
five-level dyadic S+P(B) filter on spatial domain and two-
level 1D S+P(B) filter on the spectral axis withGOS = 16
and code-block size= 64 × 64 × 4. JP2K-Multi is imple-
mented first by applying the S+P filter on spectral dimen-
sion and is then followed by application of the 2D JPEG
2000 on the spatial domain using the integer filter(5,3). For
all other 3D algorithms, all 224 bands are coded as a single
unit and five-level filter are applied on every dimension.

For AVIRIS test image volumes, 3D-SPIHT gives the
best coding efficiency. 3D-SBHP is comparable to 3D-
SPIHT on AVIRIS image sequence. On average, it is only
about 2% inferior to 3D-SPIHT and 3D-SPECK. Our algo-
rithm yields, on average, about 2%, 13% and 17% higher
compression efficiency than JPEG2000 multi-component,
2D-SPIHT and JPEG2000, respectively. Again, we sacri-
fice coding efficiency to gain random accessibility and low
memory usage by usingGOS = 16.

File AT-3D- 3D- 3D- 3D-CB JP2K- JPEG
Name SPIHT SBHP SPECK -EZW Multi 2000
Skull 2.1754 2.2701 2.0170 2.0095 1.7450 2.9993
Wrist 1.3083 1.4002 1.2538 1.1393 1.1771 1.7648

Carotid 1.5844 1.6631 1.6517 1.3930 1.6785 2.0277
Aperts 1.0370 1.0876 1.1502 0.8923 0.7290 1.2690
Liver1 2.3191 2.5257 2.4331 2.2076 2.3814 3.2640
Liver2 1.7868 1.8477 1.8733 1.6591 1.6247 2.5804
head 2.2071 2.3219 2.3589 2.2846 2.5961 2.9134
chest 1.9629 2.0873 2.1160 1.8705 1.4884 3.1106

Average 1.7976 1.9004 1.8567 1.6820 1.6775 2.4912

Table 2: Comparison of different coding methods for
lossless compression of 8-bit medical image volumes
(bits/pixel).

File 3D- 3D- 3D- JP2K- 2D- JPEG
Name SPIHT SBHP SPECK Multi SPIHT 2000

moffett 1 6.9411 7.0333 6.9102 7.1748 7.9714 8.7905
moffett 2 7.9174 8.4333 8.0835 8.4131 9.8503 10.0815
moffett 3 6.7402 6.8359 6.8209 7.0021 7.5874 7.7258
jasper 1 6.7157 6.7842 6.7014 6.8965 7.7977 8.8560

Average 7.0786 7.2716 7.1290 7.3716 8.3458 8.7959

Table 3: Comparison of different coding methods for loss-
less coding of 16-bit AVIRIS image volumes (bit/pixel).

3.2 Lossless coding performance by use of
different code-block sizes

Table 4 compares the lossless compression results for all
image data listed in Table 1 by using different code-block
sizes: 8 × 8 × 2, 16 × 16 × 2, 32 × 32 × 4 and 64 ×
64 × 4. The image sequences are compressed with GOS =
16 and I(2,2) filter. Three level of wavelet decompositon is
applied on all three dimensions. The results show that for
all image sequences, increasing the size of the code-block
improves the performance somewhat. The main reason for
the improvement of coding efficiency is that larger code-
block size decreases the total overhead for the whole image
sequence.
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File Name 8× 8× 2 16× 16× 2 32× 32× 4 64× 64× 4
Skull 3.1066 2.4758 2.2617 2.2301
Wrist 2.1780 1.5601 1.3604 1.3347

Carotid 2.5093 1.8973 1.6952 1.6684
Aperts 1.8857 1.2718 1.0793 1.0525

Liver t1 3.3724 2.7478 2.5287 2.5001
Liver t2e1 2.6961 2.0709 1.86613 1.8354
Saghead 3.1859 2.5538 2.3395 2.3091
Pedchest 2.8729 2.2502 2.0372 2.0081
moffett 1 8.3711 7.5104 7.2282 7.1848
moffett 2 9.8242 8.9170 8.6086 8.5674
moffett 3 8.0128 7.1722 6.8960 6.8536
jasper 1 8.1417 7.2922 7.0130 6.9705

Table 4: Lossless Coding Results by Use of Different Code-
block Size (bits/pixel)

3.3 Resolution scalable results

The CT medical sequence ”skull” , I(2,2) integer filter, and
32×32×4 code-block size are selected for this comparison.
The quality of reconstruction is measured by peak signal to
noise ratio (PSNR) over the whole image sequence. PSNR
is defined by

PSNR = 10 log10

x2
peak

MSE
dB (4)

wherexpeak = 255 for these medical images and MSE
denotes the mean squared-error between the original and
reconstructed slice. Figure 4 shows the reconstructed
CT skull sequence decoded from a single scalable code
stream at a variety of resolution at 1.0 bpp. The PSNR val-
ues listed in Table 5 for low resolution image sequences
are calculated with respect to the lossless reconstruction of
the corresponding resolution. Table 5 shows that the PSNR
values decrease from one resolution to the next lower one,
while the total byte cost decreases rapidly with successive
reductions in resolution as shown in Table 6. We can see
that the computational cost and memory requirement of de-
coding reduces from one resolution level to the next lower
one.

Bit Rate PSNR (dB)
1/4 resolution 1/2 resolution FULL

0.25 11.10 23.46 37.63
0.5 13.77 29.03 41.85
1.0 24.04 35.71 46.50
2.0 32.58 43.88 50.55

Table 5: PSNR for decoding CTskull at a variety of reso-
lutions and bit rates

Figure 4 demonstrates the first reconstructed slice of the
reconstructed sequence which is decoded at 1.0 bpp to a
variety of resolutions. Even at a low resolution, we can get
a clear view of the image sequence.

Figure 4: A visual example of resolution scalable decoding.
From left to right: 1/4, 1/2 and full resolution at 1.0 bpp

Bit Rate
Byte Budget
(bytes)

1/4 resolution 1/2 resolution FULL
0.25 6132 48951 391351
0.5 12284 98258 785364
1.0 24575 196604 1572597
2.0 49151 39321 3145610

Lossless 137333 757110 3725185

Table 6: Byte used for decoding CTskull at a variety of
resolutions and bit rates

3.4 Random Access Decoding Results

In this experiment, we randomly chose a64×64×16 region
from (134, 117, 17) to (198, 181, 32) of CTskull sequence
as the ROI. In order to decode this region, we only need to
apply 3D-SBHP with the code-block selection method de-
scribed in Section 2.3. For a given bit rate, the bit stream
is truncated at the same fraction of the same bit plane for
all selected code-blocks. In Table 7, we compare the PSNR
performance of 3D-SBHP random access decoding at dif-
ferent code-block sizes and bit rates. The byte and number
of code-blocks used for lossless decoding the ROI region
are listed in Table 8. These two tables show that a smaller
code-block can give higher ROI decoding performance, es-
pecially at high bit rate, while decreasing the overall com-
pression efficiency. Therefore, the trade-off between com-
pression efficiency and random accessibility should be con-
sidered.

Table 8 gives the number of bytes and code-blocks used
for lossless reconstruction of the ROI region. As filtering is
a spatially expansive operation, the samples that need to be
retrieved always exceed the number of samples in the ROI
region.

Figure 5(a) and Figure 5(b) give both 2D and 3D visual
example of ROI decoding. In the 3D example the region of
ROI is from (134, 117, 17) to (198, 181, 112).
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Bit Rate
(bpp) Code-block Size

32× 32× 4 16× 16× 2
0.5 22.13 dB 21.71 dB
1.0 26.44 dB 26.80 dB
2.0 32.04 dB 33.81 dB
4.0 38.22 dB 40.63 dB

Table 7: PSNR for random access decoding of a64×64×16
region of CTskull at a variety of code-block size and bit
rates

Code-block Size Byte Budget (bytes) Code-block
32× 32× 4 144788 88
16× 16× 2 123143 440

Table 8: Bytes and code-blocks used for lossless decoding
ROI

3.5 Computational Complexity

One of the main advantages of 3D-SBHP is its fast encoding
and decoding. 3D-SBHP has been implemeted using stan-
dard C++ language and complied by VC++.NET compiler.
Tests are performed on a laptop with Intel 1.50GHz Pen-
tium M processor and Microsoft Windows XP. The coding
speed is measured by CPU cycles. The RDTSC (read-time
stamp counter) instruction is used for cycle count.

CT Skull and MRliver t1 are selected for test. 3D-
SBHP uesGOS = 16 and code-block size =32 × 32 × 4,
while AT-3D-SPIHT codes the whole sequence as a coding
unit. Three-levels of spatial dyadic integer wavelet trans-
form and two-levels temporal integer wavelet transform are
applied on all image sequences by using I(2,2) filter. Both
3D-SBHP and AT-3D-SPIHT schemes perform lossless en-
coding. In our experiments, we measure only the coding
time. The wavelet transform time is not included.

The lossless encoding times of AT-3D-SPIHT and 3D-
SBHP on CTSkull and MRliver t1 are compared in Ta-
ble 9, measured in total CPU cycles used for whole image
sequence and average CPU cycles used for a single pixel.
Table 10 compares the decoding times of AT-3D-SPIHT
and 3D-SBHP on CTSkull and MRliver t1 at the rate of
0.125, 0.25, 0.5 and 1.0 bpp. The comparison shows that
3D-SBHP encoder runs around 6 times faster than AT-3D-
SPIHT encoder. As bit rate increases from 0.125 bpp to
full bit rate, 3D-SBHP decoder is about 6 to 10 times faster
than AT-3D-SPIHT decoder. For both schemes, the decod-
ing time is much less than encoding time. The decoding
times increase around twice when the bit rate is doubled.
For these two kinds of test image sequences, the average
coding times used for coding a single pixel are very similar
at every bit rate.

Table 11 compares the coding times of 3D-SBHP on
CT Skull and MRliver t1 at a variety of resolution. The re-
sults show that total encoding and decoding times increase

(a) A 2D visual example of 3D-SBHP
random access decoding. The left: the
17th slice of CTskull sequence at 1/2
resolution; The right: the 17th slice in the
ROI decoded image sequence, full reso-
lution.

(b) A 3D visual example of 3D-SBHP random access de-
coding. The left: CTskull sequence; The right: the ROI
decoded image sequence.

Figure 5: An visual example of 3D-SBHP random access
decoding.

about 6 times at the next higher resolution, while the times
used for coding a single pixel decrease around 20%.

File Total Cycles (×106) Cycles/pixel
3D-SBHP AT-3D 3D-SBHP AT-3D

-SPIHT -SPIHT
CT Skull 1643.162 10086.096 130.58 801.570

MR liver t1 449.921 2560.516 143.58 813.966

Table 9: The comparison of lossless encoding time be-
tween AT-3D-SPIHT and 3D-SBHP on image CTskull and
MR liver t1. (Wavelet transform times are not included.)

4. Summary and Conclusions
In this article, we present 3D-SBHP, an embedded, block
based, three-dimensional wavelet transform coding algo-
rithm of low complexity. With small loss of compression
efficiency, it is able to encode an image sequence around
6 times faster than AT-3D-SPIHT. And according to the
bit rate, it is able to decode a image sequence about 6 to
10 times faster than AT-3D-SPIHT. 3D-SBHP also supports
resolution scalability and ROI retrievability. These features
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Bit Rate Total Cycles (×106) Cycles/pixel
3D-SBHP AT-3D- 3D-SBHP AT-3D-

SPIHT SPIHT
CT Skull

0.125 58.130 375.695 4.62 29.86
0.25 107.528 786.145 6.08 62.477
0.5 199.141 1677.159 15.82 133.29
1.0 378.820 3689.307 30.11 293.20

lossless 814.119 8333.717 64.70 662.30
MR liver t1

0.125 14.451 96.860 4.59 30.79
0.25 27.797 174.739 8.837 55.55
0.5 51.634 396.864 16.41 126.16
1.0 97.215 844.629 30.904 268.50

lossless 231.21 2142.805 73.50 681.18

Table 10: The comparison of decoding time between
AT-3D-SPIHT and 3D-SBHP on image CTskull and
MR liver t1 at a variety of bit rates. (Wavelet transform
times are not included.)

Resolution Encoding Decoding
Total Cycles Cycles Total Cycles Cycles

(×106) /pixel (×106) /pixel
CT Skull

1/4 41.614 211.66 18.638 94.797
1/2 255.458 162.41 113.901 72.416
Full 1643.162 130.58 814.119 64.70

MR liver t1
1/4 10.605 215.76 6.903 140.44
1/2 73.128 185.97 38.106 96.91
Full 449.921 143.58 231.21 73.50

Table 11: Coding time of 3D-SBHP on CTskull and
MR liver t1 at a variety of resolutions

make the proposed algorithm a good candidate for compres-
sion of 3D image data sets for multimedia applications.
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